
Published as a conference paper at ICLR 2018

GO FOR A WALK AND ARRIVE AT THE ANSWER:
REASONING OVER PATHS IN KNOWLEDGE BASES
USING REINFORCEMENT LEARNING

Rajarshi Das?,1, Shehzaad Dhuliawala?,1, Manzil Zaheer?,2
Luke Vilnis1, Ishan Durugkar3, Akshay Krishnamurthy1, Alex Smola4, Andrew McCallum1

{rajarshi, sdhuliawala, luke, akshay, mccallum}@cs.umass.edu
manzil@cmu.edu, ishand@cs.utexas.edu, alex@smola.org
1University of Massachusetts, Amherst, 2Carnegie Mellon University
3University of Texas at Austin, 4Amazon Web Services

ABSTRACT

Knowledge bases (KB), both automatically and manually constructed, are often
incomplete — many valid facts can be inferred from the KB by synthesizing
existing information. A popular approach to KB completion is to infer new relations
by combinatory reasoning over the information found along other paths connecting
a pair of entities. Given the enormous size of KBs and the exponential number of
paths, previous path-based models have considered only the problem of predicting
a missing relation given two entities, or evaluating the truth of a proposed triple.
Additionally, these methods have traditionally used random paths between fixed
entity pairs or more recently learned to pick paths between them. We propose a new
algorithm, MINERVA, which addresses the much more difficult and practical task of
answering questions where the relation is known, but only one entity. Since random
walks are impractical in a setting with unknown destination and combinatorially
many paths from a start node, we present a neural reinforcement learning approach
which learns how to navigate the graph conditioned on the input query to find
predictive paths. On a comprehensive evaluation on seven knowledge base datasets,
we found MINERVA to be competitive with many current state-of-the-art methods.

1 INTRODUCTION

Automated reasoning, the ability of computing systems to make new inferences from observed
evidence, has been a long-standing goal of artificial intelligence. We are interested in automated
reasoning on large knowledge bases (KB) with rich and diverse semantics (Suchanek et al., 2007;
Bollacker et al., 2008; Carlson et al., 2010). KBs are highly incomplete (Min et al., 2013), and facts
not directly stored in a KB can often be inferred from those that are, creating exciting opportunities
and challenges for automated reasoning. For example, consider the small knowledge graph in
Figure 1. We can answer the question “Who did Malala Yousafzai share her Nobel Peace prize with?”
from the following reasoning path: Malala Yousafzai→WonAward→ Nobel Peace Prize 2014→
AwardedTo→ Kailash Satyarthi. Our goal is to automatically learn such reasoning paths in KBs. We
frame the learning problem as one of query answering, that is to say, answering questions of the form
(Malala Yousafzai, SharesNobelPrizeWith, ?).

From its early days, the focus of automated reasoning approaches has been to build systems that can
learn crisp symbolic logical rules (McCarthy, 1960; Nilsson, 1991). Symbolic representations have
also been integrated with machine learning especially in statistical relational learning (Muggleton
et al., 1992; Getoor & Taskar, 2007; Kok & Domingos, 2007; Lao et al., 2011), but due to poor
generalization performance, these approaches have largely been superceded by distributed vector
representations. Learning embedding of entities and relations using tensor factorization or neural
methods has been a popular approach (Nickel et al., 2011; Bordes et al., 2013; Socher et al., 2013,
inter alia), but these methods cannot capture chains of reasoning expressed by KB paths. Neural
multi-hop models (Neelakantan et al., 2015; Guu et al., 2015; Toutanova et al., 2016) address the
aforementioned problems to some extent by operating on KB paths embedded in vector space.
However, these models take as input a set of paths which are gathered by performing random walks
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Figure 1: A small fragment of
a knowledge base represented
as a knowledge graph. Solid
edges are observed and dashed
edges are part of queries. Note
how each query relation (e.g.
SharesNobelPrizeWith, Nation-
ality, etc.) can be answered by
traversing the graph via “logical”
paths between entity ‘Malala
Yousafzai’ and the correspond-
ing answer.

independent of the query relation. Additionally, models such as those developed in Neelakantan et al.
(2015); Das et al. (2017) use the same set of initially collected paths to answer a diverse set of query
types (e.g. MarriedTo, Nationality, WorksIn etc.).

This paper presents a method for efficiently searching the graph for answer-providing paths us-
ing reinforcement learning (RL) conditioned on the input question, eliminating any need for pre-
computed paths. Given a massive knowledge graph, we learn a policy, which, given the query
(entity1,relation,?), starts from entity1 and learns to walk to the answer node by choosing to take a
labeled relation edge at each step, conditioning on the query relation and entire path history. This
formulates the query-answering task as a reinforcement learning (RL) problem where the goal is to
take an optimal sequence of decisions (choices of relation edges) to maximize the expected reward
(reaching the correct answer node). We call the RL agent MINERVA for ”Meandering In Networks of
Entities to Reach Verisimilar Answers.”

Our RL-based formulation has many desirable properties. First, MINERVA has the built-in flexibility
to take paths of variable length, which is important for answering harder questions that require
complex chains of reasoning (Shen et al., 2017). Secondly, MINERVA needs no pretraining and
trains on the knowledge graph from scratch with reinforcement learning; no other supervision or
fine-tuning is required representing a significant advance over prior applications of RL in NLP. Third,
our path-based approach is computationally efficient, since by searching in a small neighborhood
around the query entity it avoids ranking all entities in the KB as in prior work. Finally, the reasoning
paths found by our agent automatically form an interpretable provenance for its predictions.

The main contributions of the paper are: (a) We present agent MINERVA, which learns to do query
answering by walking on a knowledge graph conditioned on an input query, stopping when it reaches
the answer node. The agent is trained using reinforcement learning, specifically policy gradients (§ 2).
(b) We evaluate MINERVA on several benchmark datasets and compare favorably to Neural Theorem
Provers (NTP) (Rocktäschel & Riedel, 2017) and Neural LP (Yang et al., 2017), which do logical
rule learning in KBs, and also state-of-the-art embedding based methods such as DistMult (Yang
et al., 2015) and ComplEx (Trouillon et al., 2016) and ConvE (Dettmers et al., 2018). (c) We also
extend MINERVA to handle partially structured natural language queries and test it on the WikiMovies
dataset (§ 3.3) (Miller et al., 2016).

