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ABSTRACT

The easiness at which adversarial instances can be generated in deep neural net-
works raises some fundamental questions on their functioning and concerns on
their use in critical systems. In this paper, we draw a connection between over-
generalization and adversaries: a possible cause of adversaries lies in models de-
signed to make decisions all over the input space, leading to inappropriate high-
confidence decisions in parts of the input space not represented in the training set.
We empirically show an augmented neural network, which is not trained on any
types of adversaries, can increase the robustness by detecting black-box one-step
adversaries, i.e. assimilated to out-distribution samples, and making generation of
white-box one-step adversaries harder.

1 INTRODUCTION

Generalization properties of Convolution Neural Networks (CNNs) are remarkably good for some
vision tasks such as object recognition. However, when a test sample is coming from a different
concept that is not part of the training set, i.e. out-distribution samples, then CNNs force assignment
to one of the classes of the original problem, possibly with high confidence. For example, while a
given CNN trained on MNIST digits shows great accuracy on the corresponding test set (> 99%),
it maintains a confidence of ~ 86% on samples from NotMNIST dataset, which contains printed
letters A-J. From a decision-making perspective, this is an issue, as the network shows a confidence
that is clearly inappropriate.

Moreover, CNNs also suffer from adversarial examples artificially generated from clean samples,
with the aim of fooling the model. To mitigate the risk of adversaries, detection procedures have
been proposed for identifying and rejecting adversaries (Feinman et al.,|2017; |Metzen et al.| 2017;
Grosse et al.,|2017; |Abbasi & Gagné, 2017). For instance, (Grosse et al.|(2017) stated that adversaries
are actually statistically different from clean samples. So one can augment the output of a CNN
with an extra dustbin label (a.k.a. reject option), then train it on clean training samples and their
corresponding adversaries (assigned to dustbin) in order to enable CNNs to detect and reject such
adversaries. However, this assumes an access to a diverse set of training adversaries for identifying
well the various types of adversaries. |Feinman et al. (2017) used kernel density estimation in the
feature space to identify adversaries, with mixed results given that some of adversaries become
entangled with clean samples, which appears difficult to handle by kernel methods. However, instead
of attempting to reject all adversaries, it seems better if a classifier can reject some adversaries as
dustbin, while correctly classify others.

In this paper, we empirically show that an augmented CNN trained only on natural out-distribution
samples, in addition to the problem training set, is able to reject some adversaries as dustbin while
correctly classifying others. In fact, as such an augmented CNN reduces over-generalization in out-
distribution regions, it learns a feature space that separates some of adversaries from in-distribution
samples.
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(a) Naive CNN (b) Augmented CNN

Figure 1: Test samples from MNIST and their corresponding FGS adversaries plotted in a reduced
feature space for (a) a naive CNN and (b) an augmented CNN. For visualization purposes, the
dimensionality of feature space, which was achieved from the last convolution layer, is reduced to 3
using Principal Component Analysis (PCA). Refer to Fig. E] in the appendix for more results.

2 OUT-DISTRIBUTION LEARNING FOR CNNS

It has been argued that a central element explaining the success of deep neural networks is their
capacity to learn distributed representations (Bengio, 2009). Indeed, this allows such models to
perform well in the regions that are only sparsely sampled in the training set, in possibly very high
dimension space. However, neural networks make totally arbitrary decisions in the regions that are
outside of the distribution of the learned concepts, leading to over-generalization. This can even
provide some explanations on why naive neural networks incorrectly classify adversaries to task-
related classes with high confidence.

Looking closely at the feature space of a CNN (i.e. output of the last convolution layer), we can
see (Fig. [[{a)) that out-distribution samples are located close to the in-distribution samples in this
trained feature space. To enable a CNN to be robust to out-distribution samples, we augment its
output with an extra dustbin label, reserved for out-distribution samples. The augmented CNN is
trained on both in-distribution and natural out-distribution samples. We observe (Fig.[I{b)) that such
an augmented CNN is also able to disentangle the adversaries from in-distribution samples in the
feature space, even though it is trained only on natural out-distribution samples.

3  EVALUATION

Using MNIST and CIFAR-10 datasets, we evaluate the augmented CNNs with black-box and white-
box adversaries.

MNIST vs NotMNIST: Training on gray scale images of hand-written digits (MNIST dataset),
using gray scale images of letters A-J (NotMNIST datase as out-distribution samples.

CIFAR-10 vs CIFAR-100: Training on CIFAR-10, using samples from CIFAR-100’s super-classes
with no conceptual similarity as out-distribution samples — for more details, see the appendix.

3.1 BLACK-BOX ADVERSARIES

As black-box adversaries are transferable to other CNNs (Szegedy et al.,2013;|Papernot et al.,|2017)),
we generate T-FGS and FGS adversaries using cuda-convnet CNN (called GA-CNN), different from
the models in our experiments (in terms of initial weights and architecture).

