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ABSTRACT

Convolutional Neural Networks (CNNs) learn highly discriminative representa-
tions from data, but how robust and structured are these representations? How
does the data shape the internal network representation? We shed light on these
questions by empirically measuring the invariance and equivariance properties of
a large number of CNNs trained with various types of input transformations. We
find that CNNs learn invariance wrt all 9 tested transformation types and that in-
variance extends to transformations outside the training range. We also measure
the distance between CNN representations and show that similar input transfor-
mations lead to more similar internal representations. Transforms can be grouped
by the way they affect the learned representation. Additionally, we also propose a
loss function that aims to improve CNN equivariance.

1 INTRODUCTION

The overwhelming success of Convolutional Neural Networks (CNNs) is generally attributed to their
ability to learn task-specific representations from large quantities of data. This has led to many state
of the art results in areas such as image classification (He et al., 2015), semantic segmentation (Liu
et al., 2015), and game-playing Go agents (Silver et al., 2016). However, our current understanding
of CNN representations is limited, though there is a growing body of literature on visualization
techniques for interpreting internal representations (Mahendran & Vedaldi, 2016; Dosovitskiy &
Brox, 2015; Nguyen et al., 2016).

In this work, we aim to understand the effect that the training data has on three key properties of
representations: invariance, equivariance, and equivalence (Lenc & Vedaldi, 2015). Invariance, with
respect to a particular transformation (e.g. rotation by θ = 5), is achieved when the feature vectors
for input images at a particular layer do not change when the inputs are transformed. This can be seen
as a measure of the robustness of the representation. Equivariance is a generalization of invariance
and allows the representation to change in predictable ways in response to input transformations.
Equivariance is a rough measure of the structure of the representation space because we can reason
about input space transformations in the more abstract representation space. Likewise, measuring
equivalence among network representations trained on either the same or different data distributions
gives insight into how the training data shapes the representation.

Data augmentation has been considered essential for top CNN performance since the seminal work
of Krizhevsky et al. (2012). When input images are stochastically perturbed, less overfitting is
observed because all inputs are unique. Since then, others have experimented with various data
augmentation strategies with great success (Howard, 2013; Wu et al., 2015; He et al., 2014). While
others have noted that data augmentation leads to greater representation invariance (Lenc & Vedaldi,
2015; Wu et al., 2015; Peng et al., 2014), we measure the amount of invariance achieved in response
to 9 types of transforms at various magnitudes. We additionally measure the equivariance and pair-
wise representation distance of the resulting CNNs.

In this work we quantify the invariance and equivariance properties of 70 CNNs on two datasets
trained using different input transformations. We find the representation at the penultimate layer
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(fc7) is structured wrt almost all input transformations when no augmentation is used. Applying
data augmentation effectively collapses the structure of the representation space, leading to input
transformation invariance for all 9 transforms, including magnitudes of transforms that were not
observed during training.

We measure the pairwise distances of the CNN representations by measuring the error of learned
mappings between CNN representations. There is a strong bias towards similarity among CNNs
trained with the same type of transformation, and we can group transformations based on their
mutual average distances. Similar types of transformations (e.g. Color Jitter, Gaussian Noise) yield
more similar representations compared to other dissimilar transform pairs.

We also propose a way to increase the equivariance of a CNN by finetuning on a novel loss function
that simultaneously minimizes classification error for both transformed and untransformed inputs.
This leads to an increase in equivariance while improving or slightly decreasing performance on the
untransformed images (dataset dependent), though this trade-off can be controlled by weighting the
terms of the loss function.

2 RELATED WORKS

Lenc & Vedaldi (2015) studied image representations and gave definitions for representation in-
variance, equivariance, and equivalence. They measured these properties wrt a limited number of
transforms for the convolutional layers of the popular AlexNet architecture. We provide extensions
to the definitions of these properties to measure the relative degree to which representations pos-
sess these properties. We also consider a wider variety of transformations and use the fc7 layer of
AlexNet because it is the most invariant layer.

Convergent learning is the idea that identical networks (differing in random initialization) converge
to the same representation (i.e.. representation equivalence). In Li et al. (2015), the authors show
that there are many corresponding convolutional filters among CNNs for one-to-one, one-to-many,
and many-to-many relationships. In complementary fashion, we measure representation distances
between last fully connected layers in CNNs trained over different transformations of their inputs.

In Krizhevsky et al. (2012), applying random crops, horizontal flips and color jittering during train-
ing reduced the top-1 error by over 1%. Howard (2013) applied additional brightness, contrast, crop,
and scale transformations at both training and test time to reduce validation top-1 error from 40.7%
to 37.0%. Wu et al. (2015) adds rotation and photo filter effects such as lens distortion, vignetting,
and color casting for further improvement. Similarly, we explore a series of 10 types of transfor-
mations applied at training time; however, we focus on how they affect the learned representation
instead of optimizing classifier performance.

In Peng et al. (2014), synthetic images rendered from 3D CAD models are used to explore invariance
in object detection networks for factors such as pose, object texture, and foreground/background
color. Training a CNN on images that vary in these aspect results in greater invariance than training
with less data variety. 3D CAD models are also used in Aubry & Russell (2015) to show that
upper layers of CNNs disentangle and (locally) linearize independent object factors such as object
viewpoint, style, color, and scale.