We also compare to DeepPath (Xiong et al., 2017) which uses reinforcement learning to pick paths
between entity pairs. The main difference is that the state of their RL agent includes the answer entity
since it is designed for the simpler task of predicting if a fact is true or not. As such their method
cannot be applied directly to our more challenging query answering task where the second entity is
unknown and must be inferred. Nevertheless, MINERVA outperforms DeepPath on their benchmark
NELL-995 dataset when compared in their experimental setting (§ 3.2.2).

2 TASK AND MODEL

We formally define the task of query answering in a KB. Let E denote the set of entities and R
denote the set of binary relations. A KB is a collection of facts stored as triplets (e1, r,e2) where
e1,e2 ∈ E and r ∈R. From the KB, a knowledge graph G can be constructed where the entities e1,e2
are represented as the nodes and relation r as labeled edge between them. Formally, a knowledge
graph is a directed labeled multigraph G = (V,E,R), where V and E denote the vertices and edges of
the graph respectively. Note that V = E and E ⊆V ×R×V . Also, following previous approaches
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(Bordes et al., 2013; Neelakantan et al., 2015; Xiong et al., 2017), we add the inverse relation of
every edge, i.e. for an edge (e1, r,e2) ∈ E, we add the edge (e2, r−1,e1) to the graph. (If the set of
binary relationsR does not contain the inverse relation r−1, it is added toR as well.)

Since KBs have a lot of missing information, two natural tasks have emerged in the information
extraction community - fact prediction and query answering. Query answering seeks to answer
questions of the form (e1, r,?), e.g. Toronto, locatedIn, ?, whereas fact prediction involves predicting
if a fact is true or not, e.g. (Toronto, locatedIn, Canada)?. Algorithms for fact prediction can be used
for query answering, but with significant computation overhead, since all candidate answer entities
must be evaluated, making it prohibitively expensive for large KBs with millions of entities. In this
work, we present a query answering model, that learns to efficiently traverse the knowledge graph to
find the correct answer to a query, eliminating the need to evaluate all entities.

Query answering reduces naturally to a finite horizon sequential decision making problem as follows:
We begin by representing the environment as a deterministic partially observed Markov decision
process on a knowledge graph G derived from the KB (§2.1). Our RL agent is given an input query
of the form

(
e1q, rq,?

)
. Starting from vertex corresponding to e1q in G, the agent follows a path in the

graph stopping at a node that it predicts as the answer (§ 2.2). Using a training set of known facts, we
train the agent using policy gradients more specifically by REINFORCE (Williams, 1992) with control
variates (§ 2.3). Let us begin by describing the environment.

2.1 ENVIRONMENT - STATES, ACTIONS, TRANSITIONS AND REWARDS

Our environment is a finite horizon, deterministic partially observed Markov decision process that lies
on the knowledge graph G derived from the KB. On this graph we will now specify a deterministic
partially observed Markov decision process, which is a 5-tuple (S,O,A,δ,R), each of which we
elaborate below.

States. The state space S consists of all valid combinations in E ×E ×R×E . Intuitively, we want a
state to encode the query (e1q, rq), the answer (e2q), and a location of exploration et (current location
of the RL agent). Thus overall a state S ∈ S is represented by S = (et,e1q, rq,e2q) and the state space
consists of all valid combinations.

Observations. The complete state of the environment is not observed. Intuitively, the agent knows
its current location (et) and (e1q, rq), but not the answer (e2q), which remains hidden. Formally, the
observation function O : S → E ×E ×R is defined as O(s = (et,e1q, rq,e2q)) = (et,e1q, rq).

Actions. The set of possible actionsAS from a state S = (et,e1q, rq,e2q) consists of all outgoing edges
of the vertex et in G. Formally AS = {(et,r,v) ∈ E : S = (et,e1q, rq,e2q),r ∈R,v ∈V}∪{(s,∅,s)}.
Basically, this means an agent at each state has option to select which outgoing edge it wishes to take
having the knowledge of the label of the edge r and destination vertex v.

During implementation, we unroll the computation graph up to a fixed number of time steps T. We
augment each node with a special action called ‘NO OP’ which goes from a node to itself. Some
questions are easier to answer and needs fewer steps of reasoning than others. This design decision
allows the agent to remain at a node for any number of time steps. This is especially helpful when
the agent has managed to reach a correct answer at a time step t < T and can continue to stay at the
‘answer node’ for the rest of the time steps. Alternatively, we could have allowed the agent to take a
special ‘STOP’ action, but we found the current setup to work sufficiently well. As mentioned before,
we also add the inverse relation of a triple, i.e. for the triple (e1,r,e2), we add the triple (e2,r−1,e1)
to the graph. We found this important because this actually allows our agent to undo a potentially
wrong decision.

Transition. The environment evolves deterministically by just updating the state to the new vertex
incident to the edge selected by the agent. The query and answer remains the same. Formally, the
transition function is δ : S ×A→ S defined by δ(S,A) = (v,e1q, rq,e2q), where S = (et,e1q, rq,e2q)
and A = (et,r,v)).

Rewards. We only have a terminal reward of +1 if the current location is the correct answer at the
end and 0 otherwise. To elaborate, if ST = (et,e1q, rq,e2q) is the final state, then we receive a reward
of +1 if et = e2q else 0., i.e. R(ST ) = I{et = e2q}.
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2.2 POLICY NETWORK

To solve the finite horizon deterministic partially observable Markov decision process described
above, we design a randomized non-stationary history-dependent policy π = (d1,d2, ...,dT−1), where
dt : Ht →P(ASt ) and history Ht = (Ht−1,At−1,Ot) is just the sequence of observations and actions
taken. We restrict ourselves to policies parameterized by long short-term memory network (LSTM)
(Hochreiter & Schmidhuber, 1997).