Comparison of naive CNNs with augmented CNNs in Table|[T]shows that augmented CNNs maintain
the same accuracy on clean MNIST test samples, while accuracy of augmented VGGs on clean
CIFAR-10 test samples drop by ~ 2% in comparison to naive VGGs. Column “Dust” in Table
shows the percentage of adversaries rejected by the augmented CNNs. Although these networks
are not trained on any types of adversaries, they can detect some of FGS and T-FGS adversaries as

"Available at http: //yaroslavvb.blogspot.ca/2011/09/notmnist-dataset .htmll


http://yaroslavvb.blogspot.ca/2011/09/notmnist-dataset.html
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Clean Adversaries by GA-CNN
Dataset Model test FGS T-FGS
Acc. Acc. Dust Err. Acc. Dust Err.
MNIST Naive CNN 99.50 | 35.14 — 65.86 | 19.99 — 80.01
Augmented CNN | 99.47 | 19.15 | 65.19 | 15.66 | 1.17 | 9592 | 291
CIFAR-10 Naive VGG 90.53 | 52.40 — 47.60 | 64.58 — 3542
Augmented VGG | 88.58 | 45.02 | 30.46 | 24.52 | 49.12 | 39.06 | 11.82

Table 1: Performance on black-box adversaries attacks. two cuda-convnets were used for generating
adversaries for MNIST and CIFAR-10. “Acc.” corresponds to accuracy (the rate of correctly classi-
fied samples), “Dust” is the rejection rate, while “Err.” is the misclassification rate (the samples that
neither correctly classified nor reject as dustbin). All results reported are percentages (%).

FGS T-FGS
Dataset Model Success (%) | Distortion | Success (%) | Distortion
MNIST Naive CNN 91.91 0.187 94.48 0.170
Augmented CNN 37.39 0.173 35.76 0.195
Naive VGG 89.18 0.034 86.86 0.034
CIFAR-10 |\ tomented VGG | 49.28 0.035 58.93 0.036

Table 2: The success rates of generating white-box adversaries from naive and augmented net-
works. Two iterations are done for generating adversaries, with a step size of € = 0.2 and € = 0.03
for MNIST and CIFAR-10, respectively. “Success” corresponds to the rate of correct adversaries
successfully generated within two iterations, while “Distortion” is the average distortion in the input
space compared the original image (Ls norm).

dustbin, while a proportion of them are correctly classified. This leads to a global error rate reduction
of the augmented networks on adversaries through correct classification and rejection.

3.2 WHITE-BOX ADVERSARIES

As a second set of experiments, we generate white-box adversaries for MNIST and CIFAR-10 test
samples from the same models tested in the previous section. To increase the success rate of generat-
ing adversaries, we applied FGS and T-FGS algorithms for two iterations (instead of one). Moreover,
we forbid the choice of dustbin class as the fooling target class for T-FGS. However, such control for
FGS algorithm is not possible since it is not targeted and as such we disregard the FGS adversaries
with dustbin label — they are already recognized as such by the augmented networks.

As shown in Table [2] the augmented networks consistently have lower success rates of generating
FGS and T-FGS adversaries. Increasing the number of iterations for the considered values of € can
raise the success rates, whereas this leads to adding more perturbations to clean images.

4 CONCLUSION

A key element allowing the rise of deep networks is their capacity to deal with high dimension
spaces through distributed representation learning (Bengio & LeCunl 2007). However, deep net-
works incorrectly process instances from out-distribution regions by confidently classifying them as
a predefined class, even though these instances are conceptually different from the trained concepts.
Indeed, out-distribution samples are actually mapped very close to in-distribution samples in the
feature space obtained from a naive CNN. In this paper, we argue that in-distribution concepts can
be disentangled from out-distribution concepts through learning a more expressive feature space.
To this end, we train augmented CNNs on natural out-distribution samples and in-distribution sam-
ples. Although the augmented CNNs are not trained on any kinds of adversaries, we empirically
demonstrate that these CNNs separate some adversaries from in-distribution samples in their feature
space. Therefore, these CNNs not only make some black-box adversaries detectable, but also make
generating white-box adversaries harder.
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A APPENDIX

In this section, more details on the evaluation procedures as well as extra results are provided.

A.1 DATASETS
A.1.1 MNIST v.s. NOTMNIST

MNIST has training and test sets with 60K and 10K gray scale images contain hand-written digits,
respectively. NotMNIST is a set of 18,724 gray scale images containing letters A-J. NotMNIST
images have the same size as MNIST images, i.e. 28x28. We disregard the true labels of NotMNIST
samples and instead these letter images are labeled as the dustbin class. Note, all the images are
scaled to [0, 1]

For MNIST dataset, we consider a cuda-convnent architectureE] that consists of three convolution
layers with 32, 32, and 64 filters of 5x5, respectively, and one Fully Connected (FC) layer with
softmax activation function. Each convolution layer is followed by relu, a pooling layer 3x3 with
stride 2, and local contrast normalization (Hinton et al.,[2012). In addition, dropout with p = 0.5 is
used at the FC layer for regularization.

To train an augmented version of cuda-convnet, we create a training set comprising MNIST training
samples along with 10K randomly selected samples from NotMNIST dataset. The remaining sam-
ples from NotMNIST (~=8K) in conjugation with MNIST test samples are considered for evaluating
the augmented CNN.

