
A Meta Understanding of Meta-Learning

Wei-Lun Chao * 1 Han-Jia Ye * 2 De-Chuan Zhan 2 Mark Campbell 1 Kilian Q. Weinberger 1

Abstract

Recent years have witnessed an abundance of new
publications and approaches on meta-learning.
This community-wide enthusiasm has sparked
great insights but has also created a plethora of
seemingly different frameworks, which can be
hard to compare and evaluate. In this paper,
we aim to provide a single principled, unifying
framework that draws a close connection between
meta-learning and traditional supervised learn-
ing. By treating pairs of task-specific data sets
and trained models as (feature, label) samples,
we can reduce many meta-learning algorithms to
instances of supervised learning. This view not
only unifies meta-learning into an intuitive and
practical framework but also allows us to trans-
fer insights from supervised learning directly to
improve meta-learning. For example, we obtain
a better understanding of generalization proper-
ties, and we can readily transfer well-understood
techniques, such as model ensemble, pre-training,
joint training, data augmentation, and even nearest
neighbor based methods. We provide an intuitive
analogy of these methods in the context of meta-
learning and show that they give rise to significant
improvements in model performance.

1. Introduction
Meta-learning, or learning to learn, is the sub-field of ma-
chine learning occupied with the search for the best learning
strategy as the number of tasks and learning experiences
increases (Vilalta & Drissi, 2002) and has drawn signifi-
cant attention recently (Finn et al., 2017a; Andrychowicz
et al., 2016; Vinyals et al., 2016). Meta-learning has been
developed in various areas to advanced algorithm design,
including few-shot learning (Ravi & Larochelle, 2017; Snell
et al., 2017), optimization (Li & Malik, 2017; Wichrowska

*Equal contribution 1Cornell University, Ithaca, New York,
USA 2Nanjing University, Nanjing, Jiangsu, China. Correspon-
dence to: Wei-Lun Chao <weilunchao760414@gmail.com>.

Proceedings of the 1 st Adaptive & Multitask Learning Workshop,
Long Beach, California, 2019. Copyright 2019 by the author(s).

Figure 1. Meta-learning as supervised learning. By treating a
pair of a training set (left) and its target model (right) as a meta
labeled example, meta-learning learns a shared meta mapping
(from left to right) that generalizes from meta-training examples to
meta-test examples (from top to bottom). Take one-shot learning
for instance. A training set contains one image per class; a target
model is a classifier trained with ample images from those classes.

et al., 2017), active learning (Bachman et al., 2017), transfer
learning (Balaji et al., 2018; Ying et al., 2018), unsupervised
learning (Metz et al., 2018), etc. Specifically, meta-learning
has demonstrated the capability to generalize learned knowl-
edge to novel tasks, which greatly reduces the need for
training data and time to optimize.

Given its wide applicability and many diverse approaches,
there is an increasing need for a principled, unifying meta-
learning framework to facilitate future studies and develop-
ment. Finn (2018); Metz et al. (2018) have made a notable
step to provide a broad introduction and compare represen-
tative algorithms. In this paper, we aim to push the direction
forward by providing a unifying view of meta-learning that
draws a close connection with supervised learning.

Generally, meta-learning can be viewed as learning a map-
ping that given a training set Dtr returns a model h. For
instance, in unsupervised learning Dtr can be an unlabeled
data set, and h is a feature extractor. In one-shot learning,
Dtr corresponds to a set of C labeled data samples, and h
corresponds to a C-way classifier. This mapping constitutes
an interesting connection between meta-learning and super-
vised learning which, as we argue in this paper, holds across
a wide range of meta-learning approaches and tasks. Similar
to supervised learning, we can train a meta-learning model
on a set of meta labeled examples (tasks) — (Dtr, h

∗) pairs
— and evaluate it on a test task Dtest

tr . We refer to Dtr as a
meta input (often a training set) and h∗ as the target model
(often obtained with ample training data). See Fig. 1.

A Meta Understanding of Meta-Learning

This unifying view of meta-learning as supervised learning
allows transferring ideas, experiences, and design principles
of supervised learning to meta-learning, which will greatly
facilitate its theoretical analysis, algorithm design, and ap-
plicability. In the following we list three notable examples.

First, the unifying view offers an explanation why the
learned meta mapping may or may not generalize to novel
tasks: here we rediscover well understood pitfalls from su-
pervised learning, such as overfitting due to insufficient
(meta-) training data and distribution drift. Second, our
unifying view clearly identifies the essential components
to design a meta-learning algorithm, providing a principled
way to apply it to various areas. Third, our unifying view
broadens the scope of algorithm design for meta-learning by
extending concepts from supervised learning. We conduct
extensive experiments on few-shot learning, a representative
area where meta-learning is applied. We empirically show
that well-known supervised learning techniques such as data
augmentation, bagging (Breiman, 1996), joint training (Ar-
gyriou et al., 2007), pre-training (Yosinski et al., 2014), and
non-parametric approaches (Zhang et al., 2006; Weinberger
& Saul, 2009) can be applied at the task level to significantly
facilitate meta-learning.

2. A Unifying View of Meta-Learning
2.1. Background: supervised learning

In supervised learning we collect a training set Dtr =
{(xn ∈ X , yn ∈ Y)}Nn=1, composed of N i.i.d. samples
from an unknown distribution D on X × Y . We call x an
input, y an output (or label), and (x, y) a labeled example.
We call h : X 7→ Y a model, which outputs a label for an
input. For instance, in image classification, x is an image,
y is a class name (e.g., “dog”), D is the distribution of real
images, and h is an image classifier.

Supervised learning searches for a model h given Dtr, so
that h will work well on (x, y) sampled from D. That is, h
should have a small generalization error LD(h) according
to a loss l : Y × Y 7→ R

LD(h) = E(x,y)∼D[l(h(x), y)]. (1)

To this end, we construct a hypothesis set H = {h} of
candidate models and design an algorithm AH to search ĥ
fromH by learning fromDtr.We denote ĥ = AH(Dtr). One
example ofH is a neural network with a fixed architecture
but undecided weights.

A popular framework to design supervised learning algo-
rithms is empirical risk minimization (ERM)

ĥ = AH(Dtr) = argminh∈H
1

N

N∑
n=1

l(h(xn), yn)

= argminh∈H LS(h), (2)

where LS(h) is the training loss. A particular AH is char-
acterized by how it performs ERM (e.g., optimizers). In
practice, we usually design a set of (H, AH) pairs, denoted
as G, and select the best pair using a held-out validation set
Dval = {(xm, ym)}Mm=1 sampled i.i.d. from D

(H, AH)∗ =argmin(H,AH)∈G
1

M

M∑
m=1

l(ĥ(xm), ym)

= argmin(H,AH)∈G LV (ĥ), (3)

where ĥ = AH(Dtr). This is called model selection and LV
is the validation error.