An agent based on LSTM encodes the history Ht as a continuous vector ht ∈ R2d . We also have
embedding matrix r ∈ R|R|×d and e ∈ R|E|×d for the binary relations and entities respectively. The
history embedding for Ht = (Ht−1,At−1,Ot) is updated according to LSTM dynamics:

ht = LSTM(ht−1, [at−1;ot]) (1)

where at−1 ∈ Rd and ot ∈ Rd denote the vector representation for action/relation at time t − 1
and observation/entity at time t respectively and [; ] denote vector concatenation. To elucidate,
at−1 = rAt−1 , i.e. the embedding of the relation corresponding to label of the edge the agent chose at
time t−1 and ot = eet if Ot = (et,e1q, rq) i.e. the embedding of the entity corresponding to vertex
the agent is at time t.

Based on the history embedding ht, the policy network makes the decision to choose an action
from all available actions (ASt ) conditioned on the query relation. Recall that each possible action
represents an outgoing edge with information of the edge relation label l and destination vertex/entity
d. So embedding for each A ∈ ASt is [rl;ed], and stacking embeddings for all the outgoing edges
we obtain the matrix At. The network taking these as inputs is parameterized as a two-layer feed-
forward network with ReLU nonlinearity which takes in the current history representation ht and the
embedding for the query relation rq and outputs a probability distribution over the possible actions
from which a discrete action is sampled. In other words,

dt = softmax(At(W2ReLU(W1 [ht;ot;rq]))),

At ∼ Categorical(dt) .

Note that the nodes in G do not have a fixed ordering or number of edges coming out from them. The
size of matrix At is |ASt |×2d, so the decision probabilities dt lies on simplex of size |ASt |. Also the
procedure above is invariant to order in which edges are presented as desired and falls in purview of
neural networks designed to be permutation invariant (Zaheer et al., 2017). Finally, to summarize,
the parameters of the LSTM, the weights W1, W2, the corresponding biases (not shown above for
brevity), and the embedding matrices form the parameters θ of the policy network.

2.3 TRAINING

For the policy network (πθ) described above, we want to find parameters θ that maximize the expected
reward:

J(θ) = E(e1,r,e2)∼DEA1,..,AT−1∼πθ
[R(ST )|S1 = (e1,e1,r,e2)],

where we assume there is a true underlying distribution (e1, r,e2)∼ D. To solve this optimization
problem, we employ REINFORCE (Williams, 1992) as follows:

• The first expectation is replaced with empirical average over the training dataset.

• For the second expectation, we approximate by running multiple rollouts for each training
example. The number of rollouts is fixed and for all our experiments we set this number to 20.

• For variance reduction, a common strategy is to use an additive control variate baseline
(Hammersley, 2013; Fishman, 2013; Evans & Swartz, 2000). We use a moving average of the
cumulative discounted reward as the baseline. We tune the weight of this moving average as a
hyperparameter. Note that in our experiments we found that using a learned baseline performed
similarly, but we finally settled for cumulative discounted reward as the baseline owing to its
simplicity.

• To encourage diversity in the paths sampled by the policy at training time, we add an entropy
regularization term to our cost function scaled by a constant (β).
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Dataset #entities #relations #facts #queries #degree
avg. median

COUNTRIES 272 2 1158 24 4.35 4
UMLS 135 49 5,216 661 38.63 28
KINSHIP 104 26 10686 1074 82.15 82
WN18RR 40,945 11 86,835 3134 2.19 2
NELL-995 75,492 200 154,213 3992 4.07 1
FB15K-237 14,505 237 272,115 20,466 19.74 14
WikiMovies 43,230 9 196,453 9952 6.65 4

Table 1: Statistics of various datasets used in experiments.

ComplEx ConvE DistMult NTP NTP-λ NeuralLP MINERVA

S1 99.37±0.4 100.0±0.00 97.91±0.01 90.83±15.4 100.0±0.00 100.0±0.0 100.0±0.00
S2 87.95±2.8 99.0±1.00 69.18±2.38 87.40±11.7 93.04±0.40 75.1 ± 0.3 92.36±2.41
S3 48.44±6.3 86.0±5.00 15.79±0.64 56.68±17.6 77.26±17.0 92.2 ± 0.2 95.10±1.20

Table 2: Performance on three tasks of COUNTRIES dataset with AUC-PR metric. MINERVA signifi-
cantly outperforms all other methods on the hardest task (S3). Also variance across runs for MINERVA
is lower compared to other methods.

3 EXPERIMENTS

We now present empirical studies for MINERVA in order to establish that (i) MINERVA is competitive
for query answering on small (Sec. 3.1.1) as well as large KBs (Sec. 3.1.2), (ii) MINERVA is superior
to a path based models that do not search the KB efficiently or train query specific models (Sec. 3.2),
(iii) MINERVA can not only be used for well formed queries, but can also easily handle partially
structured natural language queries (Sec 3.3), (iv) MINERVA is highly capable of reasoning over long
chains, and (v) MINERVA is robust to train and has much faster inference time (Sec. 3.5).

3.1 KNOWLEDGE BASE QUERY ANSWERING

To gauge the reasoning capability of MINERVA, we begin with task of query answering on KB, i.e.
we want to answer queries of the form (e1,r,?). Note that, as mentioned in Sec. 2, this task is subtly
different from fact checking in a KB. Also, as most of the previous literature works in the regime of
fact checking, their ranking includes variations of both (e1,r,x) and (x,r,e2). However, since we do
not have access to e2 in case of question answering scenario the same ranking procedure does not
hold for us – we only need to rank on (e1,r,x). This difference in ranking made it necessary for us to
re-run all the implementations of previous work. We used the implementation or the best pre-trained
models (whenever available) of Rocktäschel & Riedel (2017); Yang et al. (2017) and Dettmers et al.
(2018). For MINERVA to produce a ranking of answer entities during inference, we do a beam search
with a beam width of 50 and rank entities by the probability of the trajectory the model took to reach
the entity and remaining entities are given a rank of ∞.

