
Under review as a conference paper at ICLR 2020

A GRAPH NEURAL NETWORK ASSISTED MONTE
CARLO TREE SEARCH APPROACH TO TRAVELING
SALESMAN PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a graph neural network assisted Monte Carlo Tree Search approach
for the classical traveling salesman problem (TSP). We adopt a greedy algorithm
framework to construct the optimal solution to TSP by adding the nodes succes-
sively. A graph neural network (GNN) is trained to capture the local and global
graph structure and give the prior probability of selecting each vertex every step.
The prior probability provides a heuristic for MCTS, and the MCTS output is an
improved probability for selecting the successive vertex, as it is the feedback in-
formation by fusing the prior with the scouting procedure. Experimental results
on TSP up to 100 nodes demonstrate that the proposed method obtains shorter
tours than other learning-based methods.

1 INTRODUCTION

Traveling Salesman Problem (TSP) is a classical combinatorial optimization problem and has many
practical applications in real life, such as planning, manufacturing, genetics (Applegate et al.,
2006b). The goal of TSP is to find the shortest route that visits each city once and ends in the origin
city, which is well-known as an NP-hard problem (Papadimitriou, 1977). In the literature, approx-
imation algorithms were proposed to solve TSP (Lawler et al., 1986; Goodrich & Tamassia, 2015).
In particular, many heuristic search algorithms were made to find a satisfactory solution within a
reasonable time. However, the performance of heuristic algorithms depends on handcrafted heuris-
tics to guide the search procedure to find competitive tours efficiently, and the design of heuristics
usually requires substantial expertise of the problem (Johnson & McGeoch, 1997; Dorigo & Gam-
bardella, 1997).

Recent advances in deep learning provide a powerful way of learning effective representations from
data, leading to breakthroughs in many fields such as speech recognition (Lecun et al., 2015). Ef-
forts of the deep learning approach to tackling TSP has been made under the supervised learning and
reinforcement learning frameworks. Vinyals et al. (Vinyals et al., 2015) introduced a pointer net-
work based on the Recurrent Neural Network (RNN) to model the stochastic policy that assigns high
probabilities to short tours given an input set of coordinates of vertices. Dai et al. (Dai et al., 2017)
tackled the difficulty of designing heuristics by Deep Q-Network (DQN) based on structure2vec
(Dai et al., 2016b), and a TSP solution was constructed incrementally by the learned greedy policy.
Most recently, Kool et al. (Kool et al., 2019) used Transformer-Pointer Network (Vaswani et al.,
2017) to learn heuristics efficiently and got close to the optimal TSP solution for up to 100 vertices.
These efforts made it possible to solve TSP by an end-to-end heuristic algorithm without special
expert skills and complicated feature design.

In this paper, we present a new approach to solving TSP. Our approach combines the deep neural
network with the Monte Carlo Tree Search (MCTS), so that takes advantage of the powerful feature
representation and scouting exploration. A graph neural network (GNN) is trained to capture the
local and global graph structure and predict the prior probability, for each vertex, of whether this
vertex belongs to the partial tour. Besides node features, we integrate edge information into each
update-layer in order to extract features efficiently from the problem whose solution relies on the
edge weight.

1

Under review as a conference paper at ICLR 2020

Similar to above-learned heuristic approaches, we could greedily select the vertex according to the
biggest prior probability and yet the algorithm may fall into the local optimum because the algo-
rithm has only one shot to compute the optimal tour and never goes back and reverses the decision.
To overcome this problem, we introduce a graph neural network assisted Monte Carlo Tree Search
(GNN-MCTS) to make the decision more reliable by a large number of scouting simulations. The
trained GNN is used to guide the MCTS procedure that effectively reduces the complexity of the
search space and MCTS provides a more reliable policy to avoid stuck in a local optimum. Experi-
mental results on TSP up to 100 vertices demonstrate that the proposed method obtains shorter tours
than other learning-based methods.

The remainder of the paper is organized as follows: After reviewing related work in Section 2, we
briefly give a preliminary introduction to TSP in Section 3. Our approach is formulated in Section
4. Experimental results are given in Section 5, followed by the conclusion in Section 6.

2 RELATED WORK

The TSP is a well studied combinatorial optimization problem, and many learning-based algorithms
have been proposed. In 1985, Hopfield et al. proposed a neural network to solve the TSP (Hopfield
& Tank, 1985). This is the first time that researchers attempted to use neural networks to solve
combinatorial optimization problems. Since the impressive results produced by this approach, many
researchers have made efforts on improving the performance (Bout & Miller, 1988; Brandt et al.,
1988). Many shallow network architectures were also proposed to solve the combinatorial optimiza-
tion problem (Favata & Walker, 1991; Fort, 1988; Angniol et al., 1988; Kohonen, 1982). Recent
years, deep neural networks have been adopted to solve the TSP and many works have achieved
remarkable results. We summarize the existing learning-base methods from the following aspects.