2.2. Meta-learning as supervised learning

We provide a framework of meta-learning by drawing anal-
ogy to supervised learning. We use “meta (labeled) example”
and “task” interchangeably. To prevent confusion, we call
models in supervised learning “base” models when needed.

Definition. In meta-learning we collect a meta-training
set Dmeta-tr = {(Dtrj ∈ I, h∗j ∈ O)}

Nmeta
j=1 , composed of

Nmeta i.i.d. samples from an unknown meta distribution
Dmeta on I × O. We call Dtr a training set (meta input), h∗

a “target” base model (meta output), and (Dtr, h
∗) a meta

labeled example (task). We call g : I 7→ O a meta model
(mapping), which outputs a base model for a training set.
For instance, in one-shot C-way learning for classification,
Dtr = {(xn, yn)}Nn=1 contains N labeled images, one for
each of the C classes (i.e., N = C). h∗ is a strong classifier
trained using a large amount of labeled images.

Meta-learning searches for a meta model g givenDmeta-tr, so
that g will work well on (Dtr, h

∗) sampled fromDmeta. That
is, g should have a small meta generalization error LDmeta(g)
according to a meta loss lmeta : O ×O 7→ R

LDmeta(g) = E(Dtr,h∗)∼Dmeta [lmeta(g(Dtr), h
∗)]. (4)

In one-shot learning, we can view g as a predictor of (strong)
classifiers given small training sets.

Algorithm. To this end, we can follow supervised learning
to construct a meta hypothesis set G = {g} of candidate
meta models and design an algorithm BG to search ĝ from
G by learning from Dmeta-tr We denote ĝ = BG(Dmeta-tr).
We can apply ERM

ĝ = BG(Dmeta-tr) = argming∈G
1

Nmeta

Nmeta∑
j=1

lmeta(g(Dtrj), h
∗
j)

= argming∈G LSmeta(g), (5)

where LSmeta is the meta training error. In practice, we de-
sign a set of (G, BG) pairs and select the best pair using a
held-out meta-validation set Dmeta-val = {(Dtrm, h

∗
m)}Mmeta

m=1

sampled i.i.d. from Dmeta. This is called meta model selec-
tion (meta-validation).

A Meta Understanding of Meta-Learning

Discussion. The meta model g and the supervised learning
algorithm AH (cf. Eq. (2)) have the same forms of inputs
and outputs. Therefore, g can be seen as a (supervised) learn-
ing algorithm which may involve an optimization process.
Indeed, Metz et al. (2018) point out that many meta-learning
algorithms consist of two levels of learning, in which g is
applied at the inner loop while ourBG is applied at the outer
loop. Nevertheless, the generalization ability of g and AH
are fundamentally different. AH is designed or selected
by model selection specifically for D, while g is learned
from Dmeta for the goal to generalize to tasks sampled from
Dmeta. Moreover, viewing (Dtr, h

∗) as a meta labeled ex-
ample enables h∗ to be disentangled from Dtr; i.e., h∗ can
be flexibly defined to provide supervision for various appli-
cations, and is not necessarily a base model that performs
on data sampled exactly from where Dtr is sampled. This
notion broadens the applicability of meta-learning — e.g., to
domain generalization where h∗ is for a different domain, or
to unsupervised learning where Dtr contains only unlabeled
examples {xn}Nn=1 (see section 2.4).

2.3. Generalization ability of learned meta models

Our unifying view enables transferring experiences of learn-
ing a base model to learning a meta model. For example,
increasing the size of meta-training set or minimizing the do-
main shift between Dmeta and where the novel tasks will be
sampled (Ben-David et al., 2010; Gong et al., 2012) should
improve the generalizability of the learned meta model ĝ.
We show that these experiences are applicable in section 4.1
and E.5. We can further apply theoretical analysis of super-
vised learning. Suppose lmeta is bounded and |G| is finite,
the Chernoff bound implies that G is agnostic PAC learnable
using ERM (Shalev-Shwartz & Ben-David, 2014). This is
indeed exploited in (Garg & Kalai, 2018) to derive a meta-
learning bound, but only for meta unsupervised learning.

2.4. A principled way to apply meta-learning

Our unifying view clearly defines the components of meta-
learning: (a) meta labeled example (Dtr, h

∗) and meta loss
lmeta; (b) meta hypothesis set G = {g} and meta algorithm
BG . Applying meta-learning to an area thus requires defin-
ing or designing them accordingly. We discuss five exam-
ples in section B. We further present a detailed case study
on how to apply our meta-learning framework to few-shot
learning in section C and demonstrate many representative
algorithms follow our framework.

2.5. Supervised learning techniques

Our unifying view enables transferring techniques of su-
pervised learning to meta-learning with minimum adjust-
ment. In our experiment, we adapt widely-used techniques
for improving generalization abilities or facilitating opti-

(a) MAML (b) ProtoNet (c) MatchNet
Figure 2. 1-shot 5-way accuracy on MiniImageNet. We show meta-
training (red) and meta-test (blue) accuracy.

mization, including data augmentation, ensemble meth-
ods (Breiman, 1996; Zhou, 2012; Dietterich, 2000), joint
training (e.g., multi-task learning (Argyriou et al., 2007)),
and pre-training (Yosinski et al., 2014) to meta-learning.

Besides, it is well-known that non-parametric models (Wein-
berger & Saul, 2009) are able to capture local and hetero-
geneous structures in data. Contrast to the fact that most
existing meta models are parametric, we present a procedure
meta-KNN, inspired by SVM-KNN (Zhang et al., 2006), to
build a non-parametric meta model in section A.

3. Related Work (See section D)

4. Experiments
We validate the advantages of our unifying view by investi-
gating three aspects of few-shot learning: (a) whether the
number of meta-examples influences the generalization; (b)
whether supervised learning techniques are applicable; (c)
whether our unifying view can facilitate new applications.

Datasets. The MiniImageNet dataset (Vinyals et al., 2016)
is a subset of ImageNet (Russakovsky et al., 2015) and is
widely-used in few-shot learning. There are 100 classes
and 600 examples per class. We split the datasets follow-
ing (Ravi & Larochelle, 2017): there are 64, 16, 20 classes
for meta-train-pool, meta-val-pool, and meta-test-pool. See
section C.3 for definitions and section E.1 for other datasets.

Meta examples (tasks) and evaluation protocols. We fo-
cus on 1-shot 5-way tasks. We follow (Rusu et al., 2019) to
draw 10,000 tasks (Dtr, Dval) from meta-test-pool and there
are 15 validation images per class in a task.