Method We compare MINERVA with various state-of-the-art models using HITS@1,3,10 and mean
reciprocal rank (MRR), which are standard metrics for KB completion tasks. In particular we compare
against embedding based models - DistMult (Yang et al., 2015), ComplEx (Trouillon et al., 2016)
and ConvE (Dettmers et al., 2018). For ConvE and ComplEx, we used the implementation released
by Dettmers et al. (2018)1 on the best hyperparameter settings reported by them. For DistMult, we
use our highly tuned implementation (e.g. which performs better than the state-of-the-art results
of Toutanova et al. (2015)). We also compare with two recent work in learning logical rules in KB
namely Neural Theorem Provers (NTP) (Rocktäschel & Riedel, 2017) and NeuralLP (Yang et al.,
2017). Rocktäschel & Riedel (2017) also reports a NTP model which is trained with an additional
objective function of ComplEx (NTP-λ). For these models, we used the implementation released by
corresponding authors 2 3, again on the best hyperparameter settings reported by them.

1https://github.com/TimDettmers/ConvE
2https://github.com/uclmr/ntp
3https://github.com/fanyangxyz/Neural-LP
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Data Metric ComplEx ConvE DistMult NTP NTP-λ NeuralLP MINERVA

KINSHIP

HITS@1 0.754 0.697 0.808 0.500 0.759 0.475 0.605
HITS@3 0.910 0.886 0.942 0.700 0.798 0.707 0.812
HITS@10 0.980 0.974 0.979 0.777 0.878 0.912 0.924
MRR 0.838 0.797 0.878 0.612 0.793 0.619 0.720

UMLS

HITS@1 0.823 0.894 0.916 0.817 0.843 0.643 0.728
HITS@3 0.962 0.964 0.967 0.906 0.983 0.869 0.900
HITS@10 0.995 0.992 0.992 0.970 1.000 0.962 0.968
MRR 0.894 0.933 0.944 0.872 0.912 0.778 0.825

Table 3: Query answering results on KINSHIP and UMLS datasets.

3.1.1 SMALLER DATASETS

Dataset We use three standard datasets: COUNTRIES (Bouchard et al., 2015), KINSHIP, and UMLS
(Kok & Domingos, 2007). The COUNTRIES dataset ontains countries, regions, and subregions as
entities and is carefully designed to explicitly test the logical rule learning and reasoning capabilities
of link prediction models. The queries are of the form LocatedIn(c, ?) and the answer is a region
(e.g. LocatedIn(Egypt, ?) with the answer as Africa). The dataset has 3 tasks (S1-3 in table 2) each
requiring reasoning steps of increasing length and difficulty (see Rocktäschel & Riedel (2017) for
more details about the tasks). Following the design of the COUNTRIES dataset, for task S1 and S2, we
set the maximum path length T = 2 and for S3, we set T = 3. The Unified Medical Language System
(UMLS) dataset, is from biomedicine. The entities are biomedical concepts (e.g. disease, antibiotic)
and relations are like treats and diagnoses. The KINSHIP dataset contains kinship relationships among
members of the Alyawarra tribe from Central Australia. For these two task we use maximum path
length T = 2. Also, for MINERVA we turn off entity in (1) in these experiments.

Observations For the COUNTRIES dataset, in Table 2 we report a stronger metric - the area under
the precision-recall curve - as is common in the literature. We can see that MINERVA compares
favorably or outperforms all the baseline models except on the task S2 of COUNTRIES, where the
ensemble model NTP-λ and ConvE outperforms it, albeit with a higher variance across runs. Our
gains are much more prominent in task S3, which is the hardest among all the tasks.

The Kinship and UMLS datasets are small KB datasets with around 100 entities each and as we see
from Table 3, embedding based methods (ConvE, ComplEx and DistMult) perform much better than
methods which aim to learn logical rules (NTP, NeuralLP and MINERVA). On Kinship, MINERVA
outperforms both NeuralLP and NTP and matches the HITS@10 performance of NTP on UMLS.
Unlike COUNTRIES, these datasets were not designed to test the logical rule learning ability of
models and given the small size, embedding based models are able to get really high performance.
Combination of both methods gives a slight increase in performance as can be seen from the results
of NTP-λ. However, when we initialized MINERVA with pre-trained embeddings of ComplEx, we did
not find a significant increase in performance.

3.1.2 LARGER DATASETS

Dataset Next we evaluate MINERVA on three large KG datasets - WN18RR, FB15K-237 and NELL-
995. The WN18RR (Dettmers et al., 2018) and FB15K-237 (Toutanova et al., 2015) datasets are
created from the original WN18 and FB15K datasets respectively by removing various sources of
test leakage, making the datasets more realistic and challenging. The NELL-995 dataset released by
Xiong et al. (2017) has separate graphs for each query relation, where a graph for a query relation
can have triples from the test set of another query relation. For the query answering experiment,
we combine all the graphs and removed all test triples (and the corresponding triples with inverse
relations) from the graph. We also noticed that several triples in the test set had an entity (source
or target) that never appeared in the graph. Since, there will be no trained embeddings for those
entities, we removed them from the test set. This reduced the size of test set from 3992 queries to
2818 queries.4

4Available at https://github.com/shehzaadzd/MINERVA
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Data Metric ComplEx ConvE DistMult NeuralLP Path-Baseline MINERVA

WN18RR

HITS@1 0.382 0.403 0.410 0.376 0.017 0.413
HITS@3 0.433 0.452 0.441 0.468 0.025 0.456
HITS@10 0.480 0.519 0.475 0.657 0.046 0.513
MRR 0.415 0.438 0.433 0.463 0.027 0.448

FB15K-237

HITS@1 0.303 0.313 0.275 0.166 0.169 0.217
HITS@3 0.434 0.457 0.417 0.248 0.248 0.329
HITS@10 0.572 0.600 0.568 0.348 0.357 0.456
MRR 0.394 0.410 0.370 0.227 0.227 0.293

NELL-995

HITS@1 0.612 0.672 0.610 - 0.300 0.663
HITS@3 0.761 0.808 0.733 - 0.417 0.773
HITS@10 0.827 0.864 0.795 - 0.497 0.831
MRR 0.694 0.747 0.680 - 0.371 0.725

Table 4: Query answering results on WN18RR, FB15K-237 and NELL-995 datasets. NeuralLP does
not scale to NELL-995 and hence the entries are kept blank.