ENCODER AND DECODER

Vinylas et al. (Vinyals et al., 2015) proposed a neural architecture called Pointer Net (Ptr-Net) to
learn the conditional probability of a tour using a mechanism of the neural attention. Instead of using
attention to blend hidden units of an encoder to a context vector, they used attention as pointers to the
input vertices. The parameters of the model are learned by maximizing the conditional probabilities
for the training examples in a supervised way. Upon test time, they used a beam search procedure
to find the best possible tour. Two flaws exist in the method. First, Ptr-Net can only be applied to
solve problems of a small scale (n≤ 50). Second, the beam search procedure might generate invalid
routes.

Bello et al. (Bello et al., 2017) proposed a framework to tackle TSP using neural networks and
reinforcement learning. Similar to Vinylas et al., they employed the approach of Ptr-Net as a policy
model to learn a stochastic policy over tours. Furthermore, they masked the visited vertices to avoid
deriving invalid routes and added a glimpse which aggregates different parts of the input sequence
to improve the performance. Instead of training the model in a supervised way, they introduced an
Actor-Critic algorithm to learn the parameters of the model and empirically demonstrated that the
generalization is better compared to optimizing a supervised mapping of labeled data. The algorithm
significantly outperformed the supervised learning approach (Vinyals et al., 2015) with up to 100
vertices.

Kool et al. (Kool et al., 2019) introduced an efficient model and training method for TSP and other
routing problems. Compared to (Bello et al., 2017), they removed the influence on the input order of
the vertices by replacing recurrence (LSTMs) with attention layers. The model can include valuable
information about the vertices by multi-head attention mechanism which plays an important role in
the setting where decisions relate directly to the vertices in a graph. Similar to (Bello et al., 2017),
they applied a reinforcement learning method to train the model. Instead of learning a value function
as a baseline, they introduced a greedy rollout policy to generate baseline and empirically showed
that the greedy rollout baseline can improve the quality and convergence speed for the approach.
They improved the state-of-art performance among 20, 50, and 100 vertices. Independent of the
work of Kool et al., Deudon et al. (Deudon et al., 2018) also proposed a framework which uses
attention layers and reinforcement learning algorithm (Actor-Critic) to learn a stochastic policy.

2

Under review as a conference paper at ICLR 2020

Input Graph Guided Tree SearchNeural Network Choose Best Vertex

Figure 1: Approach overview. First, the graph is fed into the graph neural network, which captures
global and local graph structure and generates a prior probability that indicates how likely each ver-
tex is in the tour sequence. Then, with the help of the graph neural network, a developed MCTS
outputs an improved probability by scouting simulations. Lastly, we visit the best vertex among un-
visited vertices according to the improved probability. The above process will loop until all vertices
are visited.

They combined the machine learning methods with an existing heuristic algorithm, i.e., 2-opt to
enhance the performance of the framework.

GRAPH EMBEDDING

Dai et al. (Dai et al., 2017) proposed a framework, which combines reinforcement learning with
graph embedding neural network, to construct solutions incrementally for TSP and other combina-
torial optimization problems. Instead of using a separate encoder and decoder, they introduced a
graph embedding network based on the structure2vec (Dai et al., 2016a) to capture the current state
of the solution and the structure of a graph. Furthermore, they used Q-learning parameterized by
the graph embedding network to learn a greedy policy that outputs which vertex being inserted into
the partial tour. They adopt the farthest strategy (Rosenkrantz et al., 2013) to get the best insertion
position of the partial tour.

Nowak et al. (Nowak et al., 2017) propose a supervised manner to directly output a tour as an
adjacency matrix based on a Graph Neural Network and then convert the matrix into a feasible
solution by beam search . The author only reports an optimality gap of 2.7% for n = 20 and slightly
worse than the auto-regressive data-driven model (Vinyals et al., 2015).

The performance of the above-mentioned methods was suffered due to the greedy policy which
selects the vertex according to the biggest prior probability or the value. In this paper, we introduce
a new Monte Carlo Tree Search-based algorithm to overcome this problem.

3 PRELIMINARIES

TRAVELING SALESMAN PROBLEM

Let G(V,E,w) denotes a weighted graph, where V is the set of vertices, E the set of edges and
w : E → R+ the edge weight function, i.e., w(u, v) is the weight of edge (u, v) ∈ E. We use
S = {v1, v2, ..., vi} to represent an ordered tour sequence that starts with v1 and ends with vi, and
S̄ = V \ S the set of candidate vertices for addition, condition on S. The target of TSP is to find
a tour sequence with the lowest cost, i.e., c(G,S) =

∑|S|−1
i=1 w(S(i), S(i + 1)) + w(S(|S|), S(1))

when |S| = |V |.

4 PROPOSED APPROACH

For a graph, our goal is to construct a tour solution by adding vertices successively. A natural
approach is to train a deep neural network of some form to decide which vertex being added to
the partial tour at each step. That is, a neural network f would take the graph G and the partial
tour sequence S as input, and the output f(G|S) would be a prior probability that indices how
likely each vertex to be selected. Intuitively, we can use the prior probability in a greedy way, i.e.,
selecting vertex with the biggest probability, to generate the tour sequence incrementally. However,

3

Under review as a conference paper at ICLR 2020

deriving tours in this way might fall into the local optimum because the algorithm has only one
shot to compute the optimal tour and never goes back and reverses the decision. To overcome this
problem, we enhance the policy-decisions by MCTS assisted with the deep neural network.