Baseline methods. We investigate MAML (Finn et al.,
2017a), ProtoNet (Snell et al., 2017), and MatchNet (Vinyals
et al., 2016). See section E.2 for more details.

4.1. Generalization analysis

Following our supervised view of meta-learning, the general-
ization ability of the learned meta model should be affected
by the “effective” number of meta training examples; i.e.,
the number of different tasks. We validate the influence with
various meta-train-pool configurations on MiniImageNet.
We keep all the 64 classes in meta-train-pool to keep the
meta distribution intact, and change the number of instances
in each class from 600 to 50 to construct different meta-

A Meta Understanding of Meta-Learning

Table 1. Joint training and pre-training for 1-shot 5-way classification on MiniImageNet.
MAML ProtoNet MatchNet

Scratch Pre-Train Joint Scratch Pre-Train Joint Scratch Pre-Train Joint
Train 0.540 0.576 0.554 0.539 0.602 0.537 0.547 0.662 0.598
Test 0.459 0.478 0.470 0.461 0.500 0.484 0.463 0.500 0.485

Table 2. Bagging for 1/5-shot 5-way classification on MiniImageNet. Single: no bagging. Average: average accuracy of basic ProtoNets.
MAML ProtoNet MatchNet

Single Average Bagging Single Average Bagging Single Average Bagging

1-shot w/o Pre-Train 0.459 0.448 0.482 0.461 0.463 0.491 0.463 0.457 0.482
w/ Pre-Train 0.478 0.439 0.498 0.500 0.492 0.526 0.500 0.495 0.525

5-shot w/o Pre-Train 0.633 0.617 0.666 0.658 0.649 0.694 0.639 0.625 0.664
w/ Pre-Train 0.660 0.646 0.692 0.671 0.657 0.701 0.642 0.630 0.673

train-pools. When there are limited instances per class in the
meta-train-pool, the number of unique tasks is constrained
as well. We also evaluate the case of fewer classes in sec-
tion E.3. Fig. 2 shows the change of few-shot accuracy with
different meta-train-pools. The trend follows the supervised
view: the more meta-training examples (few-shot tasks) are
provided, the better generalization is achieved. Specifically,
learning with 50 instances per class significantly over-fits.

4.2. Supervised learning techniques for meta-learning

We investigate five techniques: joint training, pre-training,
bagging, data augmentation, and non-parametric methods.

Joint training. In addition to the original objective (i.e.,
meta-training loss), learning jointly with related objectives
has shown promising results in supervised learning: it serves
as a data-dependent regularization to improve generalization.
Here we add another objective: a 64-way classification
with cross-entropy loss over all classes in meta-train-pool.
This classifier shares weights with the meta model, except
for the last layer. In other words, the shared sub-network
should jointly master two tasks: predicting good C-way
classifiers and extracting discriminative features for 64-way
classification. Oreshkin et al. (2018) explored this idea, yet
we provide more insights in Table 1.

Pre-training. It is well-known that a good model initializa-
tion significantly facilitates the following model optimiza-
tion for down-stream task (Erhan et al., 2010; Bengio et al.,
2007). Specifically, supervised pre-training (Yosinski et al.,
2014) on a large labeled dataset has been prevalent in many
applications. While the standard setup in few-shot learning
trains the meta model from scratch on the sampled meta
labeled examples, we investigate training a 64-way classifier
with cross-entropy loss at first, and use it to initialize the
meta model. Such a strategy has been explored in (Chen
et al., 2019; Qiao et al., 2018; Rusu et al., 2019; Li et al.,
2018b), yet we provide more insights as follows.

The results with the two techniques are shown in Table 1.
We list the meta-training and meta-test accuracy. Both tech-
niques improve the test accuracy for all the algorithms. How-
ever, their underlying influences are different. Pre-training
achieves the highest meta-training accuracy, justifying its

effectiveness to facilitate optimization. Joint training does
not increase the meta-training accuracy much but improves
the meta-test accuracy, verifying its ability to improve gen-
eralization. In sum, we show that well-known supervised
learning techniques are applicable to meta-learning in the
same manner they benefit supervised learning.

Ensemble methods. Ensemble methods leverage the di-
versity among a set of basic models to construct a robust
summarized model. It has been comprehensively verified in
supervised learning. We apply a simple ensemble method
bagging (Breiman, 1996) to meta-learning, which reduces
the model variances by majority voting over many classifiers.
We generate diverse meta models by learning from differ-
ent meta-training sets. Concretely, we sample 10 different
sub meta-train-pools from the original one: each sub-pool
contain 48 classes. Then we train 10 basic ProtoNets over
those sub meta-train-pools and ensemble their results.

The results are in Table 2. “Single” is the model trained on
the original meta-train-pool, the same as in Table 1. The av-
erage performance of all 10 basic models are in the “Average”
column. (Note that this is not ensemble yet.) We investigate
“Bagging” by combining the prediction probabilities of the
10 models. The average performance of basic ProtoNets is
mostly worse than that of the ProtoNet trained on the full
64-class meta-train-pool. But after we ensemble the basic
models the performance improves notably, validating the
effectiveness of ensemble for meta-learning. Moreover, we
see that pre-training and bagging are compatible and lead
to impressive 0.526/0.701 accuracy for 1/5-shot learning,
which is on par with state-of-the-arts (Qiao et al., 2018) but
with a cleaner meta-training procedure.

Additional Experiments. See section E.4 and E.5.

5. Conclusion
We cast meta-learning as supervised learning, which ex-
plains the generalization ability among tasks and provides
principles to apply meta-learning. Moreover, this frame-
work allows transferring supervised learning techniques to
meta-learning. We conduct extensive empirical studies to
demonstrate these advantages, suggesting supervised learn-
ing techniques as a toolbox to advance meta-learning.

A Meta Understanding of Meta-Learning

References
Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch,

I., and Abbeel, P. Continuous adaptation via meta-learning in
nonstationary and competitive environments. In ICLR, 2018.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau,
D., Schaul, T., Shillingford, B., and De Freitas, N. Learning to
learn by gradient descent by gradient descent. In NIPS, 2016.

Argyriou, A., Evgeniou, T., and Pontil, M. Multi-task feature
learning. In NIPS, 2007.

Bachman, P., Sordoni, A., and Trischler, A. Learning algorithms
for active learning. In ICML, 2017.

Balaji, Y., Sankaranarayanan, S., and Chellappa, R. Metareg:
Towards domain generalization using meta-regularization. In
NeurIPS, 2018.