ManiTest (Fawzi & Frossard, 2015) defines classifier invariance as the average magnitude of the
minimal transform that causes predictions to change. In contrast, we examine internal CNN repre-
sentations and measure both representation distance and classifier performance.

3 INVARIANCE, EQUIVARIANCE, AND EQUIVALENCE

In this section, we provide definitions and intuition on the three properties of interest, borrowing
basic definitions and notation from Lenc & Vedaldi (2015). Though we focus on CNN image repre-
sentations, the following applies to any kind of data representation.

3.1 EQUIVARIANCE AND INVARIANCE

If the domain of interest (e.g. natural images) is X ⊂ Rnxn, a function φ : Rnxn → Rm assigns
a feature vector to every input image and thus defines an image representation. We will use X to
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denote the input space and Z the output space (i.e. φ : X → Z). φ may be equivariant to some
transformations, but not others, so we say that φ is equivariant wrt g : X → X iff

∃Mg : Z → Z, ∀x ∈ X : φ(gx) ≈Mgφ(x) (1)
This means that transformation by g in X corresponds to a transformation by Mg (if it exists) in
Z. Thus if Mg exists, it informs us of the structure of the abstract space Z in terms of the concrete
space X . If Mg is the identity transform, then φ maps x and gx to the same point in Z, which
leads to invariance wrt g (i.e. φ(gx) ≈ φ(x)). This is related to the idea of whether CNNs collapse
(invariance) or linearize (equivariance) view manifolds of 3D objects (Bakry et al., 2015; Aubry &
Russell, 2015).

While the previous definitions suggest equivariance and invariance are all-or-nothing properties, we
use the following definition to precisely define the ≈ used in Eq 1. We measure the equivariance of
φ wrt a transform g as

Equivarainceφ(g;L) = min
Mg

1

N

N∑
i=1

L(φ(xi),Mgφ(gxi)) (2)

whereL is a suitable loss function such as classification error or L2 distance (Section 3.3). Invariance
is similarly measured by fixing Mg as the identity function.

In practice, it is difficult to maximize Mg over the space of all functions, so we restrict Mg to be
a simple parametric function (e.g. linear) and learn the parameters from data. Thus our results can
be considered a lower bound on the actual equivariance of the representation. Eq. 2 also uses the
paradigm that Mg attempts to undo in Z the transformation g performed in X . This is also done in
Lenc & Vedaldi (2015) and allows us to compute classification based metrics by applying the same
classifier to both φ(x) and Mgφ(gx).

3.2 EQUIVALENCE AND REPRESENTATION DISTANCE

In Lenc & Vedaldi (2015), φ1 is equivalent to φ2 if φ1 has the same information in the sense that
∃E1 : Z1 → Z2, ∀x ∈ X : φ2(x) ≈ E1φ1(x) (3)

However, this relation is only symmetric (as the name equivalence implies) iff E1 is invertible. If
E1 is invertible, then E−11 satisfies φ1(x) ≈ E−11 φ2(x). In the other direction, if the relation is
symmetric, then ∃E2 such that φ1(x) ≈ E2φ2(x) and such an E2 is an inverse of E1.

In light of this, we propose renaming Eq 3 to be the sub-representation property with the the ter-
minology that φ2 is a sub-representation of φ1. We then define φ1 and φ2 to be equivalent iff an
invertible E1 exists. One example of sub-representation are two reprensetations characterized by
(1) the RGB pixels of an image and (2) the corresponding grayscale intensities. The grayscale is
a sub-representation of the RGB because we can recover the grayscale from the RGB, but not vice
versa.

As with equivariance, we are interested in measuring the extent that two representations are distinct.
Thus we define the distance between two representations as

D(φ1, φ2) = min
E1

[L(E1φ1(x), φ2)] + min
E2

[L(φ1, E2φ2(x))] (4)

As with Mg , finding the optimal E1, E2 is difficult, so we learn linear models from data. Choices
for the loss function, L, are discussed in Section 3.3.

3.3 DISTANCE METRICS

The two distance metric we employ are normalized euclidean distance in the representation space
and classification error.

LL2(ri, r
′
i) =

||ri − r′i||2
||ri||2

, Lerr(ri, r
′
i) = 1− δ(yi, ŷi), ŷi := argmax

j
C(r′i)j

where ri = φ(xi), r′i =Mg(gxi), C(ri) is the predicted distribution of class labels, yi is the ground
truth label of ri, and δ is the Kronecker delta function. For LL2, we normalize each dimension of
r to have similar magnitude, similar to the normalization of Li et al. (2015). The classifier, C, is
composed of the remaining layers of the CNN after φ.
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Name Description
Baseline No Transform
Color Casting Add a random integer to each color channel
Crop Crop a 227x227 sub-window from a larger image
Elastic Deformation Apply a smoothed random displacement field (Simard et al., 2003)
Gaussian Blur Blur the image with a Gaussian kernel
Gaussian Noise Add iid Gaussian noise to each pixel
Mirror Flip image horizontally, vertically, or both
Perspective Warp square image to an arbitrary quadrilateral
Rotation Rotate the image about the center
Shear Warp square image into trapezoid (horizontal and vertical)

Table 1: Each CNN is trained with one of these types of transformations over parameter ranges
that differ in magnitude. Each sampled input to the CNN is stochastically perturbed by sampling
transform parameters from the range and applying the transformation to the image.