We begin in Section 4.1 by introducing how to transform TSP into a Markov Decision Process
(MDP). Then in Section 4.2, we describe the GNN architecture for parameterizing f(G|S). Finally,
Section 4.3 describes GNN-MCTS for combinatorial optimization problems, especially the TSP.
The overall approach is illustrated in Figure 1.

4.1 TRAVELING SALESMAN PROBLEM AS MARKOV DECISION PROCESS

We present TSP as a MDP as follows,

• States: a state s is an ordered sequence of visited vertices on a graph G and the terminal state is
that all vertices have been visited.

• Transition: transition is deterministic in the TSP, and corresponds to adding one vertex v ∈ S̄ to
S.

• Actions: an action a is selecting a vertex of G from the vertices candidate set S̄.

• Rewards: the reward function r(s, a) at state s is defined as the change of cost after taking action
a and transitioning to a new state s′, i.e., r(s, a) = −w(vm, vn), where vm and vn are the last
vertex in partial tour sequence S and S′ respectively.

• Policy: based on the improved probability P̂ generated by the GNN-MCTS, a deterministic
greedy policy π(v|S) := arg maxv′∈S̄ P̂ (S, v′) is used.

4.2 DEEP NEURAL NETWORK ARCHITECTURE

To compute a good policy, information about the global structure of the graph and the current con-
structed tour sequence S = {v1, ..., vi} is required. We tag the nodes which have been visited as
xv = 1. Intuitively, f(G|S) should summarize the state of such a “tagged” graph and generate the
prior probability that indicates how likely each vertex is to belong to S. It is challenging to design
a neural network f(G|S) to capture local and global graph structure. In order to represent such a
complicated context, we propose a new deep learning architecture based on graph neural networks
(GNN) to parameterize f(G|S).

GRAPH NEURAL NETWORKS

Similar to the basic GNN, we design the neural network f(G|S; Θ) to compute a l-dimensional
feature Hv for each vertex of a “tagged” graph. We use Ht

v to denote the real-valued feature vector
associated with v after the computation by the layer t. A GNN model consists of a stack of T
neural network layers, where each layer aggregates local neighborhood information, i.e., features
of neighbors around each node, and then passes this aggregated information on to the next layer.
Specifically, the basic GNN model (Hamilton et al., 2017) can be implemented as follows. In each
layer t ∈ [0, T], a new feature is computed as:

Ht+1
v = σ

Ht
vW

t
1 +

∑
u∈N (v)

Ht
uW

t
2

 (1)

where N (v) is the set of neighbors of vertex v, W t
1 and W t

2 are parameter matrices for the layer
t, and σ denotes a component-wise non-linear function, e.g., a sigmoid or a ReLU. For t = 0, H0

v
denotes the feature initialization at the input layer.

The above GNN architecture has been demonstrated to perform well on combinatorial optimizations
problems such as Maximal Independent Set (MIS), Minimum Vector Cover (MVC), etc. (Li et al.,
2018). As observed from the Equation 1 , the edge information is not taken into account for MIS,
MVC, but, for TSP, edge information cannot be ignored, because the object of TSP is computed
based on the edge cost, i.e., the distance between the two vertices. We integrate edge information

4

Under review as a conference paper at ICLR 2020

A

Graph Graph Neural

Network

B

1

2 4

3

5

6

7 8

5x

5
y

0

1x

1
y
1

4x

4
y
1

Figure 2: Neural network architecture. The architecture on the left (A) is used to compute the prior
probability map that indicates how likely each vertex is in the tour sequence. Firstly, the “tagged”
graph is fed into the GNN to generate new feature expressions for each vertex. Then all new node
feature is concentrated into a long vector that denotes the context of the “tagged” graph. Lastly, the
vector is fed into a multilayer perceptron to output the prior probability. The picture on the right (B)
depicts the mechanism of computing a new feature of the vertex in one update-layer.

into the new node feature H as follows,

Ht+1
v = σ

Ht
vW

t
1 +

∑
u∈N (v)

Ht
uW

t
2 +

1

|N (v)|
∑

u∈N (v)

ev,uW
t
3

 (2)

where e(v, u) is the distance1 between two vertices and W t
3 are parameter matrices for the layer t.

Dai et al.(Dai et al., 2017) proposed a graph embedding networks (GEN) based on structure2vec to
compute new node feature µ as follows,

µt+1
v = relu

θ1xv + θ2

∑
u∈N (v)

µt
u + θ3

∑
u∈N (v)

relu(θ4w(v, u))

 (3)

where θ1 ∈ Rl, θ2, θ3 ∈ Rl×l and θ4 ∈ Rl are model parameters.

Compared with GEN, the key improvements are: 1) Our GNN replaces xv in Equation 3 with Hv

so that the our GNN could integrate the latest feature of the node itself directly in each update
procedure. 2) One can regard each update process in the GEN as one update layer of the our GNN,
i.e., each calculation is equivalent to going one layer forward, and counting T times is the T layers.
Parameters of each layer in our GNN are independent, while parameters are shared between different
update processes in GEN which limits the ability of the neural network. 3) Instead of aggregating
edge weight by “sum” operation, we use “average” operation to balance the weight of node and
edge feature. Experimental results show that the above improvements enhance the performance of
the neural network.