Baxter, J. A model of inductive bias learning. Journal of Artificial
Intelligence Research, 12:149–198, 2000.

Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. Neural optimizer
search with reinforcement learning. In ICML, 2017.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F.,
and Vaughan, J. W. A theory of learning from different domains.
Machine learning, 79(1-2):151–175, 2010.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy
layer-wise training of deep networks. In Advances in neural
information processing systems, pp. 153–160, 2007.

Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., and Vedaldi,
A. Learning feed-forward one-shot learners. In NIPS, 2016.

Boney, R. and Ilin, A. Semi-supervised few-shot learning with
maml. 2018.

Breiman, L. Bagging predictors. Machine learning, 24(2):123–
140, 1996.

Chao, W.-L., Liu, J.-Z., and Ding, J.-J. Facial age estimation based
on label-sensitive learning and age-oriented regression. Pattern
Recognition, 46(3):628–641, 2013.

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang, J.-B.
A closer look at few-shot classification. In ICLR, 2019.

Clavera, I., Nagabandi, A., Liu, S., Fearing, R. S., Abbeel, P.,
Levine, S., and Finn, C. Learning to adapt in dynamic, real-
world environments through meta-reinforcement learning. In
ICLR, 2019.

Dietterich, T. G. Ensemble methods in machine learning. In
International workshop on multiple classifier systems, pp. 1–15,
2000.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I.,
and Abbeel, P. Rl 2: Fast reinforcement learning via slow
reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Duan, Y., Andrychowicz, M., Stadie, B., Ho, O. J., Schneider, J.,
Sutskever, I., Abbeel, P., and Zaremba, W. One-shot imitation
learning. In NIPS, 2017.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture search:
A survey. arXiv preprint arXiv:1808.05377, 2018.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P.,
and Bengio, S. Why does unsupervised pre-training help deep
learning? JMLR, 11(Feb):625–660, 2010.

Fan, Y., Tian, F., Qin, T., Li, X.-Y., and Liu, T.-Y. Learning to
teach. In ICLR, 2018.

Finn, C. Learning to Learn with Gradients. PhD thesis, UC
Berkeley, 2018.

Finn, C. and Levine, S. Meta-learning and universality: Deep rep-
resentations and gradient descent can approximate any learning
algorithm. 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning
for fast adaptation of deep networks. In ICML, 2017a.

Finn, C., Yu, T., Zhang, T., Abbeel, P., and Levine, S. One-shot
visual imitation learning via meta-learning. In CoRL, 2017b.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M. A bridge be-
tween hyperparameter optimization and larning-to-learn. arXiv
preprint arXiv:1712.06283, 2017.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman, J. Meta
learning shared hierarchies. In ICLR, 2018.

Garg, V. and Kalai, A. Supervising unsupervised learning. In
NeurIPS, 2018.

Gidaris, S. and Komodakis, N. Dynamic few-shot visual learning
without forgetting. In CVPR, 2018.

Gong, B., Shi, Y., Sha, F., and Grauman, K. Geodesic flow kernel
for unsupervised domain adaptation. In CVPR, 2012.

Hariharan, B. and Girshick, R. Low-shot visual recognition by
shrinking and hallucinating features. In ICCV, 2017.

Hsu, K., Levine, S., and Finn, C. Unsupervised learning via meta-
learning. arXiv preprint arXiv:1810.02334, 2018.

Huang, P.-S., Wang, C., Singh, R., Yih, W.-t., and He, X. Natural
language to structured query generation via meta-learning. In
NAACL, 2018.

Kaiser, Ł., Nachum, O., Roy, A., and Bengio, S. Learning to
remember rare events. 2017.

Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L. Novel
dataset for fine-grained image categorization. In First Workshop
on Fine-Grained Visual Categorization, IEEE Conference on
CVPR, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object repre-
sentations for fine-grained categorization. In 4th International
IEEE Workshop on 3D Representation and Recognition, 2013.

Lee, Y. and Choi, S. Gradient-based meta-learning with learned
layerwise metric and subspace. In ICML, 2018.

Lemke, C., Budka, M., and Gabrys, B. Metalearning: a survey of
trends and technologies. Artificial intelligence review, 44(1):
117–130, 2015.

A Meta Understanding of Meta-Learning

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Learning to
generalize: Meta-learning for domain generalization. In AAAI,
2018a.

Li, K. and Malik, J. Learning to optimize. In ICLR, 2017.

Li, K., Min, M. R., Bai, B., Fu, Y., and Graf, H. P. Network
reparameterization for unseen class categorization. 2018b.

Li, Z., Zhou, F., Chen, F., and Li, H. Meta-sgd: Learning to learn
quickly for few shot learning. arXiv preprint arXiv:1707.09835,
2017.

Maji, S., Kannala, J., Rahtu, E., Blaschko, M., and Vedaldi, A.
Fine-grained visual classification of aircraft. Technical report,
2013.

Maurer, A. Algorithmic stability and meta-learning. JMLR, 6(Jun):
967–994, 2005.

Maurer, A., Pontil, M., and Romera-Paredes, B. The benefit of
multitask representation learning. JMLR, 17(1):2853–2884,
2016.

Metz, L., Maheswaranathan, N., Cheung, B., and Sohl-Dickstein,
J. Learning unsupervised learning rules. arXiv preprint
arXiv:1804.00222, 2018.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. A simple
neural attentive meta-learner. In ICLR, 2018.

Munkhdalai, T. and Yu, H. Meta networks. In ICML, 2017.

Nichol, A., Achiam, J., and Schulman, J. On first-order meta-
learning algorithms. CoRR, abs/1803.02999, 2018.

Oreshkin, B. N., Lacoste, A., and Rodriguez, P. Tadam: Task
dependent adaptive metric for improved few-shot learning. In
NeurIPS, 2018.

Qiao, S., Liu, C., Shen, W., and Yuille, A. L. Few-shot image
recognition by predicting parameters from activations. In CVPR,
2018.

Quattoni, A. and Torralba, A. Recognizing indoor scenes. In
CVPR, pp. 413–420, 2009.

Ratner, A. J., Ehrenberg, H., Hussain, Z., Dunnmon, J., and Ré, C.
Learning to compose domain-specific transformations for data
augmentation. In NIPS, 2017.

Ravi, S. and Larochelle, H. Optimization as a model for few-shot
learning. In ICLR, 2017.

Ravi, S. and Larochelle, H. Meta-learning for batch mode active
learning. In ICLR Workshop, 2018.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and
Tesauro, G. Learning to learn without forgetting by maximizing
transfer and minimizing interference. In ICLR, 2019.