Observations Table 4 reports the query answering results on the larger WN18RR, FB15K-237 and
NELL-995 datasets. We could not include the results of NeuralLP on NELL-995 since it didn’t scale
to that size. Similarly NTP did not scale to any of the larger datasets. Apart from these, we are the
first to report a comprehensive summary of performance of all baseline methods on these datasets.

On NELL-995, MINERVA performs comparably to embedding based methods such as DistMult and
ComplEx and performs comparably with ConvE on the stricter HITS@1 metric. ConvE, however
outperforms us on HITS@10 on NELL-995. On WN18RR, logic based based methods (NeuralLP,
MINERVA) generally outperform embedding based methods, with MINERVA achieving the highest
score on HITS@1 metric and NeuralLP significantly outperforming on HITS@10.

We observe that on FB15K-237, however, embedding based methods dominate over MINERVA and
NeuralLP. Upon deeper inspection, we found that the query relation types of FB15K-237 knowledge
graph differs significantly from others.

Analysis of query relations of FB15k-237: We analyzed the type of query relation types on the
FB15K-237 dataset. Following Bordes et al. (2013), we categorized the query relations into (M)any to
1, 1 to M or 1 to 1 relations. An example of a M to 1 relation would be ‘/people/profession’ (What is the
profession of person ‘X’?). An example of 1 to M relation would be /music/instrument/instrumentalists
(‘Who plays the music instrument X?’) or ‘/people/ethnicity/people’ (‘Who are people with ethnicity
X?’). From a query answering point of view, the answer to these questions is a list of entities.
However, during evaluation time, the model is evaluated based on whether it is able to predict the one
target entity which is in the query triple. Also, since MINERVA outputs the end points of the paths as
target entities, it is sometimes possible that the particular target entity of the triple does not have a
path from the source entity (however there are paths to other ‘correct’ answer entities). Table 9 (in
appendix) shows few other examples of relations belonging to different classes.

Following Bordes et al. (2013), we classify a relation as 1-to-M if the ratio of cardinality of tail to head
entities is greater than 1.5 and as M-to-1 if it is lesser than 0.67. In the validation set of FB15K-237,
54% of the queries are 1-to-M, whereas only 26% are M-to-1. Contrasting it with NELL-995, 27% are
1-to-M and 36% are M-to-1 or UMLS where only 18% are 1-to-M. Table 10 (in appendix) shows few
relations from FB15K-237 dataset which have high tail-to-head ratio. The average ratio for 1-TO-M
relations in FB15K-237 is 13.39 (substantially higher than 1.5). As explained before, the current
evaluation scheme is not suited when it comes to 1-to-M relations and the high percentage of 1-to-M
relations in FB15K-237 also explains the sub optimal performance of MINERVA.

We also check the frequency of occurrence of various unique path types. We define a path type as
the sequence of relation types (ignoring the entities) in a path. Intuitively, a predictive path which
generalizes across queries will occur many number of times in the graph. Figure 2 shows the plot.
As we can see, the characteristics of FB15K-237 is quite different from other datasets. For example,
in NELL-995, more than 1000 different path types occur more than 1000 times. WN18RR has only
11 different relation types which means there are only 113 possible path types of length 3 and even
fewer number of them would be predictive. As can be seen, there are few path types which occur
more than 104 times and around 50 of them occur more than 1000 times. However in FB15K-237,
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Figure 2: Count of number of unique path types of length 3 which occur more than ‘x’ times in
various datasets. For example, in NELL-995 there are more than 103 path types which occur more
than 103 times. However, for FB15k-237, we see a sharp decrease as ‘x’ becomes higher, suggesting
that path types do not repeat often.

which has the highest number of relation types, we observe a sharp decrease in the number of path
types which occur a significant number of times. Since MINERVA cannot find path types which repeat
often, it finds it hard to learn path types that generalize.

3.2 COMPARISON WITH PATH BASED MODELS

3.2.1 WITH RANDOM WALK MODELS

In this experiment, we compare to a model which gathers path based on random walks and tries to
predict the answer entity. Neural multi-hop models (Neelakantan et al., 2015; Toutanova et al., 2016),
operate on paths between entity pairs in a KB. However these methods need to know the target entity
in order to pre-compute paths between entity pairs. (Guu et al., 2015) is an exception in this regard as
they do random walks starting from a source entity ‘e1’ and then using the path, they train a classifier
to predict the target answer entity. However, they only consider one path starting from a source entity.
In contrast, Neelakantan et al. (2015); Toutanova et al. (2016) use information from multiple paths
between the source and target entity. We design a baseline model which combines the strength of
both these approaches. Starting from ‘e1’ , the model samples (k = 100) random paths of up to a
maximum length of T = 3. Following Neelakantan et al. (2015), we encode each paths with an LSTM
followed by a max-pooling operation to featurize the paths. This feature is concatenated with the
source entity and query relation vector which is then passed through a feed forward network which
scores all possible target entities. The network is trained with a multi-class cross entropy objective
based on observed triples and during inference we rank target entities according to the model score.