We initialize the node feature H0 as follows. Each vertex has a feature tag which is a 3-dimensional
vector. The first element is binary and equal to 1 if the partial tour sequence S contains the vertex.
The second and third elements of the feature tag are the coordinates of the vertex. When a partial
tour has been constructed, it can not be changed, and the remaining problem is to find a path from
the last vertex, through all unvisited vertices, to the first vertex. To know the first and the last vertex
in partial tour sequence S, besides basic feature tags described above, we extend the node feature
H0 by adding feature tags of the first and last vertex in partial tour sequence S (see in Figure 2).

PARAMETERIZING f(G|S; Θ)

Once feature for each vertex is computed after T iterations, and we use the new feature of vertices
to define the f(G|S; Θ), which outputs the prior probability indicating how likely each vertex is to
belong to partial tour sequence S. More specifically, we fuse all vertex feature HT

v as the current

1Euclidean distance: given two points (x1, y1) and (y1, y2) in two-dimensional plane, D =√
(x2 − x1)2 + (y2 − y1)2

5

Under review as a conference paper at ICLR 2020

state representation of the graph and parameterize f(G|S; Θ) as follows ,

f(G|S; Θ) = softmax(sum(HT
1), ..., sum(HT

n)) (4)

where sum denotes summation operator.

During training, we minimize the cross-entropy loss for each training sample (Gi, Si):

`(Si, f(Gi|Si;Θ)) = −
N∑
j=1

yj log f(Gi|Si(1 : j − 1);Θ) (5)

where Si is a tour sequence which is a permutation of the vertices over graph Gi and yj is a one-hot
vector whose length is N and S(j)-th position is 1.

The architecture of the deep neural networks is illustrated in Figure 2.

4.3 GRAPH NEURAL NETWORK ASSISTED MONTE CARLO TREE SEARCH

Similar to the implementation in (Silver et al., 2016), the GNN-MCTS uses deep neural networks
as a guide. Each node s in the search tree contains edges (s, a) for all legal actions a ∈ A(s). Each
edge stores a set of statistics,

{N(s, a), Q(s, a), P (s, a)}
where N(s, a) is the visit count, Q(s, a) is the action value and P (s, a) is the prior probability of
selecting that edge.

To be mentioned, three biggest differences between GNN-MCTS and AlphaGo are:

• When playing the game of Go, the branch with a high average rate of winning indicates that the
route is strong. While TSP is interested in finding the extreme, the average value makes no sense
if several suboptimal routes surround the extreme route. Instead of recording the average action
value, we propose to track the best action value found under each node’s subtree for determining
its exploitation value.

• In the game of Go, it is common to use {0, 0.5, 1} to denote the result of a game composed of
loss, draw, and win. Not only is this convenient, but it also meets the requirements of UCT
(Kocsis & Szepesvári, 2006) for rewards to lie in the [0, 1] range. In TSP, an arbitrary tour length
can be achieve that does not fall into the predefined interval. One can solve this issue by adjusting
the parameter cpuct of UCT in such a way that it is feasible for a specified interval. It requires
substantial trial-and-error on adjusting cpuct due to the change in the number of cities. Instead,
we address this problem by normalizing the action value of each node n whose parent is node p
to [0, 1] as follows,

Qn =
Qn − wp

bp − wp
(6)

where bp and wp are, respectively, the best (maximum) and the worst (minimum) action value
under p, and Qn is the action value of n. The best action value under p is normalized to the value
of 1, the worst action value is normalized to 0, and all other results are normalized to [0, 1].

• AlphaGo used a learned value function (critic) v(s, θ) to estimate the probability of the current
player winning from position s, where the parameters θ are learned from the observations (s, π).
However, getting such algorithms to work is non-trivial. Instead, we design a value function h(s)
that combines the GNN and beam search to evaluate the possible tour length from the current state
to the end state. Guided by the output of GNN, the value function executes beam search from the
state corresponding to the leaf node l until reaching an end state. We compute the value of leaf
node Vl according to the partial tour sequence S corresponding to the end state as follows,

Vl = −

|S|−1∑
i=1

w (S(i), S(i+ 1)) + w (S(|S|), S(1))

 (7)

The value function is described in algorithm 1.

The GNN-MCTS proceeds by iterating over the four phases and then selects a move to play.

2value =
∏|S|

j=1 f(G|S(1 : j − 1), where S is the partial tour sequence corresponding to the state.

6

Under review as a conference paper at ICLR 2020

Algorithm 1 Value Function
start denotes the state of leaf node l
B denotes the beam width

1: Initialize BEAM = {start}
2: while BEAM 6= ∅ do
3: SET = ∅
4: for state in BEAM do
5: for successor of state do
6: Compute value2of the successor
7: SET = SET ∪ { successor }
8: BEAM = ∅
9: while SET 6= ∅ and B < |SET | do

10: state = successor in SET with smallest value
11: SET \ { state }
12: for state in SET do
13: if state is end then
14: return state in SET with biggest value
15: else
16: BEAM = BEAM ∪ { state }

Selection Strategy. The first in-tree phase of each rollouts begins at the root of node s0 of the search
tree and finishes when the rollouts reaches a leaf node sl at time step l. At each of these time steps,
t<l, we use a variant of PUCT (Rosin, 2011) to balance exploration(i.e., visiting states suggested
by the prior policy) and exploitation(i.e., visiting states that have the best value) according to the
statistics in the search tree.

at = arg max
a

(Q(st, a) + U(st, a)) (8)

U(s, a) = cpuctP (s, a)

√∑
bN(s, b)

1 +N(s, a)
(9)

where cpuct is a constant to trading off between exploration and exploitation.