Ritter, S., Wang, J. X., Kurth-Nelson, Z., Jayakumar, S. M., Blun-
dell, C., Pascanu, R., and Botvinick, M. Been there, done that:
Meta-learning with episodic recall. In ICML, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. S., Berg,
A. C., and Li, F.-F. Imagenet large scale visual recognition
challenge. IJCV, 115(3):211–252, 2015.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R.,
Osindero, S., and Hadsell, R. Meta-learning with latent embed-
ding optimization. In ICLR, 2019.

Salakhutdinov, R., Torralba, A., and Tenenbaum, J. Learning
to share visual appearance for multiclass object detection. In
CVPR, 2011.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lil-
licrap, T. Meta-learning with memory-augmented neural net-
works. In ICML, 2016.

Shalev-Shwartz, S. and Ben-David, S. Understanding machine
learning: From theory to algorithms. Cambridge university
press, 2014.

Sharma, S., Jha, A., Hegde, P., and Ravindran, B. Learning to
multi-task by active sampling. In ICLR, 2018.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks for
few-shot learning. In NeurIPS, 2017.

Stadie, B., Yang, G., Houthooft, R., Chen, P., Duan, Y., Wu,
Y., Abbeel, P., and Sutskever, I. The importance of sampling
inmeta-reinforcement learning. In NeurIPS, 2018.

Sudderth, E. B. and Jordan, M. I. Shared segmentation of natural
scenes using dependent pitman-yor processes. In NIPS, 2008.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and
Hospedales, T. M. Learning to compare: Relation network
for few-shot learning. In CVPR, 2018.

Thrun, S. and Pratt, L. Learning to learn. Springer Science &
Business Media, 1998.

Vanschoren, J. Meta-learning: A survey. arXiv preprint
arXiv:1810.03548, 2018.

Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., and
Larochelle, H. A meta-learning perspective on cold-start rec-
ommendations for items. In NIPS, 2017.

Venkateswara, H., Eusebio, J., Chakraborty, S., and Panchanathan,
S. Deep hashing network for unsupervised domain adaptation.
In CVPR, 2017.

Vilalta, R. and Drissi, Y. A perspective view and survey of meta-
learning. Artificial Intelligence Review, 18(2):77–95, 2002.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. Matching
networks for one shot learning. In NIPS, 2016.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Report
CNS-TR-2011-001, California Institute of Technology, 2011.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z.,
Munos, R., Blundell, C., Kumaran, D., and Botvinick, M. Learn-
ing to reinforcement learn. arXiv preprint arXiv:1611.05763,
2016.

Wang, Y.-X. and Hebert, M. Learning to learn: Model regression
networks for easy small sample learning. In ECCV, 2016.

Wang, Y.-X., Ramanan, D., and Hebert, M. Learning to model the
tail. In NIPS, 2017.

A Meta Understanding of Meta-Learning

Weinberger, K. Q. and Saul, L. K. Distance metric learning for
large margin nearest neighbor classification. JMLR, 10(Feb):
207–244, 2009.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W., Col-
menarejo, S. G., Denil, M., de Freitas, N., and Sohl-Dickstein,
J. Learned optimizers that scale and generalize. In ICML, 2017.

Ye, H.-J., Hu, H., Zhan, D.-C., and Sha, F. Learning em-
bedding adaptation for few-shot learning. arXiv preprint
arXiv:1812.03664, 2018.

Ying, W., Zhang, Y., Huang, J., and Yang, Q. Transfer learning via
learning to transfer. In ICML, 2018.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable
are features in deep neural networks? In NIPS, 2014.

Yu, T., Finn, C., Xie, A., Dasari, S., Zhang, T., Abbeel, P., and
Levine, S. One-shot imitation from observing humans via
domain-adaptive meta-learning. In RSS, 2018.

Zhang, H., Berg, A. C., Maire, M., and Malik, J. Svm-knn: Dis-
criminative nearest neighbor classification for visual category
recognition. In CVPR, 2006.

Zhang, Y., Wei, Y., and Yang, Q. Learning to multitask. In
NeurIPS, 2018.

Zhou, Z.-H. Ensemble methods: foundations and algorithms.
Chapman and Hall/CRC, 2012.

Zhu, X., Anguelov, D., and Ramanan, D. Capturing long-tail
distributions of object subcategories. In CVPR, 2014.

A Meta Understanding of Meta-Learning

Supplementary Material

A. Meta-KNN
We present a procedure inspired by SVM-KNN (Zhang
et al., 2006; Chao et al., 2013) to build a non-parametric
meta model. We call it meta-KNN, as summarized in Al-
gorithm 1. We empirically show its superior performance
on meta labeled examples from heterogeneous domains (cf.
section E.4).

Algorithm 1 meta-KNN: a non-parametric meta-learning
algorithm (cf. Eq. (5))
Required Dmeta-tr: a meta-training set
Required α, β, K: hyper-parameters
Required BG : an iterative meta-learning algorithm, with
ĝ = BG(Dmeta-tr) trained till converge
Meta input A novel task Dtr
1: Search KNN(Dtr): KNN tasks of Dtr in Dmeta-tr
2. Copy g̃ from ĝ. Fine-tune g̃ on KNN(Dtr), by applying
BG for β epochs with a step size α
Meta output g̃(Dtr)

B. A Principled Way to Apply Meta-Learning
We discuss five examples as follows. Fig. 3 gives an illus-
tration.

Unsupervised learning. Let us consider learning a fea-
ture extractor from unlabeled data so as to benefit down-
stream applications (Boney & Ilin, 2018; Metz et al., 2018;
Yu et al., 2018). Here, Dtr = {xn}Nn=1, h∗ is the target
feature extractor, and lmeta measures the performance gap
on the downstream application. G is a set of objective func-
tions for unsupervised learning, while BG can be ERM by
stochastic gradient descent (SGD).

Active learning. The goal is to minimize the data labeling
effort by querying N ′ informative examples. For classifica-
tion, Dtr = {xn}Nn=1 is an unlabeled set, h∗ is the model
learned with the best N ′ queried examples from Dtr, and
lmeta measures the performance gap on classification. g is
a learning process constrained to query labels for N ′ ex-
amples by investigating x and the learning progress (Ravi
& Larochelle, 2018; Sharma et al., 2018; Bachman et al.,
2017). BG can be ERM by SGD or by reinforcement learn-
ing algorithms (Ravi & Larochelle, 2018; Sharma et al.,
2018).