The PATH-BASELINE column of table 4 shows the performance of this model on the three datasets.
As we can see MINERVA outperforms this baseline significantly. This shows that a model which
predicts based on a set of randomly sampled paths does not do as well as MINERVA because it either
loses important paths during random walking or it fails to aggregate predictive features from all the k
paths, many of which would be irrelevant to answer the given query. The latter is akin to the problem
with distant supervision (Mintz et al., 2009), where important evidence gets lost amidst a plethora of
irrelevant information. However, by taking each step conditioned on the query relation, MINERVA
can effectively reduce the search space and focus on paths relevant to answer the query.

3.2.2 WITH DEEPPATH

We also compare MINERVA with DeepPath which uses RL to pick paths between entity pairs. For a
fair comparison, we only rank the answer entities against the negative examples in the dataset used
in their experiments5 and report the mean average precision (MAP) scores for each query relation.
DeepPath feeds the paths its agent gathers as input features to the path ranking algorithm (PRA)
(Lao et al., 2011), which trains a per-relation classifier. But unlike them, we train one model which
learns for all query relations so as to enable our agent to leverage from correlations and more data.
If our agent is not able to reach the correct entity or one of the negative entities, the corresponding
entities gets a score of negative infinity. If MINERVA fails to reach any of the entities in the set of
correct and negative entities. then we fall back to a random ordering of the entities. As show in

5We are grateful to Xiong et al. (2017) for releasing the negative examples used in their experiments.
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Task DeepPath MINERVA MINERVAa

athleteplaysinleague 0.960 0.970 0.940
worksfor 0.711 0.825 0.810
organizationhiredperson 0.742 0.851 0.856
athleteplayssport 0.957 0.985 0.980
teamplayssport 0.738 0.846 0.880
personborninlocation 0.757 0.793 0.780
personleadsorganization 0.795 0.851 0.877
athletehomestadium 0.890 0.895 0.898
organizationheadquarteredincity 0.790 0.946 0.940
athleteplaysforteam 0.750 0.824 0.800

Table 5: MAP scores for different query relations on the NELL-995 dataset. Note that in this
comparison, MINERVA refers to only a single learnt model for all query relations which is competitive
with individual DeepPath models trained separately for each query relation. We also trained MINERVA
in the setting of DeepPath, i.e. training per-relation models (MINERVAa)

table 5, we outperform them or achieve comparable performance for all the query relations For this
experiment, we set the maximum length T = 3. Although training per-relation models is cumbersome
and does not scale to massive KBs with thousands of relation types, we also train per-relation models
of MINERVA replicating the settings of DeepPath (MINERVAa in table 5). MINERVAa outperforms
DeepPath and performs similarly to MINERVA which is an encouraging result since training one
model which performs well for all relation is highly desirable.

3.3 PARTIALLY STRUCTURED QUERIES

Model Accuracy
Memory Network 78.5
QA system 93.5
Key-Value Memory Network 93.9
Neural LP 94.6
MINERVA 96.7

Table 6: Performance on WikiMovies

Queries in KBs are structured in the form of triples. How-
ever, this is unsatisfactory since for most real applications,
the queries appear in natural language. As a first step in this
direction, we extend MINERVA to take in “partially struc-
tured” queries. We use the WikiMovies dataset (Miller
et al., 2016) which contains questions in natural language
albeit generated by templates created by human annotators.
An example question is “Which is a film written by Herb
Freed?”. WikiMovies also has an accompanying KB which can be used to answer all the questions.

We link the entity occurring in the question to the KB via simple string matching. To form the vector
representation of the query relation, we design a simple question encoder which computes the average
of the embeddings of the question words. The word embeddings are learned from scratch and we do
not use any pretrained embeddings. We compare our results with those reported in Yang et al. (2017)
(table 6). For this experiment, we found that T = 1 sufficed, suggesting that WikiMovies is not the
best testbed for multihop reasoning, but this experiment is a promising first step towards the realistic
setup of using KBs to answer natural language question.

3.4 GRID WORLD PATH FINDING
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Figure 3: Grid world ex-
periment: We significantly
outperform NeuralLP for
longer path lengths.

While chains in KB need not be very long to get good empirical
results (Neelakantan et al., 2015; Das et al., 2017; Yang et al., 2017),
in principle MINERVA can be used to learn long reasoning chains.
To evaluate the same, we test our model on a synthetic 16-by-16
grid world dataset created by Yang et al. (2017), where the task is to
navigate to a particular cell (answer entity) starting from a random cell
(start entity) by following a set of directions (query relation). The KB
consists of atomic triples of the form ((2,1), North, (1,1)) – entity (1,1)
is north of entity (2,1). The queries consists of a sequence of directions
(e.g. North, SouthWest, East). The queries are classified into classes
based on the path lengths. Figure 3 shows the accuracy on varying
path lengths. Compared to Neural LP, MINERVA is much more robust
to queries, which require longer path, showing minimal degradation
in performance for even the longest path in the dataset.
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Figure 4: Based on the query relation our agent assigns different probabilities to different actions.
The dashed edges in the top row denote query relation. Examples in the bottom row are from the
WikiMovies dataset and hence the questions are partially structured.

3.5 FURTHER ANALYSIS
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Figure 5: HITS@10 on the development set versus
training time.

Training time. Figure 5 plots the HITS@10
scores on the development set against the train-
ing time comparing MINERVA with DistMult. It
can be seen that MINERVA converges to a higher
score much faster than DistMult. It is also inter-
esting to note that even during the early stages
of the training, MINERVA has much higher per-
formance than that of DistMult, as during these
initial stages, MINERVA would just be doing ran-
dom walks in the neighborhood of the source
entity (e1). This implies that MINERVA’s approach of searching for an answer in the neighborhood of
e1 is a much more efficient and smarter strategy than ranking all entities in the knowledge graph (as
done by DistMult and other related methods).