Expansion Strategy. When a leaf node l is reached, the corresponding state sl is evaluated by the
deep neural network to obtain the prior probability p of its child nodes. The leaf node is expanded
and the statistic of each edge (sl, a) is initialized to {N(sl, a) = 0, Q(sl, a) = −∞3, P (sl, a) =
pa}.

Simulation Strategy. Rather than using a random strategy, we use value function h(s) to evaluate
the length of the tour that may be generated from the leaf node sl.

Back-Propagation Strategy. For each step t < L, the edge statistics are updated in a backward
process. The visit counts are increased, N(st, at) = N(st, at) + 1, and the action value is updated
to best value, Q(st, at) = max(Q(st, at), Vl).

Play. At the end of several rollouts, we select node with the biggest P̂ (a|s0) = 1− Q(s0,a)∑
b Q(s0,b)

as
the next move a in the root position s0. The search tree will be reused at subsequent time steps: the
child node relating to the selected node becomes the new root node, and all the statistics of sub-tree
below this child node is retained.

3In the experiment, we initialize the Q to -5.0, -10.0 and -15.0 respectively for TSP20, TSP50, and TSP100.

7

Under review as a conference paper at ICLR 2020

Table 1: Our method vs baselines. The gap % is w.r.t. the best value across all methods
Random Clustered

Method n=20 n=50 n=100 n=20 n=50 n=100
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Concorde 3.92 0.0% 5.68 0.0% 7.73 0.0% 3.30 0.0% 3.38 0.0% 3.39 0.0%
Gurobi 3.92 0.0% 5.68 0.0% 7.73 0.0% 3.30 0.0% 3.38 0.0% 3.39 0.0%
Nearest Neighbor 4.57 16.50% 7.02 23.44% 9.63 24.58% 3.95 19.48% 4.18 23.76% 4.23 25.02%
Nearest Insertion 4.40 12.24% 6.77 19.08% 9.48 22.64% 3.66 10.62% 3.97 17.36% 4.08 20.46%
Random Insertion 4.08 4.12% 6.09 7.12% 8.45 9.24% 3.46 4.67% 3.65 7.93% 3.72 9.70%
Farthest Insertion 4.03 2.73% 5.98 5.29% 8.33 7.78% 3.40 2.87% 3.58 5.91% 3.64 7.55%
Vinyals et al. (gr.) 3.97 1.30% 6.41 18.58% - - - -
Bello et al. (gr.) 3.99 1.83% 5.95 4.75% 8.26 6.82% - - -
Kool et al. (gr.) 3.93 0.36% 5.78 1.75% 8.08 4.57% - - -
Dai et al. 4.03 2.76% 5.98 5.26% 8.33 7.76% 3.37 2.07% 3.58 6.01% 3.66 8.17%
GNN-MCTS 3.92 0.03% 5.70 0.32% 7.85 1.53% 3.30 0.00% 3.39 0.34% 3.44 1.61%
MCTS 6.37 62.45% 18.43 224.28% 40.27 420.83% 4.98 50.69% 9.26 173.99% 14.00 313.33%
GEN-MCTS 3.92 0.12% 5.75 1.31% 8.08 4.53% 3.31 0.21% 3.42 1.04% 3.55 4.72%
GNN-MCTS-t 4.00 2.21% 5.98 5.26% 8.61 11.34% 3.37 2.19% 3.57 5.61% 3.73 10.22%
GNN-MCTS-p 3.92 0.09% 5.77 1.47% 8.06 4.24% 3.31 0.14% 3.44 1.70% 3.54 4.39%
GNN-MCTS-v 3.92 0.08% 5.77 1.64% 8.06 4.24% 3.30 0.04% 3.42 1.13% 3.58 5.67%
GNN-MCTSave. 3.98 1.62% 6.09 7.21% 8.83 14.23% 3.34 1.25% 3.63 7.27% 3.87 14.11%

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

5.1.1 BASELINES

To compute optimal solutions for both TSP, we use two state-of-the-art solvers, Concorde 4 (Ap-
plegate et al., 2006a) and Gurobi 5 (Optimization, 2013). We compare against Nearest, Random
and Farthest Insertion, as well as Nearest Neighbor, which are non-learned baseline algorithms that
also derive a tour by adding vertices successively. Additionally, we compare against excellent deep
learning-based methods based on the greedy framework as mentioned in Section 2, most importantly
Vinyals et al. (Vinyals et al., 2015), Bello et al. (Bello et al., 2017), Kool et al. (Kool et al., 2019),
and Dai et al. (Dai et al., 2017).