Domain generalization. The goal is to train a base model
on source domains (SD) and apply it to target domains (TD)
without fine-tuning. Here, Dtr = {(xn, yn)}Nn=1 is the
labeled data from SD, while h∗ is the target base model that

Figure 3. Meta examples in different areas. A labeled image is
surrounded by a colored box that indicate its label. The ideal
model in unsupervised learning is a feature extractor that facilitates
clustering or classification. The ideal model in active learning is the
classifier trained on the optimally queried images. The ideal model
for domain generalization is a classifier for a different domain.

works well on TD. lmeta is the performance gap on TD. g
can be a model predictor or a learning process aware of the
domain shifts (Li et al., 2018a; Balaji et al., 2018). BG can
be ERM by SGD.

Optimization. One focus is to search a better updating
rule in iterative optimization. In this case, Dtr is an objec-
tive function LS(θ) parameterized by θ; e.g., the training
loss. h∗ is the optimal solution of LS or of a related ob-
jective LV ; e.g., the validation error. lmeta is the gap of
objective values. g is an iterative optimization algorithm
with a (meta) learnable updating rule. BG can be EMR by
SGD (Andrychowicz et al., 2016; Wichrowska et al., 2017)
or reinforcement learning algorithms (Li & Malik, 2017;
Bello et al., 2017).

Imitation learning and reinforcement learning. Imita-
tion learning (Stadie et al., 2018; Frans et al., 2018; Wang
et al., 2016; Duan et al., 2016; 2017; Finn et al., 2017b;
Yu et al., 2018) easily fits into our meta-learning frame-
work, given its similarity to the supervised learning. For
few-shot reinforcement learning (Duan et al., 2017; Wang
et al., 2016), the Dtr is a trial of a few episodes from an
MDP and h∗ is the target policy, which can be realized by
maximizing the reward.

C. Case Study: Few-Shot Learning
We present a case study on how to apply our meta-learning
framework to few-shot learning. The goal of few-shot learn-
ing is to quickly build a model for a novel task; i.e., with
minimum training time and training data. Specifically, we
focus on one-shot C-way learning for image classification.

A Meta Understanding of Meta-Learning

C.1. Meta labeled examples and meta losses

The training set Dtr contains one labeled image for each of
the C classes; i.e., Dtr = {(xn, yn)}Nn=1 (C = N in this
case). The target model h∗ is a C-way classifier and the loss
lmeta(h, h

∗) measures how different h compared to h∗. We
present two examples of lmeta(h, h

∗) as follows.

Meta losses in the model space. h∗ is the target classifier
trained on a larger training set. Let h be parameterized by
θ, lmeta(h, h

′) = ‖θ − θ′‖22 (Wang & Hebert, 2016; Wang
et al., 2017).

Meta losses from example losses. Given a validation set
Dval = {(xm, ym)}Mm=1 sampled in the same way as Dtr,
a reasonable choice of lmeta(h, h

∗) is |LV (h) − LV (h∗)|,
where LV is the validation error defined in Eq. (3). Suppose
h∗ minimizes LV , then lmeta(h, h

∗) is equivalent to LV (h).
In other words, we replace h∗ and lmeta by Dval and l. The
meta-training set Dmeta-tr thus becomes {(Dtrj , Dvalj)}Nmeta

j=1

and ERM in Eq. (5) can be re-written accordingly as (with
constants ignored)

ĝ =argming∈G

Nmeta∑
j=1

LV j(g(Dtrj))

= argming∈G

Nmeta∑
j=1

M∑
m=1

l(g(Dtrj)(xjm), yjm). (6)

LV j is the validation loss on Dvalj = {(xjm, yjm)}Mm=1.
Eq. (6) has been applied in many few-shot learning algo-
rithms (Hariharan & Girshick, 2017; Ravi & Larochelle,
2017; Gidaris & Komodakis, 2018; Qiao et al., 2018; Snell
et al., 2017; Sung et al., 2018; Bertinetto et al., 2016; Vinyals
et al., 2016) and we will focus on it in the next subsections.

C.2. Meta models and meta algorithms

We discuss two exemplar designs of g: one views g as a
supervised learning algorithm (Finn et al., 2017a) and the
other views g as a feed-forward model predictor (Snell et al.,
2017). Both algorithms are used in our experiments.

Meta models as learning algorithms. Since g outputs a
classifier h given Dtr, it can be seen as a learning algorithm.
Suppose h is parameterized by θ, let us apply ERM

g(Dtr) = argminθ LS(θ) = argminθ
1

N

N∑
n=1

l(hθ(xn), yn).

Since Dtr is small, ERM may suffer over-fitting. One solu-
tion is to apply an iterative optimizer (e.g., gradient descent
(GD)) with early stopping and a carefully chose initialization
ψ (Finn et al., 2017a): early stopping limits the hypothesis

set while ψ prevents under-fitting. Suppose LS(θ) is dif-
ferentiable w.r.t. θ, g with one-step GD of a step size α,
initialized at ψ, is

gψ(Dtr) = θ̂ = ψ − α×∇θLS(ψ). (7)

The meta hypothesis set G thus becomes {gψ} with different
initializations. To search gψ̂, we again apply ERM but on
the meta-training set Dmeta-tr (cf. Eq. (6))

ψ̂ =argminψ

Nmeta∑
j=1

M∑
m=1

l(gψ(Dtrj)(xjm), yjm). (8)

If we apply SGD for optimization then this is the one-step
MAML (Finn et al., 2017a). In other words, MAML and its
variants (Lee & Choi, 2018; Finn & Levine, 2018; Li et al.,
2017; Rusu et al., 2019) follow our framework.

Meta models as model predictors. Alternatively, we can
view g(Dtr) as a model predictor. For example, in Prototyp-
ical Network (ProtoNet) (Snell et al., 2017)

gψ(Dtr)(x) = argmaxc exp(−‖ψ(x)− ψ(xc)‖22), (9)

where xc is the image of class c, and ψ is a feature extrac-
tor. Snell et al. (2017) learns ψ via ERM (cf. Eq. (6)),
essentially following our framework. Similar approaches
are (Qiao et al., 2018; Sung et al., 2018; Wang & Hebert,
2016; Vinyals et al., 2016; Wang et al., 2017).

C.3. Collecting meta-training sets

After identifying the form of meta labeled example, which
is (Dtr, Dval) for few-shot learning, the next step is to col-
lect the meta-training set. While collecting (Dtr, Dval) one-
by-one seems standard, it might be inefficient. For image
classification it is easier to collect images class-by-class
to first create a pool (named meta-train-pool), which con-
tains many classes and each has many examples. We then
synthesize (Dtr, Dval) from the pool. This is the general
setting for few-shot image classification. There will be three
pools of disjoint classes: meta-train pool, meta-val-pool,
meta-test-pool.