Inference Time. At test time, embedding based methods such as ConvE, ComplEx and DistMult
rank all entities in the graph. Hence, for a test-time query, the running time is always O (|E|) where
R denotes the set of entities (= nodes) in the graph. MINERVA, on the other hand is efficient at
inference time since it has to essentially search for answer entities in its local neighborhood. The
many cost at inference time for MINERVA is to compute probabilities for all outgoing edges along
the path. Thus inference time of MINERVA only depends on degree distribution of the graph. If we
assume the knowledge graph to obey a power law degree distribution, like many natural graphs, then
for MINERVA the average inference time can be shown to be O( α

α−1 ), when the coefficient of the
power law α > 1. The median inference time for MINERVA is O(1) for all values of α. Note that
these quantities are independent of size of entities |E|. For instance, on the test dataset of WN18RR,
the wall clock inference time of MINERVA is 63s whereas that of a GPU implementation of DistMult,
which is the simplest among the lot, is 211s. Similarly the wall-clock inference time on the test set of
NELL-995 for a GPU implementation of DistMult is 115s whereas that of MINERVA is 35s.

Query based Decision Making. At each step before making a decision, our agent conditions on
the query relation. Figure 4 shows examples, where based on the query relation, the probabilities are
peaked on different actions. For example, when the query relation is WorksFor, MINERVA assigns
a much higher probability of taking the edge CoachesTeam than AthletePlaysInLeague. We also
see similar behavior on the WikiMovies dataset where the query consists of words instead of fixed
schema relation.

Model Robustness. Table 7 also reports the mean and standard deviation across three independent
runs of MINERVA. We found it easy to obtain/reproduce the highest scores across several runs as can
be seen from the low deviations in scores.
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Dataset HITS@1 HITS@3 HITS@10

NELL-995 0.66±0.029 0.77±0.0016 0.83±0.0030
FB15K-237 0.22±0.002 0.33±0.0008 0.46±0.0006
WN18RR 0.41±0.030 0.45±0.0180 0.51±0.0005

Table 7: Mean and Standard deviation across runs for various datasets.

Effectiveness of Remembering Path History. MINERVA encodes the history of decisions it has
taken in the past using LSTMs. To test the importance of remembering the sequence of decisions,
we did an ablation study in which the agent chose the next action based on only local information
i.e. current entity and query and did not have access to the history ht. For the KINSHIP dataset, we
observe a 27% points decrease in HITS@1 and 13% decrease in HITS@10. For grid-world, it is also
not surprising that we see a big drop in performance. The final accuracy is 0.23 for path lengths 2-4
and 0.04 for lengths 8-10. For FB15K-237 the HITS@10 performance dropped from 0.456 to 0.408.

NO-OP and Inverse Relations. At each step, MINERVA can choose to take a NO-OP edge and
remain at the same node. This gives the agent the flexibility of taking paths of variable lengths.
Some questions are easier to answer than others and require fewer steps of reasoning and if the agent
reaches the answer early, it can choose to remain there. Example (i) in table 8 shows such an example.
Similarly inverse relation gives the agent the ability to recover from a potentially wrong decision it
has taken before. Example (ii) shows such an example, where the agent took a incorrect decision at
the first step but was able to revert the decision because of the presence of inverted edges.

4 RELATED WORK

Learning vector representations of entities and relations using tensor factorization (Nickel et al.,
2011; 2012; Bordes et al., 2013; Riedel et al., 2013; Nickel et al., 2014; Yang et al., 2015) or
neural methods (Socher et al., 2013; Toutanova et al., 2015; Verga et al., 2016) has been a popular
approach to reasoning with a knowledge base. However, these methods cannot capture more complex
reasoning patterns such as those found by following inference paths in KBs. Multi-hop link prediction
approaches (Lao et al., 2011; Neelakantan et al., 2015; Guu et al., 2015; Toutanova et al., 2016; Das
et al., 2017) address the problems above, but the reasoning paths that they operate on are gathered by
performing random walks independent of the type of query relation. Lao et al. (2011) further filters
paths from the set of sampled paths based on the restriction that the path must end at one of the target
entities in the training set and are within a maximum length. These constraints make them query

(i) Can learn general rules:

(S1) LocatedIn(X, Y)← LocatedIn(X, Z) & LocatedIn(Z, Y)
(S2) LocatedIn(X, Y)← NeighborOf(X, Z) & LocatedIn(Z, Y)
(S3) LocatedIn(X, Y)← NeighborOf(X, Z) & NeighborOf(Z, W) & LocatedIn(W, Y)

(ii) Can learn shorter path: Richard F. Velky
WorksFor−−−−−→?

Richard F. Velky
PersonLeadsOrg−−−−−−−−−→ Schaghticokes

NO-OP−−−−→ Schaghticokes
NO-OP−−−−→ Schaghticokes

(iii) Can recover from mistakes: Donald Graham
WorksFor−−−−−→?

Donald Graham
OrgTerminatedPerson−−−−−−−−−−−−→ TNT Post

OrgTerminatedPerson−1

−−−−−−−−−−−−−→ Donald Graham
OrgHiredPerson−−−−−−−−−→Wash Post

Table 8: A few example of paths found by MINERVA on the COUNTRIES and NELL. MINERVA can
learn general rules as required by the COUNTRIES dataset (example (i)). It can learn shorter paths if
necessary (example (ii)) and has the ability to correct a previously taken decision (example (iii))

.
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dependent but they are heuristic in nature. Our approach eliminates any necessity to pre-compute
paths and learns to efficiently search the graph conditioned on the input query relation.

Inductive Logic Programming (ILP) (Muggleton et al., 1992) aims to learn general purpose predicate
rules from examples and background knowledge. Early work in ILP such as FOIL (Quinlan, 1990),
PROGOL (Muggleton, 1995) are either rule-based or require negative examples which is often hard
to find in KBs (by design, KBs store true facts). Statistical relational learning methods (Getoor
& Taskar, 2007; Kok & Domingos, 2007; Schoenmackers et al., 2010) along with probabilistic
logic (Richardson & Domingos, 2006; Broecheler et al., 2010; Wang et al., 2013) combine machine
learning and logic but these approaches operate on symbols rather than vectors and hence do not
enjoy the generalization properties of embedding based approaches.