5.1.2 TRAINING AND TESTING

We generate 50,000 instances (see in appendix A) for TSP20, TSP50, and TSP100, respectively,
to train GNN (settings are in appendix B). We use state-of-art solvers (Gurobi and Concorde) to
obtain the optimal tour sequence for each instance. Then we generate N samples for each instance
according to the optimal tour sequence. We divide the dataset into a training set, a validation set,
and a test set according to the ratio of 8: 1: 1. We use Adam (Kingma & Ba, 2014) with 128
mini-batches and learning rate 10−3. Training proceeds for 30 epochs on a machine with 2080ti
GPU. After training models for TSP20, TSP50, and TSP100, respectively, we use pre-trained GNN
to guide GNN-MCTS. During testing, we randomly generate 1000 instances for the above three
problems. The parameter settings of the GNN-MCTS used in our experiments are as follows: we
set cpuct = 1.3 and beam width = 1 for three problems; we set rollouts = 800, 800 and 1200
respectively for TSP20, TSP50, and TSP100.

5.2 RESULTS

Besides non-learned algorithms, we mainly compare our method with excellent deep learning-based
works that derive tours on the greedy mechanism. We implement and train a Pointer network with
supervised learning, but we find that our supervised learning results are not as good as those re-
ported by (Vinyals et al., 2015). Results of Pointer network on the random instances are from the
optimality gaps they report on 20, 50 vertex graphs. For other deep learning-based methods, we
use experimental settings suggested by authors to train and get the same performance as reported.

4http://www.math.uwaterloo.ca/tsp/concorde/
5http://www.gurobi.com/

8

Under review as a conference paper at ICLR 2020

Rather than reporting the approximation ratio c
c∗ , where c is the objective solution value of tour S and

c∗ is the best-known solution value of instance G, we use the average optimality gap c−c∗
c∗ = c

c∗ − 1
mentioned in (Kool et al., 2019). Table 1 reports the gap between the solution of each approach and
the best-known solution for TSP20, TSP50, and TSP100. Our approach performs favorably against
other methods up to 100 nodes on the “random” and “clustered” instances. Table 7 in appendix C
reports the confidence interval on different confidence levels.

5.3 RUNNING TIMES

Running times are important but hard to compare because they can vary by two orders of magnitude
as a result of implementation (Python or C++) and hardware (CPU or GPU). Our method is slower
than other learning-based methods due to the look-ahead search. Our code is written by Python and
we note that the MCTS procedure can speed up by rewritten code to C++. We test our algorithm,
Gurobi and learning-based methods on a machine with 32 virtual CPU system (2 * Xeon(R) E5-
2620)) and 8 * 2080ti. At each epoch, we test 32 instances in parallel and after 10 epochs, we report
the time it takes to solve on each test instance (in Table 2).

5.4 GENERALIZATION TO LARGER PROBLEMS

In order to explore the generalization of our method, we train the GNN on TSP100 random instances
and test our method on random instances including TSP200, TSP300 and TSP500. We mainly
compare the learning-based methods proposed by Kool et al. and Dai et al. which made the best
performance before our work respectively in Encoder-Decoder and Graph Embedding framework.
The results (in Table 3) show that our algorithm could generalize to larger problems well than other
learning-based algorithms even if trained in the small-scale instances.

5.5 ABLATION STUDY

5.5.1 AVERAGE VS BEST

We analyze the effect of different strategies used in the GNN-MCTS procedure. The comparison of
different strategies are 1) best. Different from AlphaGo, we track the best action value found under
each node’s subtree for determining its exploitation value. At the end of several rollouts, we select
the node with the best (biggest) action value as the next move in the root position. 2) average. As
with the strategy used in AlphaGo, which is common in a two-player game, we track the average
action value found under each node’s subtree as exploitation value. Rather than selecting the node
with the best (biggest) action value, we select the most visited node as the next move in the root
position.

Table 1 shows the gap between solutions of our approach with two strategies and the best-known
solution for TSP20, TSP50, and TSP100. We refer GNN-MCTS to denote “best” strategy and
refer GNN-MCTSave. to denote “average” strategy. The empirical results show that using the “best”
strategy is far better than using the “average” strategy for TSP.

5.5.2 COMPONENT CONTRIBUTION ANALYSIS

We conduct a controlled experiment on the TSP test set to analyze how each component con-
tributes to the presented approach. First, we use our GNN to generate solutions in a greedy way,
i.e., selecting the vertex with the biggest prior probability at each step; we refer to this version as
GNN-MCTS-t. Then we use a GNN-MCTS which replaces the value function h(s) (see in algorithm

Table 2: Running times of different method
TSP20 TSP50 TSP100

Dai et al. 0.007s 0.018s 0.043s
Kool et al. 0.036s 0.054s 0.084s

Gurobi 0.017s 0.2s 1.9s
Our 3.2s 6.6s 31.4s

Table 3: Gap of different methods on larger in-
stances

TSP200 TSP300 TSP500
Kool et al. 8.19% 12.32% 20.40%
Dai et al. 11.11% 11.70% 11.84%

Our 1.91% 2.99% 4.37%

9

Under review as a conference paper at ICLR 2020

Table 4: Gap of different beam width
w=1 w=5 w=10

TSP20 2.25% 1.50% 1.50%
TSP50 5.32% 3.64% 3.38%
TSP100 11.37% 8.11% 7.48%

Table 5: Time cost of different beam width
w=1 w=5 w=10

TSP20 55ms 265ms 534ms
TSP50 147ms 730ms 1461ms

TSP100 323ms 1639ms 3338ms

1) with random rollout to generate tours; we refer to this version as GNN-MCTS-v. Furthermore,
we take the GNN prior out of the picture and initialize prior probability to 1 for newly expanded
nodes; we refer to this version as GNN-MCTS-p. Lastly, a pure MCTS which removes GNN prior
and value function is listed for comparison; we refer this version as MCTS.