4 IMPROVING EQUIVARIANCE

In this section, we propose a loss function for training a network to increase its invariance and
equivariance. CNNs for classification tasks are typically trained with a cross entropy loss, i.e.

Ld(X,Y ) =
1

N

N∑
i=1

H(yi, C(φ(xi))) (5)

where X is the training images, Y is the training labels, and H computes cross entropy.

Ld can be augmented by a term that biases the representation φ to be equivariant to some set of
transforms G = {g1, g2, ..., gJ}. We propose the loss function, Le, which is minimized when the
transformed images are both correctly classified and spatially close to the untransformed image inZ.

Le(X,Y ) =
1

NJ

N∑
i=1

J∑
j=1

[
H(yi, C(x

′
ij)) + λ1||x′ij − φ(xi)||22 + λ2||φ(gjxi)− φ(xi)||22

]
(6)

where x′ij = Mgjφ(gjxi). The first term of the sum is the classification loss of the transformed
images, while the second and third terms respectively enforce equivariance and invariance. In our
experiments, we set λ1 = 50

4096 , λ2 = 25
4096 , though the results do not appear highly sensitive to this

particular setting. Each equivariance mapping Mgj constitutes a new portion of the network that
attempts to undo the transformation gj in the Z. As such, the parameters of Mgj must be learned
along with the parameters of the network.

Combining Eq. 5 and 6, we arrive at our combined loss:

L(X,Y ) = Ld(X,Y ) + λ3Le(X,Y ) (7)

We found that λ3 = 0.3 provides good compromise between performance on the transformed and
untransformed data, though λ3 can be tuned for individual performance requirements.

5 EXPERIMENTAL SETUP

Here we detail the experiments we conduct including the transformations, networks, and datasets.

For the first set of experiments, we simply measure the invariance and equivariance of the AlexNet1
architecture trained under various data augmentation schemes. We measure the representation of
layer fc7 (denoted φfc7) after applying the ReLU non-linearity and dropout2.

1We used the reference CaffeNet architecture, which differs slightly from Krizhevsky et al. (2012)
2We follow the test time convention of halving neuron activations instead of zeroing out half the activations.
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5.1 TRANSFORMATIONS

We examine a set of 10 transformation types. See Table 1 for brief descriptions or Appendix A for
full details. We train 4 CNNs for each type of transform (only 2 for blurring, 1 for baseline) for a
total of 35 networks per dataset. Each of the 4 CNN within a transform type is trained with different
magnitudes of transformations. Training with data augmentation is performed by stochastically
transforming each network input with a transform taken from a specified range.

After training, we measure invariance and equivariance wrt fixed transforms for each type. For
example, the 4 CNNs trained on different ranges of rotations (θ ∈ [−5, 5], θ ∈ [−10, 10],
θ ∈ [−15, 15], θ ∈ [−20, 20]) all have their equivariance measured wrt rotations of θ =
±{2.5, 5, 10, 15, 20, 25, 30, 40}. As a baseline, we trained a model with no data augmentation and
measured the invariance and equivariance of that network wrt all transforms.

5.2 EQUIVARIANCE MAPPING

To measure equivariance wrt gj , we learn Mgj (Eq. 2) and measure the classification accuracy
over the transformed images. Due to data augmentation during training, the network may already
be invariant wrt gj , so we model Mgj as a linear residual mapping to bias it towards an identity
mapping (He et al., 2015). That is Mgj (r) = σ(r + R(r)), where R is to be estimated from data
and σ(x) = max(x, 0) is the ReLU non-linearity. We experimented with R as a linear mapping and
as a neural network with a single hidden layer. In nearly all cases, the linear mapping outperformed
the neural network, so we present results only for the linear mappings. Therefore, we have

Mgj (r) = σ(r +Wjr + bj) = σ((Wj + I)r + bj) (8)

where (Wj , bj) are parameters to be estimated from data.

Each Mgj is trained using fully online SGD for 10 epochs with a static learning rate of 0.001,
using an L2 weight decay penalty of 10−5. Momentum with β = 0.9 is used. For learning Mgj ,
only (Wj , bj) are updated. The rest of the network parameters are treated as fixed. The loss to be
minimized is ||Mgj (φfc7(gjx))− φfc7(x)||22.

5.3 REPRESENTATION DISTANCE MAPPING

Here we are interested in learning E1 (or equivalently E2) from Eq. 4 for each ordered pair (φi, φj)
in a set of of network representations {φi}. We consider linear mappings with E1(r) = σ(Wr + b)
and estimate (W, b) from data. Hyper-parameters for learning are the same as in Section 5.2. The
loss to be minimized for each ordered pair is ||φi(x)− E1φj(x)||22.

5.4 FINETUNING EQUIVARIANCE

For this experiment, we take the CNNs trained with the most extreme parameter ranges for each
transform type and finetune the representation using Eq. 7 as the loss function. For each CNN, we
selected 4-6 transformations within the training range to be the G in Eq. 6.

We finetune for 150,000 weight updates with a mini-batch size of 10 for RVL-CDIP and 100 for
ILSVRC. The learning rate is 0.0005 and decays by a factor of 10 every 60,000 updates. Momentum
of β = 0.9 was used with no weight-decay regularization.