There are few prior work which treat inference as search over the space of natural language. Nogueira
& Cho (2016) propose a task (WikiNav) in which each the nodes in the graph are Wikipedia pages
and the edges are hyperlinks to other wiki pages. The entity is to be represented by the text in the
page and hence the agent is required to reason over natural language space to navigate through the
graph. Similar to WikiNav is Wikispeedia (West et al., 2009) in which an agent needs to learn to
traverse to a given target entity node (wiki page) as quickly as possible. Angeli & Manning (2014)
propose natural logic inference in which they cast the inference as a search from a query to any valid
premise. At each step, the actions are one of the seven lexical relations introduced by MacCartney &
Manning (2007).

Neural Theorem Provers (NTP) (Rocktäschel & Riedel, 2017) and Neural LP (Yang et al., 2017) are
methods to learn logical rules that can be trained end-to-end with gradient based learning. NTPs
are constructed by Prolog’s backward chaining inference method. It operates on vectors rather than
symbols, thereby providing a success score for each proof path. However, since a score can be
computed between any two vectors, the computation graph becomes quite large because of such
soft-matching during substitution step of backward chaining. For tractability, it resorts to heuristics
such as only keeping the top-K scoring proof paths trading-off guarantees for exact gradients. Also
the efficacy of NTPs has yet to be shown on large KBs. Neural LP introduces a differential rule
learning system using operators defined in TensorLog (Cohen, 2016). It has a LSTM based controller
with a differentiable memory component (Graves et al., 2014; Sukhbaatar et al., 2015) and the rule
scores are calculated via attention. Even though, differentiable memory allows end to end training, it
necessitates accessing the entire memory, which can be computationally expensive. RL approaches
capable of hard selection of memory (Zaremba & Sutskever, 2015) are computationally attractive.
MINERVA uses a similar hard selection of relation edges to walk on the graph. More importantly,
MINERVA outperforms both these methods on their respective benchmark datasets.

DeepPath (Xiong et al., 2017) uses RL based approaches to find paths in KBs. However, the state of
their MDP requires the target entity to be known in advance and hence their path finding strategy
is dependent on knowing the answer entity. MINERVA does not need any knowledge of the target
entity and instead learns to find the answer entity among all entities. DeepPath, additionally feeds
its gathered paths to Path Ranking Algorithm (Lao et al., 2011), whereas MINERVA is a complete
system trained to do query answering. DeepPath also uses fixed pretrained embeddings for its entity
and relations. Lastly, on comparing MINERVA with DeepPath in their experimental setting on the
NELL dataset, we match their performance or outperform them. MINERVA is also similar to methods
for learning to search for structured prediction (Collins & Roark, 2004; Daumé III & Marcu, 2005;
Daumé III et al., 2009; Ross et al., 2011; Chang et al., 2015). These methods are based on imitating a
reference policy (oracle) which make near-optimal decision at every step. In our problem setting, it
is unclear what a good reference policy would be. For example, a shortest path oracle between two
entities would be unideal, since the answer providing path should depend on the query relation.

5 CONCLUSION

We explored a new way of automated reasoning on large knowledge bases in which we use the
knowledge graphs representation of the knowledge base and train an agent to walk to the answer node
conditioned on the input query. We achieve state-of-the-art results on multiple benchmark knowledge
base completion tasks and we also show that our model is robust and can learn long chains-of-
reasoning. Moreover it needs no pretraining or initial supervision. Future research directions include
applying more sophisticated RL techniques and working directly on textual queries and documents.
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(i) M to 1

Los Angeles Rams
team plays sport−−−−−−−−−→ American Football

The Walking Dead
country of origin−−−−−−−−−→ USA

(ii) 1 to M
CEO

job position in organization−−−−−−−−−−−−−−−→Merck & Co.

Traffic collision cause of death−−−−−−−−→ Albert Camus

Harmonica
instrument played by musician−−−−−−−−−−−−−−−−−→ Greg Graffin

Table 9: Few example facts belonging to m to 1, 1 to m relations in FB15K-237
.

Relation tail/head
/people/marriage union type/unions of this type./people/marriage/location of ceremony 129.75
/organization/role/leaders./organization/leadership/organization 65.15
/location/country/second level divisions 49.18
/user/ktrueman/default domain/international organization/member states 36.5
/base/marchmadness/ncaa basketball tournament/seeds./base/marchmadness/ncaa tournament seed/team 33.6

Table 10: Few example 1-to-M relations from FB15K-237 with high cardinality ratio of tail to head.

6 APPENDIX

6.1 HYPERPARAMETERS

Experimental Details We choose the relation and embedding dimension size as 200. The action
embedding is formed by concatenating the entity and relation embedding. We use a 3 layer LSTM
with hidden size of 400. The hidden layer size of MLP (weights W1 and W2) is set to 400. We use
Adam (Kingma & Ba, 2014) with the default parameters in REINFORCE for the update.

In our experiments, we tune our model over two hyper parameters, viz., β which is the entropy
regularization constant and λ which is the moving average constant for the REINFORCE baseline.
The table 11 lists the best hyper parameters for all the datasets.

Dataset β λ Path Length
UMLS 0.05 0.05 2
KINSHIP 0.1 0.05 2
Countries S1 0.01 0.1 2
Countries S2 0.02 0.1 2
Countries S3 0.01 0.1 3
WN18RR 0.05 0.05 3
NELL-995 0.06 0.0 3
FB15K-237 0.02 0.05 3
WIKIMOVIES 0.15 0 1

Table 11: Best hyper parameters

6.2 ADDENDUM TO NELL RESULTS

The NELL dataset released by Xiong et al. (2017) includes two additional tasks for which the
scores were not reported in the paper and so we were unable to compare them against DeepPath.
Nevertheless, we ran MINERVA on these tasks and report our results in table 12 for completeness.
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Task Single Model DeepPath setup
agentbelongstoorganization 0.86 0.87
teamplaysinleague 0.97 0.95

Table 12: NELL results for the remaining tasks
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