D. Related Work
There are multiple excellent overviews and surveys (Thrun
& Pratt, 1998; Vilalta & Drissi, 2002; Lemke et al., 2015;
Vanschoren, 2018; Finn, 2018; Metz et al., 2018). Ours
is different by drawing a clear connection to supervised
learning. There are also theoretical analysis on meta-
learning (Baxter, 2000; Maurer et al., 2016; Maurer, 2005).
However, the flexibility to design h∗ (e.g., by validation
data) is not considered; the analysis thus may not be readily
applicable to areas such as unsupervised learning, domain

A Meta Understanding of Meta-Learning

generalization, etc. Franceschi et al. (2017) connects hy-
perparameter tuning and meta-learning, which aligns with
the comparison of AH and g in section 2.2. Garg & Kalai
(2018) also relates meta-learning to supervised learning
but only for meta-unsupervised learning. Meta-learning
has also been applied to reinforcement learning and imita-
tion learning (Stadie et al., 2018; Frans et al., 2018; Wang
et al., 2016; Duan et al., 2016; 2017; Finn et al., 2017b;
Yu et al., 2018), optimization (Andrychowicz et al., 2016;
Wichrowska et al., 2017; Li & Malik, 2017; Bello et al.,
2017), recommendation systems (Vartak et al., 2017), data
augmentation (Ratner et al., 2017), natural language process-
ing (Huang et al., 2018), architecture search (Elsken et al.,
2018), continual learning (Riemer et al., 2019; Kaiser et al.,
2017; Al-Shedivat et al., 2018; Clavera et al., 2019), trans-
fer and multi-task learning (Ying et al., 2018; Zhang et al.,
2018), active learning (Ravi & Larochelle, 2018; Sharma
et al., 2018; Bachman et al., 2017; Ravi & Larochelle, 2018;
Sharma et al., 2018) , and teaching (Fan et al., 2018). Some
algorithms aim for versatile purposes (Mishra et al., 2018;
Munkhdalai & Yu, 2017; Ritter et al., 2018; Finn et al.,
2017a; Santoro et al., 2016; Nichol et al., 2018).

There are meta-learning algorithms that do not explicitly
define h∗ or split data intoDtr andDval; e.g., Reptile (Nichol
et al., 2018). We argue that Reptile can indeed be viewed
as using Dtr as Dval. Section E.5 analyzes the limitation of
this kind of algorithms.

E. Additional Experiments and Details
E.1. Experimental setups

Datasets. Beside splitting the 100 MiniImageNet classes
into 60, 16, 24 for meta-train-pool, meta-val-pool, and meta-
test-pool, we also consider a challenging case where the
splits are 30, 30, 40 classes, in which the diversity of meta-
training examples is limited. We call the former standard
split (SS) and the later challenging split (CS).

We further consider two set of datasets for more challenging
settings. To enlarge the heterogeneity among tasks, we syn-
thesize a “Heterogeneous” dataset from five different fine-
grained classification datasets, namely AirCraft (Maji et al.,
2013), Car-196 (Krause et al., 2013), Caltech-UCSD Birds
(CUB) 200-2011 (Wah et al., 2011), Stanford Dog (Khosla
et al., 2011), and Indoor (Quattoni & Torralba, 2009). We
randomly sampled 60 classes with 50 images each from
each of the 5 datasets, and equally split classes into meta-
train-pool, meta-val-pool, and meta-test-pool. That is, there
are 100 classes in meta-train-pool (same for the others),
which includes 20 classes from each fine-grained dataset.

To investigate the applicability of meta-learning, we use
the Office-Home datasets (Venkateswara et al., 2017) in a
domain generalization problem. There are 65 classes and 4

(a) MAML (b) ProtoNet (c) MatchNet

Figure 4. 1-shot 5-way classification accuracy on MiniImageNet
(SS). We show meta-training (red) and meta-test (blue) accuracy.
We keep all instances per class but vary the numbers of meta-
training classes. MAML, ProtoNet, and MatchNet suffer over-
fitting when the number of classes gets small.

domains of images per class. We test two domains, “Clipart”
and “Product”, which have the largest number of images.

We follow (Vinyals et al., 2016; Snell et al., 2017; Finn et al.,
2017a) to resize all images to 84× 84.

Meta examples (tasks) and evaluation protocols. We
follow (Rusu et al., 2019; Ye et al., 2018) to evaluate the
few-shot classification by drawing 10,000 tasks from meta-
test-pool and there are 15 validation images per class in a
task. That is, a meta labeled example (Dtr, Dval) has 15
images per class in Dval. We report the mean accuracy. We
found the 95% confidence interval to be consistently within
[0.001, 0.004] and thus omit it for brevity.

E.2. Implementation details

We investigate three popular baselines, namely Model Ag-
nostic Meta-Learning (MAML) (Finn et al., 2017a), Proto-
typical Network (ProtoNet) (Snell et al., 2017), and Match-
ing Network (MatchNet) (Vinyals et al., 2016). MAML
implements an inner optimizer to update the meta-learned
classifier initializer, and ProtoNet/MatchNet learn discrimi-
native embedding for few-shot classification. ProtoNet uses
the distance-based nearest class mean rule for prediction,
while MatchNet utilizes the similarity-based nearest neigh-
bor rule. We apply the first-order MAML and tune the
number of updates in Eq. (7) by meta-validation.

We re-implement all three algorithms and use the same C-
way setting in meta-training and meta-test for consistency.
That is, we disregard the trick (Snell et al., 2017) that trains
with 30-way tasks but tests with 5-way tasks. Our baseline
results are close to those reported in the recent overview of
few-shot learning (Chen et al., 2019).

We apply the standard 4-layer ConvNets as the back-
bone (Vinyals et al., 2016; Snell et al., 2017). In each layer,
convolution, batch normalization, ReLU, and max-pooling
are concatenated sequentially. During meta-training SGD
with Adam (Kingma & Ba, 2014) is employed, with a initial
learning rate 2e-3.

A Meta Understanding of Meta-Learning

Original Classes Augmented Classes by Clustering

Figure 5. The class augmentation strategy by K-means.

Table 3. Test accuracy of 1-shot 30-way tasks on MiniImageNet
(CS). “K” means the K-means we run to augment the meta-train-
pool and meta-val-pool classes. K = 1 means no augmentation.