5.5 DATASETS

We use two large datasets with distinct properties. The first is the popular ILSVRC 2012 dataset
(1.2M train / 50K validation), composed of natural images. The second is the RVL Complex Docu-
ment Information Processing (RVL-CDIP) dataset (Harley et al., 2015) (320K train / 40K val / 40K
test). It is composed of scanned tobacco litigation documents in grayscale format and each document
image is labeled with one of 16 categories (e.g. letter, memo, email, form, news article, scientific
publication). Examples images can be found in Figure 4 in Appendix A In contrast to ILSVRC,
document images in RVL-CDIP are intrinsically 2D objects, have fixed zoom and location, and
have little background area. We aim to compare and contrast the invariance and equivariance of the
various transforms for these two datasets.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Invariance and equivariance accuracy measurements for ILSVRC. Each plot compares a
CNN trained with a particular transformation (blue line for equivariance, green for invariance) to
the baseline model (red for equivariance, black for invariance) trained with no transformations. The
x-axis ranges over different parameters for each type of transformation. Each point represents the
error of the Mg learned on that particular parameterization of the transformation.

(a) ILSVRC Elastic (b) ILSVRC Elastic (c) RVL-CDIP Rotation (d) RVL-CDIP Rotation

Figure 2: Equivariance and Invariance measurements of CNNs trained with various parameter
ranges. Larger training ranges yields greater robustness for a wider range of transforms.

In our experiments CNNs are trained using the training splits, using the validation split for model
selection. For learning equivariance mappings and representation distance mappings, we use a static
randomly chosen 50K training images for ILSVRC and the validation split for RVL-CDIP. Thus the
reported metrics are over the validation split for ILSVRC and test split for RVL-CDIP. We subsample
for ILSVRC for computational reasons and use the validation split for RVL-CDIP because the CNN
representation may have overfit the training data.

6 RESULTS

6.1 MEASURING INVARIANCE AND EQUIVARIANCE

Figure 1 shows the invariance and equivariance measurements for each type of transform on
ILSVRC. Additional results for both ILSVRC and RVL-CDIP can be found in Appendix B.1. For
each transform type, we compare the CNN trained with the most extreme transforms to the base-
line model trained with no data augmentation. The transformations we measured range from no
transform to approximately double the transformation magnitude seen during training.

In many instances (e.g. Blur, Noise), the baseline model’s performance deteriorates rapidly even
for mild transformations. The large difference between the baseline invariance (black line) and
equivariance (red line) indicate that Z is structured wrt most transforms (Color is one exception).

For CNNs trained with data augmentation, the equivariance mapping does not improve performance
for transforms that are observed during training. This suggests that Z may not be (linearly) struc-
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(a) KNN Plot (b) ILSVRC (c) RVL-CDIP

Figure 3: (a) shows how often transforms of the same type are K-nearest neighbors. It reveals
a strong bias towards networks trained with the same transformation having more similar repre-
sentations. Heatmaps (b) and (c) show average distances between representations induced by the
transforms. Lighter squares indicate greater distance, while darker squares indicate the transforms
are closer together. Diagonal entries are distance 0, but were set to white for visualization purposes.

tured wrt those particular transforms possibly because the structure has been collapsed due to the
training object. Some transforms (e.g. Noise, Blur, Shear), at large magnitudes, do show a gap
between the equivariance and invariance lines, suggesting that Z is structured wrt these transforms.
Equivariance performance does drop off outside the training range, but not near as sharply as the
baseline model (e.g Figs. 7a, 7c, 7f), so CNN representations generalize somewhat to unseen trans-
forms.

Figure 2 shows how various magnitudes of training augmentation affect the invariance/equivariance
properties of the network for select transforms. Other transforms behaved similarly. Larger training
ranges yields greater robustness for a wider range of transforms.

6.2 REPRESENTATION DISTANCE

In this second experiment, we measured the pairwise representation distances of 37 CNNs (34 w/
transforms and 3 baseline networks). Using equation 4 (L = LL2), we computed a pairwise distance
matrix for the 37 network representations. We attempted a T-SNE embedding (Maaten & Hinton,
2008) visualization, but the distances seem intrinsically difficult to embed in 2D (see Appendix B.3).
Comments on the asymmetry of the distances measured can be found in Appendix B.3.

There is, however, a strong bias towards networks of the same training transformation to be nearer to
each other compared to random chance. We performed a K-NN analysis by counting the percentage
of same-transform pairs that are K nearest neighbors (Figure 3a). Approximately 80% of same-
transform pairs are within 5 neighbors of each other for RVL-CDIP (10 neighbors for ILSVRC). This
indicates that networks trained with the same transform end up with more similar representations,
though the strength of the transformation and network initialization also play a role.

We also visualize the average distance between CNNs grouped by transformation type (Figs 3c and
3b). Patterns emerge in both datasets. In RVL-CDIP, Crop is the most unique transform because the
CNNs learn features as a different static image scale. On the other hand, Crop is not as unique for
ILSVRC because objects appear at multiple sizes, so the features learned are not targeted at a single
size. Blur, especially for ILSVRC, seems to give unique representations because it changes the local
textures from which the representation is derived in a bottom-up fashion. Refining the representation
in a top-down manner may be a further avenue for improving CNN representation robustness.