A.1.2 CIFAR-10v.s. CIFAR-100

Training and test sets of CIFAR-10 contain 50K and 10K RGB images with size 32x32. The
classes of CIFAR-10 are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. As
out-distribution samples for CIFAR-10, we consider CIFAR-100 dataset. To reduce a conceptual
overlap between the labels from CIFAR-10 and CIFAR-100, we ignore super-classes of CIFAR-100
that are conceptually similar to CIFAR-10 classes. So, we exclude vehicle 1, vehicle 2, medium-
sized mammals, small mammals, and large carnivores from CIFAR-100. Note, all the images are
scaled to [0, 1], then normalized by mean subtraction, where the mean is computed over the CIFAR-
10 training set.

For CIFAR-10, we choose VGG-16 (Simonyan & Zisserman, |2014) architecture that has 13 convo-
lution layers with filter size 3x3 and three FC layers. For regularization, dropout with p = 0.5 is
used at FC layers. To train an augmented VGG-16, 30K randomly selected samples from the non-
overlapped version of CIFAR-100 (labeled as dustbin class) are appended to CIFAR-10 training
set.

A.2 ADVERSARIAL ALGORITHMS

Broadly speaking, for a given input x € R?, an adversarial algorithm attempts to generate small
and imperceptible distortion ¢ € R such that a victim classifier 7 misclassifies the perturbed input
X, i.e. h(x 4 €) # h(x). In this paper, we consider one-step algorithms for generating adversaries.

Fast Sign Gradient (FGS) is proposed by |Goodfellow et al.|(2014) as a fast adversarial generation
algorithm. Inspired from gradient descend algorithm, for each pair of a clean image and its asso-
ciated true label, i.e. (x,y(x)), FGSM modifies the clean image x in order to maximize the loss
function of the underlying classifier, i.e £. Formally, a FGS adversary is generated as follows:

8£(h(x),y(x)))
ox ’

x' =x — e x sign(

(1)

where € as the step size should be chosen large enough so that FGSM can generate adversaries after
a single step.

The configuration of this CNN is available at https://github.com/dnouri/cuda-convnet/
blob/master/example-layers/layers—18pct.cfg


https://github.com/dnouri/cuda-convnet/blob/master/example-layers/layers-18pct.cfg
https://github.com/dnouri/cuda-convnet/blob/master/example-layers/layers-18pct.cfg
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Targeted Fast Sign Gradient (T-FGS) generates adversaries to be misclassified into a selected
target class (y), which is different from the input’s true label, i.e. (y # y(x)) (Kurakin et al.,
2016). For each sample, we select the least likely class according to the prediction provided by
the underlying classifier. Using one iteration of gradient ascend algorithm, the loss function is
maximized for a given pair of a clean image and a selected target class 3

y' =argmin{p(h(x)[x)}
x),vy’ 2
x =x+€x sign(iaﬁ(h(,gx)’y )) @)

For generating black-box adversaries to attack other classifiers (such as augmented CNNs), we
utilize cuda-convnet CNNs (called GA-CNNs) for both MNIST and CIFAR-10. Fig. |Z| exhibits
some clean samples with their corresponding FGS and T-FGS adversaries that are generated by
GA-CNNs for MNIST and CIFAR-10.
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Figure 2: First, second, and third columns present T-FGS, FGS, their corresponding clean samples,
respectively.

A.3 ADVERSARIES IN REPRESENTATION (FEATURE) SPACE

It is well known that the higher layers of deep neural networks extract more abstract features, which
leads to transferring raw input data from the input space to an expressive feature space (Bengio
et al., 2013; Bengio, [2009). Therefore, we used the last convolution layer of a CNN as a feature
extractor in order to transfer the samples from the input space to feature space. In this section, we
provide some visual results to compare the feature spaces of a naive CNN and an augmented CNN.
For visualization purposes, the dimensionality of the feature spaces are reduced using PCA.

Fig.[3illustrates MNIST samples and their corresponding adversaries in two feature spaces obtained
from a cuda-convnet CNN and its output-augmented version. Note that while the cuda-convnet
CNN trained on MNIST misclassifies NotMNIST samples with an average confidence =~ 86%, the
augmented cuda-convnet confidently classifies 99.96% of them as dustbin.

Fig [ presents feature spaces of VGG-16 and augmented VGG-16. While VGG-16 classifies out-
distribution samples (i.e. CIFAR-100 samples) as one of CIFAR-10 classes with confidence ~ 91%,
augmented VGG-16 confidently classifies 95.36% of these samples as dustbin, i.e. out-distribution
samples.
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Table 3: Visualization of MNIST samples and their corresponding adversaries in the feature spaces
learned by a naive cuda-convnet (first column) and an augmented cuda-convnet (second column).
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Table 4: Visualization of CIFAR-100 test samples and their corresponding adversaries in the feature
spaces learned by a naive VGG-16 (first column) and an augmented VGG-16 (second column).
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