K = 1 K = 2 K = 4 K = 8

0.146 0.146 0.155 0.161

E.3. Generalization analysis

Following our supervised view of meta-learning, the gen-
eralization ability of the learned meta model should be af-
fected by the “effective” number of meta training examples.
Here we investigate such effective number from another
perspective, i.e., the number of classes in the in the meta-
train-pool. In detail, we keep all 600 instances per class
in MiniImageNet (SS), but change the number of available
classes for meta-training in the meta-train-pool, from 8 to
64. When there are limited types of classes in the meta-train-
pool, the number of diversified tasks to be sampled is con-
strained. Fig. 4 shows the change of few-shot accuracy with
different meta-train-pools. The trend follows the supervised
learning intuition as well: where there are more available
meta-training classes (types of few-shot tasks), the better
generalization results are achieved. In particular, when there
are 8 classes, all models, namely MAML, ProtoNet, and
MatchNet overfit. The 1-shot classification performance
becomes stable when the number of meta-training classes is
larger than 48.

E.4. Supervised learning techniques for meta-learning

Given that in section 4.2 the supervised learning techniques
appear to be meta-model-agnostic by improving all three
meta-learning models consistently, we focus on ProtoNet in
the following experiments.

Data Augmentation. Increasing the number of training
examples by data augmentation is a popular technique in
supervised learning to improve the generalization ability, es-
pecially when the training examples are not diverse enough.

Here we adapt the idea to meta-learning. We consider a
challenging yet more realistic case on MiniImageNet (CS).
Specifically, we re-split the dataset into 30, 30, 40 classes
for meta-train-pool, meta-val-pool, and meta-test-pool, and
focus on 1-shot 30-way classification. Note that, this setting
might break the applicability of meta-learning to few-shot

learning: every time we will sample the same 30 classes
from meta-train-pool, greatly limiting the diversity of meta
labeled examples. However, this setting is indeed more
realistic in practice according to the well-know long-tailed
distribution (Sudderth & Jordan, 2008; Salakhutdinov et al.,
2011; Zhu et al., 2014; Wang et al., 2017): there are more
few-shot classes than many-shot classes.

We present a data augmentation strategy at the meta exam-
ple (task) level, inspired by (Hsu et al., 2018). Specifically,
we perform K-means within each class to split a class into
K subcategories, resulting in 30×K augmented classes in
meta-train-pool (and meta-val-pool). To ensure the quality
of K-means, we pre-train a 30-way classifier on the whole
meta-train-pool and use the features for K-means. We run
30 trials of K-means to compensate its randomness. We con-
struct a meta-training example (task) by first picking a trial
and sampling 30 classes from the corresponding augmented
meta-train-pool. Fig. 5 gives an illustration.

The results with data augmentation are in Table 3. We
cluster each class in the meta-train-pool and meta-val-pool
with K = 1, 2, 4, 8 subcategories; 1 means no K-means.
We observe a clear trend: the more classes we augment to
increase task diversity, the higher accuracy we can achieve.

Non-Parametric Methods. Non-parametric supervised
learning approaches are well-known to capture local and het-
erogeneous structures in data. Here we extend the methods
to meta-learning by applying meta-KNN (cf. Algorithm 1)
to ProtoNet, named ProtoNet-KNN. In meta-learning a
neighbor is a meta labeled example (i.e., a few-shot task).
We characterize each task by its average feature and use the
Euclidean distance to measure task similarity.

We investigate ProtoNet-KNN on the Heterogeneous dataset
described in section E.1. We focus on fine-grained classi-
fication: a test task contains 5 classes from one dataset.
In meta-training, we sample a fine-grained task randomly
from a dataset to train a single ProtoNet. We expect the
learned ProtoNet to be equipped with dataset-agnostic fine-
grained discriminative knowledge. In meta-test, we then
apply ProtoNet-KNN to adapt the ProtoNet to the K nearest
neighbors of a test task. To facilitate neighbor searching, we
pre-sample 2,000 training tasks and set K = 100, β = 1,
and α = 0.0002 (cf. Algorithm 1). Table 4 shows the
meta-test results (2,000 tasks). Non-parametric approaches
greatly improve the performance on heterogeneous tasks.
We expect a larger gap by a more sophisticated task distance.

E.5. Domain generalization and meta domain shifts

Existing few-shot learning settings assume that the training
and validation examples (e.g., images) within a task are
from the same domain. In practice it is sometime desirable
to remove the assumption. For instance, we might want a

A Meta Understanding of Meta-Learning

Table 4. Parametric meta models (ProtoNet) Vs. non-parametric
meta models (ProtoNet-KNN). We show the test accuracy of 1-shot
5-way fine-grained classification on the Heterogeneous dataset.

ProtoNet ProtoNet-KNN

Test Acc 0.372 0.386

Table 5. Few-shot 5-way domain generalization on Office-Home.
Two domains are investigated: Clipart (C) and Product (P).

Meta-training Meta-test Test Acc
Case Source Target Source Target 1-Shot 5-Shot

I-1 C C C C 0.341 0.477
I-2 P C P C 0.296 0.350
I-3 C C P C 0.275 0.342
I-4 P P P C 0.264 0.283

II-1 P P P P 0.448 0.609
II-2 C P C P 0.291 0.381
II-3 C C C P 0.284 0.338
II-4 P P C P 0.275 0.329

robot to learn in a constraint environment, where examples
are not diverse and are essentially few-shot, and to be able to
apply the knowledge in the wild. Recall that our supervised
view of meta-learning allows users to define the training set
and the ideal model in a task according to the problem at
hand. By defining the ideal model to be the one that will
work well in a different domain, we can remove the same-
domain assumption in a systematic way. We investigate this
idea and apply the trick in section C to replace the ideal
model by a validation set collected in a different domain.

We experiment on the Off-Home dataset (see section E.1),
which is designed for domain adaptation. We focus on two
domains: Clipart (C) and Product (P). There are 65 classes
and we split them into 25 for meta-train-pool, 15 for meta-
val-pool, and 25 for meta-test-pool. We work on few-shot
5-way tasks in which a task contains a training set Dtr from
one (source) domain and a validation set Dval from the other
(target) domain.

Table 5 summarizes the results. We clearly see the difficulty
when the source and target domains within a task are dif-
ferent by comparing Case I-1 and I-2 (similarly, II-1 and
II-2). We note that in each of these cases the distribution
of the meta-training and meta-test examples are the same.
Therefore, there is no meta-domain shift and the gap simply
indicates the difficulty of tasks.

We further investigate meta-domain shifts by constructing
meta-training and meta-test examples in a different way
(Case I-3, I-4 and II-3, II-4). We note that some meta-
learning algorithms can only handle same domains by de-
fault (Nichol et al., 2018). These additional experiments
are meant to simulate the results by those algorithms. The
performance in these cases are outperformed by Case I-2

and II-2 respectively where each group considers the same
meta-test examples. We argue that this gap indeed results
from meta-domain shifts (cf. section 2.3) and might be re-
solved via domain adaptation by casting meta-learning as
supervised learning.