Table 1 shows the gap between the solution of each approach and the best-known solution on differ-
ent TSP problems. The results from GNN-MCTS-p and GNN-MCTS show that GNN prior could
help MCTS to effectively reduce the search space so that MCTS can allocate more computing re-
sources to nodes with high value. Furthermore, the results from GNN-MCTS-v and GNN-MCTS
show that value function h(s) can estimate the path length from the leaf node well and the MCTS,
which uses a suitable value function, can perform better than using a random rollout. Lastly, the
gap of performance between GNN-MCTS-t and GNN-MCTS shows that the developed MCTS can
efficiently avoid algorithm falling into local optimal and plays an important role in enhancing the
performance of our method.

5.5.3 ANALYSIS OF VALUE FUNCTION

We conduct experiments to explore the effects of different widths on the performance of value func-
tion. Since the beam width mainly affects the accuracy of value function, we use the result of value
function as a measure and report the Gap as defined in Table 1. Specifically, we set beam width to
1, 5, 10 and test performance of the value function on random instances including TSP20, TSP50,
and TSP100. We also count the time cost of the different settings of the beam width.

The experimental results of Table 4 and Table 5 show that as the beam width increases, the perfor-
mance of the value function will get better while the time cost will become larger. We need to make
a trade-off between accuracy and time cost.

5.6 COMPARISON WITH OTHER DEEP NEURAL NETWORKS

Compared with the basic GNN, our GNN integrates edge information for computing new node
feature, and it should extract more information and perform well than basic GNN. To support this
statement, we compare the performance of basic GNN and our GNN on random instances, including
TSP20, TSP50, and TSP100. We generate tour sequences by using the neural network in a greedy
way, i.e., selecting vertex with the biggest prior probability at each step. The performance of two
GNN is reported in Table 8 (see in appendix D).

We also compare the performance of GEN and our GNN to support the key improvements made
by our GNN. Similar to the above comparison experiment, we generate tour sequences by using
neural network in a greedy way. The performance of GEN and our GNN is reported in Table 8.
Furthermore, we use GEN and our GNN to guide MCTS separately on “random” and “clustered”
instances, including TSP20, TSP50 and TSP100. We refer to MCTS with GEN as GEN-MCTS.
Table 1 reports the quality of solutions and shows that MCTS can get shorter tours when guided by
our GNN.

6 CONCLUSION

We proposed a graph neural network assisted Monte Carlo Tree Search (GNN-MCTS) for the clas-
sical traveling salesman problem. The core idea of our approach lies in converting the TSP into a
tree search problem. To capture the local and global graph structure, we train a graph neural network
(GNN) which integrates node feature and edge weight into the feature update process. Instead of
using the prior probability output by GNN in a greedy way, we designed a GNN-MCTS to provide
scouting simulation so that the algorithm could avoid being stuck into the local optimum. The exper-

10

Under review as a conference paper at ICLR 2020

imental results show that the proposed approach can obtain shorter tours than other learning-based
methods. We see the presented work as a step towards a new family of solvers for NP-hard prob-
lems that leverage both deep learning and classic heuristics. We will release code to support future
progress in this direction.

REFERENCES

Bernard Angniol, Gal De La Croix Vaubois, and Jean Yves Le Texier. Self-organizing feature maps
and the travelling salesman problem. Neural Networks, 1(4):289–293, 1988.

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver. Concorde:
http://www.math.uwaterloo.ca/tsp/concorde/, 2006a.

David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling salesman
problem: a computational study. Princeton university press, 2006b.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings,
2017.

D. E. Van Den Bout and T. K. Miller. A traveling salesman objective function that works. In IEEE
International Conference on Neural Networks, 1988.

R. D. Brandt, Wang Yao, A. J. Laub, and S. K. Mitra. Alternative networks for solving the traveling
salesman problem and the list-matching problem. In IEEE International Conference on Neural
Networks, 1988.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, pp. 2702–2711, 2016a.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. In International Conference on Machine Learning, pp. 2702–2711, 2016b.

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. In Advances in Neural Information Processing Systems 30, pp.
6348–6358. 2017.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In International Conference on the Integration
of Constraint Programming, 2018.

Marco Dorigo and Luca Maria Gambardella. Ant colonies for the travelling salesman problem. Bio
Systems, 43(2):73, 1997.

F. Favata and R. Walker. A study of the application of kohonen-type neural networks to the travelling
salesman problem. Biological Cybernetics, 64(6):463–468, 1991.