Rotation, Shear, and Perspective transforms are mutually similar for both datasets. This is likely
because all three move local pixels in a rigid fashion. Another mutually similar group is Baseline,
Color Jitter, and Gaussian Noise, which all operate on pixels independently. Elastic Deformations
are somewhat similar to Shear, but not to other transforms.
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Transform CDIP CDIP Transform CDIP CDIP
Original Finetune Original Finetune

Color Jitter 88.01 88.58 Crop center from 256x256 88.83 89.07
brightness +10 88.01 88.63 upper left corner 86.46 87.07
brightness -15 88.04 88.60 bottom right corner 86.94 87.57
Elastic Deformations 87.89 88.52 Gaussian Noise 88.15 88.67
σ = 2.5, α = 5 88.17 88.48 σ = 8 88.16 88.61
σ = 3, α = 10 88.05 88.21 σ = 16 88.09 88.53
Gaussian Blur 86.82 87.18 Mirror 88.42 89.44
σ = 1 86.79 87.13 Horz. 88.51 88.11
σ = 2 86.47 86.74 Horz. + Vert. 88.43 88.17
Perspective 88.55 89.13 Rotation 88.49 89.01

88.69 88.96 θ = −10 87.60 87.41
88.65 89.07 θ = 15 88.59 88.70

Shear 88.96 89.71
Horz, θ = −10 88.37 88.55
Vert, θ = −15 87.40 87.51

Table 2: Equivariance measurements for several CNNs on RVL-CDIP before and after finetuning
using Eq. 7. The first row of each transform type shows performance over untransformed images. In
most cases finetuning improves equivariance on the finetuning transforms and on the untransformed
images.

6.3 IMPROVED EQUIVARIANCE

For RVL-CDIP, finetuning using Eq. 7 improves both equivariance and performance on untrans-
formed images by ∼0.5% (Table 2). This may be because the original network was trained with a
wide range of transform parameters, so the representation caters to no particular set of transform
parameters. By introducing Mgj during finetuning, the representation can individualize to the un-
transformed image, while still avoiding the overfit that occurs without data augmentation. Results
for ILSVRC were mixed, with finetuning improving equivariance for 3 of 9 transformations (see
Table 4 in Appendix B).

7 CONCLUSION

This work gives the results from a large scale empirical study into the invariance and equivariance
properties of CNNs trained under different input transformations. We quantify these properties for
70 CNNs across 10 types of transforms for 2 large datasets. CNNs are able to learn invariance to all
transforms tried, and this invariance/equivariance extends somewhat to transforms outside the train-
ing range. We show evidence that the CNN linearizes its representation wrt Rotation, Perspective,
and Shear transforms. In general, the baseline CNN showed very little invariance to even moderate
transformations.

We also measured CNN representation distance between all pairs of 37 networks. There is a bias
towards CNNs trained with the same type of transformation to have more similar representations.
The analysis also revealed that similar types of transforms (e.g. Rotation, Shear) lead to more similar
representations. We also proposed a joint loss function that moderately increases accuracy on both
untransformed and transformed images, leading to an increase in equivariance for most transforms.
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Figure 4: Example instances of the RVL-CDIP dataset.

APPENDIX

A TRANSFORM DETAILS

For space reasons, exact details and parameterizations of the transforms used to train the CNNs
were omitted from the main text, but are included here. Table 1 gives a brief explanation of the 9
transforms, but each transform will be explained in detail hereafter. Pixels that move into the image
dimensions from outside the image (e.g. pixels rotated in) are set to be intensity 0 (see Figure 6b).

A.1 COLOR JITTER

Color Jitter adds a random value to each color channel (RGB or grayscale) of the input image.
The random value drawn is separate for each channel, but the same value is applied to each spatial
location, essentially making each color either brighter or darker. If the addition of the random value
causes a pixel to go outside the normal [0, 255] range, it is truncated back to the range.

During CNN training, the random values are drawn from a Gaussian Distribution parameterized by
a mean µ and standard deviation σ. Four CNNs were trained, with µ = 0 and σ ∈ {5, 10, 15, 20}.
When measuring invariance/equivariance, we apply a deterministic color jitter transformation that is
the same for all input images. We simply adjust the brightness of the image (all color channels tied)
by a fixed amount in ±{2, 5, 10, 15, 20, 25, 30, 45}.

A.2 CROP

During training with Crop transformations, we first resize the input images to a larger size (such
as 240x240, 256x256, 288x288, or 320x320), and then take a 227x227 crop from the larger imgae.
The larger the original image, the more detail the CNN gets to see, but also a smaller percentage of
the original image is captured in the input window. CNNs trained with other transformations have
their input images resized to 227x227.

For measuring invariance/equivariance, the baseline transform for the Crop CNNs is the center crop,
and the transforms are crops at other locations. For example, for invariance to upper left corner
crops, we measured the difference in CNN activations between the network applied to the center
crop and the network applied to the upper left crop. We measured 25 spatial locations arranged in a
5x5 grid.
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(a) Original Image (b) α = 10, σ = 3.5 (c) α = 15, σ = 3.5 (d) α = 10, σ = 2

(e) Original Image (f) α = 10, σ = 3.5 (g) α = 15, σ = 3.5 (h) α = 10, σ = 2

Figure 5: Example Elastic Deformations transforms for which we measured invariance and equiv-
ariance in Figure 7c.