J. C. Fort. Solving a combinatorial problem via self-organizing process: An application of the
kohonen algorithm to the traveling salesman problem. Biological Cybernetics, 59(1):33–40, 1988.

Michael T Goodrich and Roberto Tamassia. The christofides approximation algorithm. Algorithm
Design and Applications, Wiley, pp. 513–514, 2015.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

J. J. Hopfield and D. W. Tank. ”neural” computation of decisions in optimization problems. Biolog-
ical Cybernetics, 52(3):141, 1985.

David S Johnson and Lyle A McGeoch. The traveling salesman problem: A case study in local
optimization. Local search in combinatorial optimization, 1(1):215–310, 1997.

11

Under review as a conference paper at ICLR 2020

David S. Johnson, Gregory Gutin, Lyle A. Mcgeoch, Anders Yeo, Weixiong Zhang, and Alexei
Zverovitch. Experimental analysis of heuristics for the atsp. In Local Search in Combinatorial
Optimization, 2001.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological Cyber-
netics, 43(1):59–69, 1982.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Erratum: The traveling
salesman problem: A guided tour of combinatorial optimization. Journal of the Operational
Research Society, 37(6):655–655, 1986.

Y Lecun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436, 2015.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In Advances in Neural Information Processing Systems, pp.
539–548, 2018.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning algorithms for
quadratic assignment with graph neural networks. stat, 1050:22, 2017.

Gurobi Optimization. Gurobi optimizer 5.0. Gurobi: http://www.gurobi.com, 2013.

Christos H. Papadimitriou. The euclidean travelling salesman problem is np-complete. Theoretical
Computer Science, 4(3):237–244, 1977.

Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis. An analysis of several heuris-
tics for the traveling salesman problem. In Fundamental Problems in Computing, Essays in Honor
of Professor Daniel J. Rosenkrantz., pp. 45–69, 2013.

Christopher D. Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Arti-
ficial Intelligence, 61(3):203–230, 2011.

D Silver, A. Huang, C. J. Maddison, A Guez, L Sifre, den Driessche G Van, J Schrittwieser,
I Antonoglou, V Panneershelvam, and M Lanctot. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In International Conference
on Neural Information Processing Systems, pp. 5998–6008, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In International Conference
on Neural Information Processing Systems, 2015.

12

Under review as a conference paper at ICLR 2020

A INSTANCE GENERATION

To evaluate our method against other approximation algorithms and deep learning-based approaches,
we use an instance generator from the DIMACS TSP Challenge (Johnson et al., 2001) to generate
two types of Euclidean instances: ”random” instances consist of n points scattered uniformly at
random in the [106, 106] square; ”clustered” instances include n points that are clustered into n/100
clusters. We consider three benchmark tasks, Euclidean TSP20, 50 and 100, for which we generate
a train set of 50,000 instances and a test set of 1,000 instances.

B GRAPH NEURAL NETWORK SETTINGS

Our GNN has T = 3 node-update layers, which is deep enough for nodes to aggregate information
associated with their neighbor vertices. Since the input is a ”tagged” graph with 9-dimensional
feature on vertices, the input contains vectors of sizeH0 = 9. The width of other layers are identical:
Ht = 64 for t = 1, 2.

The proposed GNN has a deep architecture that consists of several node-update layers. Therefore, as
the model gets deeper with more layers, the more information can be aggregated by nodes. We train
proposed GNN with the different number of layers on random instance from TSP20. We greedily
use the prior probability, i.e., selecting the vertex with the biggest prior probability, to derive tour
sequence. We report Gap as defined in Table 1. The result of Table 6 show that the performance of
GNN will become better as the number of network layers increases.

Table 6: Effect of the number of layers on random instances
Layers T=1 T=2 T=3

Gap 5.1% 3.2% 2.2%

C CONFIDENCE INTERVAL ON DIFFERENT CONFIDENCE LEVELS

Table 7: Confidence interval on different confidence levels
Confidence level 90% 95% 99%

Random
n=20 3.922±0.046 3.922±0.054 3.922±0.071
n=50 5.701±0.041 5.701±0.048 5.701±0.064

n=100 7.850±0.039 7.850±0.047 7.850±0.062

Clustered
n=20 3.305±0.078 3.305±0.093 3.305±0.122
n=50 3.391±0.051 3.391±0.061 3.391±0.080

n=100 3.442±0.036 3.442±0.043 3.442±0.056

D PERFORMANCE OF DIFFERENT NETWORKS

Table 8: Performance of different networks
n=20 n=50 n=100

GNN 4.8% 21.1% 58.9%
GEN 4.1% 12.5% 21.9%
Our 2.2% 5.3% 11.3%

13

	Introduction
	Related Work
	Preliminaries
	Proposed Approach
	Traveling salesman problem as Markov Decision Process
	Deep neural network architecture
	Graph neural network assisted Monte Carlo tree search

	Experiments
	Experimental setup
	Baselines
	Training and testing

	Results
	Running times
	Generalization to larger problems
	Ablation study
	Average vs Best
	Component contribution analysis
	Analysis of value function

	Comparison with other deep neural networks

	Conclusion
	Instance generation
	Graph Neural Network settings
	Confidence interval on different confidence levels
	Performance of different networks