A.3 ELASTIC DEFORMATIONS

Elastic Deformations are a way of locally distorting images by applying a smoothed random dis-
placement field (Simard et al., 2003). Image transformations can be characterized by a backward
mapping of pixel locations in the output image to locations in the input image. For elastic deforma-
tions, first an random displacement field is sampled that would map output pixels to random input
locations in their local neighborhood. The size of the local neighborhood is controlled by an α pa-
rameter. This displacement field is then smoothed using Gaussian filtering with a specified σ. This
causes local regions of the displacement field to point in the same direction.

For training CNNs, we used a fixed σ and sampled α for each input image. The four CNNs we
trained with Elastic Deformations can be described as (α ∈ [0, 5], σ = 2), (α ∈ [0, 10], σ = 2),
(α ∈ [0, 5], σ = 3), (α ∈ [0, 10], σ = 3).

When measuring equivariance/invariance (in contrast to training) we apply the same exact transform
to every image. For elastic deformations, this means we applied the same displacement field to each
image. We did this for a number of displacement fields of various parameter settings. As shown in
Figure 7c These settings included every combination of α ∈ {5, 10, 15} and σ ∈ {2, 2.5, 3, 3.5}.

A.4 GAUSSIAN BLUR

We used the standard Gaussian Blur transform which replaces each pixel by a weighted average of
the neighboring pixels, where weight magnitudes are Gaussian wrt spatial distance. The shape of the
Gaussian weighting function is controlled by σ, which is measured in pixels. We trained two CNNs
with Gaussian Blur, where for each input image, we sampled a sigma from a uniform distribution
(i.e. σ ∈ [0, 1.5] and σ ∈ [0, 3]).

For measuring equivariance/invariance, we used σ ∈ [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5].

A.5 GAUSSIAN NOISE

Gaussian Noise is similar to Color Jitter except that we sample different random values for each
spatial location. The strength of the noise is controlled by σ, which is measured in pixel intensity
([0, 255] scale). When training the four CNNs, σ is sampled from a uniform distribution for each
input image. The four ranges used were [0, 5], [0, 10], [0, 15], [0, 20].
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(a) Original Image (b) Transform 4 (c) Transform 6 (d) Transform 9

Figure 6: Example Perspective transforms for which we measured invariance and equivariance in
Figure 7f. (a) is the original untransformed images, while (b-d) are ordered in increasing magnitude
of transformation.

We measured the invariance/equivariance of Gaussian Noise transforms defined by σ ∈
[2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 30, 40].

A.6 MIRROR

Mirroring refers to reflecting the input image over the horizontal or vertical image axes. We trained
3 CNNs with mirroring. The first performed horizontal mirroring with probability 0.5. The second
performed vertical mirroring with probability 0.5. The third performed both types of mirroring with
independent probability 0.5 for a total of 4 combinations of flips.

We measures the equivariance/invariance of all 4 combinations of flips.

A.7 PERSPECTIVE

Perspective transforms are a class of transforms with the constraint that straight lines in the input
image remain straight in the output image. One way to parameterize (8 parameters) a perspective
transform is to specify the output coordinates of the input unit square, so that the unit square is
mapped to an arbitrary quadrilateral.

When training a CNN, for each image we first sampled σ from a uniform distribution. Then we
sampled the displacement of the coordinates of the unit square from a Gaussian Distribution with
mean µ = 0 and standard deviation σ. Thus the output coordinates for the upper left corner of
the unit square are x = N(0, σ), y = N(0, σ). For the lower right corner, they would be x =
1 + N(0, σ), y = 1 + N(0, σ). Then the image is warped according to the perspective transform
defined by the output coordinates of the unit square.

The ranges used for training are sigma = [0, 0.001], [0, 0.002], [0, 0.003], [0, .004]. For measuring
invariance/equivariance, we sampled 10 perspective transforms from a range of equally spaced σ
values in increasing magnitude along the x-axis of Figure 7f. Examples of these transforms are
given in Figure 6.

A.8 ROTATION

A Rotation transform is specified by an angle θ and is always performed about the center of the im-
age. During training, we sample θ from a uniform distribution for each image. We trained four CNNs
with rotations with θ drawn from the following ranges: [−5, 5], [−10, 10], [−15, 15], [−20, 20]. For
measuring equivariance/invariance, we used θ ∈ ±{2.5, 5, 10, 15, 20, 25, 30, 45}.

A.9 SHEAR

A Shear transform warps a square image into a parallelogram. We parameterize it by specifying a
shear angle θ and an orientation that is either horizontal or vertical. While the original square image
has corners that are 90 deg, the parallelogram that results has corners with angles of 90 + θ and
90− θ.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Invariance and equivariance accuracy measurements for RVL-CDIP (similar to Figure 1).
Each plot compares a CNN trained with a particular transformation (blue line for equivariance,
green for invariance) to the baseline model (red for equivariance, black for invariance) trained with
no transformations.

During training, we sample θ from a uniform distribution for each image. We trained four CNNs
with shear with θ drawn from the following ranges: [−5, 5], [−10, 10], [−15, 15], [−20, 20]. Each
shear has equal probability of horizontal or vertical orientation. For equivariance/invariance, we
measured only horizontal shears with θ ∈ ±{5, 10, 15, 20, 25, 30}.

B ADDITIONAL RESULTS

B.1 INVARIANCE AND EQUIVARIANCE

In this section, we include additional results from the experiments in Section 6.1 that did not fit in
the main text. Figure 1 presents invariance and equivariance measurements for the ILSVRC dataset
(similar to Figure 7).

We observe several interesting differences to the results on RVL-CDIP. The baseline model for
ILSVRC is significantly more invariant to vertical mirrors than horizontal mirrors, though the RVL-
CDIP baseline performs equally bad on both types of mirrors. Brightness increases affect ILSVRC
trained CNNs more, though this is likely because natural images are more susceptible to image
saturation because they occupy the full spectrum of pixel intensities, while document images tend
to be bi-modal. The RVL-CDIP CNN trained on Gaussian Noise was able to learn invariance, while
the corresponding ILSVRC CNN did not. However, both the baseline and noise CNN for ILSVRC
can correct for the noise with an equivariant mapping.

Figures 8 and 9 show the invariance/equivariance for all 70 CNNs trained with data augmentation.
In general, we see an overwhelming trend that training with greater variety of inputs transforms
results in greater invariance and equivariance. The exception seems to be that the magnitude of
color jittering does not highly affect the CNN robustness. Early CNN layers can easily become
invariant to overall brightness changes by extracting information based on pixel differences, and
prior work has shown that later layers encode information mostly by which neurons are non-zero,
rather than the magnitude of the neuron activations (Agrawal et al., 2014).

For Crop transforms (Figure 8c), we examined 25 evenly spaced crops arranged in a 5x5 grid. The
x-axis of the figure shows these crops ordered in scan-line order. The periodic nature of the graph
shows that crops nearer the center of the image yield higher performance. There is virtually no
difference between the invariance and equivariance measurements for the Crop CNNs, showing that
the high level CNN features trained for classification are not predictive for image extrapolation.
This is because the equivariance mapping for Crop transforms uses the CNN activations for some
un-centered crop to predict the CNN activations over the center crop.

13



Under review as a conference paper at ICLR 2017

(a) Gaussian Blur

(b) Color Jitter

(c) Crop

(d) Elastic Deformations

(e) Mirror

Figure 8: Equivariance and Invariance measurements of CNNs for some transforms. The first two
columns are for RVL-CDIP. The last two columns are for ILSVRC.

B.1.1 CNN ACCURACY

We also report the accuracy of each CNN in Table 3. While all transforms help improve invariance,
we see that some input transformations help performance on the untransformed images, while other
hurt performance. In particular, Crop and Shear transforms improve performance the most, while
Elastic Deformations and Gaussian Blur seem to hurt performance most.

B.2 CROSS DATASET INVARIANCE/EQUIVARIANCE MEASUREMENTS

In this section, we describe and give results for a new experiment. While all previous experiments
measure invariance/equivariance on the same dataset that the CNN was trained on (though with
different splits), here we use a new dataset to measure the invariance/equivariance of CNNs trained
on RVL-CDIP. The new dataset, ANDOC, is also composed of grayscale document images, though
while RVL-CDIP is composed of scanned office documents, ANDOC is composed of digitized
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(a) Gaussian Noise

(b) Perspective

(c) Rotation

(d) Shear

Figure 9: Equivariance and Invariance measurements of of CNNs for some transforms. The first two
columns are for RVL-CDIP. The last two columns are for ILSVRC.

Figure 10: Cross dataset measurements of invariance/equivariance reveal that these properties do ex-
tend to data domains beside the one used to train the CNN, though the invariance is slightly weaker.
These CNNs were trained on RVL-CDIP and measured using data from a dataset of historical doc-
uments. Graphs show 1− LL2, so higher is better.

historical documents, which differ significantly from modern office documents. As the RVL-CDIP
CNNs were not trained to classify ANDOC documents, we resort to measuring the LL2 difference
in the feature representations.
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CNN RVL-CDIP ILSVRC CNN RVL-CDIP ILSVRC
Color Jitter σ = 5 88.37 50.31 Crop 240x240 88.82 52.10
Color Jitter σ = 10 88.10 50.20 Crop 256x256 88.83 54.58
Color Jitter σ = 15 88.26 50.15 Crop 288x288 88.00 55.89
Color Jitter σ = 20 88.01 50.26 Crop 320x320 86.47 55.17
Elastic σ = 2, α = 5 87.64 48.42 Noise σ = 5 88.19 50.02
Elastic σ = 2, α = 10 87.89 48.37 Noise σ = 10 88.01 50.00
Elastic σ = 3, α = 5 87.91 48.42 Noise σ = 15 88.14 49.42
Elastic σ = 3, α = 10 87.94 48.85 Noise σ = 20 88.15 49.46
Blur σ = 1.5 87.50 48.95 Mirror Horz. 88.51 52.33
Blur σ = 3 86.82 47.49 Mirror Vert. 88.51 55.13

Mirror Horz./Vert. 88.42 53.91
Perspective σ = 0.001 88.51 50.48 Rotation θ = ±5 88.57 50.30
Perspective σ = 0.002 88.45 51.12 Rotation θ = ±10 88.74 51.12
Perspective σ = 0.003 88.60 52.05 Rotation θ = ±15 88.48 51.99
Perspective σ = 0.004 88.55 52.59 Rotation θ = ±20 88.49 52.44
Shear θ = ±5 89.02 51.43 Baseline 1 88.08 50.07
Shear θ = ±10 89.23 53.62 Baseline 2 88.31 50.14
Shear θ = ±15 89.33 54.89 Baseline 3 88.33 50.11
Shear θ = ±20 88.96 54.97

Table 3: Accuracy of all CNNs over untransformed images (center crops for Crop transforms).
Bolded entries indicate best parameter setting per transform type. For RVL-CDIP, test set accuracy
is reported, while validation accuracy is reported for ILSVRC. In general, Shear transforms yield the
best performance. For RVL-CDIP, it appears that accuracy on the original image is most impacted
by the type of transform, rather than the particular parameter settings. For ILSVRC, the larger
parameter ranges for Crop, Perspective, Rotation, and Shear worked best.

(a) RVL-CDIP (b) ILSVRC

Figure 11: T-SNE visualization of the pairwise distance matrix for (a) RVL-CDIP and (b) ILSVRC.
Best viewed electronically with zoom. Symbols and colors indicate the training transform of the
network. The size of the markers indicate the relative magnitude of the training transformation.

In general, the measured invariance/equivariance is lower for ANDOC than for RVL-CDIP (see
Figure 10 for examples). This makes sense because the CNNs learn to encode discriminative infor-
mation about RVL-CDIP documents. However, the invariance and equivariance properties are not
lost when switching to a new domain of data. In fact, for Mirror, Rotation, and Shear transforms,
the invariance is higher, though this is likely due to less information about the input image being
encoded for the new domain.

B.3 REPRESENTATION DISTANCE

In this section, we include additional results from the experiments in Section 6.2 that did not fit
in the main text. Figure 11 shows an example T-SNE embedding of the CNN representations.
There appears to be very little cluster structure and the T-SNE embeddings appear to be sensitive
to the random initialization of the embedding vectors. The results from multiple runs of the T-SNE
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(a) RVL-CDIP (b) ILSVRC

Figure 12: Absolute Differences in the one-way distances (Eq. 9) for all pairs of CNNs using LL2
distance. Row/Col labels are abbreviations for the transforms used to train the CNN. For context,
a typical LL2 representation distance (Eq. 4) is roughly 0.50 for RVL-CDIP and 1.00 for ILSVRC.
This means that one-way distance differences of approximately 10% and 5% are observed for RVL-
CDIP and ILSVRC respectively.

embedding in general do not agree on either which points are outliers or on nearest neighbor pairs.
This is likely because representation distances do not seem to follow the triangle inequality axiom.

While Eq. 4 yields a symmetric function by averaging two one-way distances, we find that for some
pairs of CNNs, there is significant difference between the magnitudes of those one-way distances.
In other words,

D′(φ1, φ2) =
∣∣∣min
E1

[L(E1φ1(x), φ2)]−min
E2

[L(φ1, E2φ2(x))]
∣∣∣ (9)

is large. Figure 12 plots a heat map of Eq. 9 applied pairwise to each CNN for each dataset. Op-
timization difficulties are one possible cause of large values in Figure 12. However, a more likely
explanation is that some CNNs encode unique information about the input that cannot be predicted
from the representations learned from other CNNs.

B.4 IMPROVED EQUIVARIANCE

Table 4 shows the results of finetuning using Eq. 7 for CNNs trained with different types of data
augmentation. Overall, finetuning improves 3 of 9 transform types. We believe that performance
does not improve for some transforms because the dataset naturally contains examples of those
transforms due to different object poses. This is not the case for RVL-CDIP because the document
images are always scanned in the same manner.
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Transform ILSVRC ILSVRC Transform ILSVRC ILSVRC
Original Finetune Original Finetune

Color Jitter 50.26 50.67 Crop center from 256x256 54.58 54.18
brightness +10 50.25 50.62 upper left corner 52.90 52.68
brightness -15 49.95 50.63 bottom right corner 53.13 52.66
Elastic Deformations 48.37 50.46 Gaussian Noise 49.46 49.88
σ = 2.5, α = 5 49.55 49.82 σ = 8 49.26 49.52
σ = 3, α = 10 49.44 49.64 σ = 16 48.79 48.93
Gaussian Blur 47.49 46.59 Mirror 53.91 53.63
σ = 1 47.12 46.03 Horz. 54.02 51.53
σ = 2 45.94 44.60 Horz. + Vert. 53.70 51.49
Perspective 52.59 52.44 Rotation 52.44 53.70

53.31 51.99 θ = −10 53.88 53.11
53.01 52.27 θ = 15 52.66 51.76

Shear 54.97 54.84
Horz, θ = −10 54.15 52.62
Vert, θ = −15 51.85 50.77

Table 4: Equivariance measurements for several CNNs on ILSVRC before and after finetuning using
Eq. 7. The first row of each transform type shows performance over untransformed images. Results
are more mixed compared to RVL-CDIP.
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