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ABSTRACT

In this work we propose Generative Latent Flow (GLF), an algorithm for gener-
ative modeling of data distributions. GLF uses an auto-encoder to learn latent
representations of the data, and a normalizing flow to map the distribution of the
latent variables to that of a standard Gaussian. GLF can be seen as a variational
auto-encoder, with normalizing flow prior, and a vanishing limit of the pixel-wise
variance of the data. We carefully study this relationship and the pros and cons
of using an auto-encoder vs. a variational auto-encoder. In contrast to a number
of other auto-encoder based generative models, which use various regularizers
to encourage the encoded latent distribution to match the prior distribution, our
model explicitly constructs a mapping between these two distributions, leading to
better density matching while avoiding over regularizing the latent variables. We
compare our model with several related techniques, and show that under standard
quantitative evaluations, our method achieves state-of-the-art sample quality and
diversity among AE based models on commonly used datasets and is competitive
with GANs’ benchmarks.

1 INTRODUCTION

Generative models have attracted much attention in the literature on deep learning. These models
are used to formulate the distribution of complex data as a function of random noise passed through
a network, so that rendering samples from the distribution is particularly easy. The most dominant
generative models are Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), as they
have exhibited impressive performance in generating high quality images (Radford et al., 2015;
Brock et al., 2018) and in other vision tasks (Zhu et al., 2017; Ledig et al., 2017). Despite their
success, training GANs can be challenging, partly because they are trained by solving a saddle point
optimization problem formulated as an adversarial game. It is well known that training GANs is
unstable and sensitive to hyper-parameter settings (Salimans et al., 2016; Arora et al., 2017), and
sometimes training leads to mode collapse (Goodfellow, 2016). Although there have been multiple
efforts to overcome the difficulties in training GANs (Arjovsky et al., 2017; Metz Luke & Sohl-
Dickstein, 2017; Srivastava et al., 2017; Miyato et al., 2018), researchers are also actively studying
non-adversarial methods that are known to be less affected by these issues.

Some models explicitly define p(x), the distribution of the data, and training is guided by maximizing
the data likelihood. One approach is to express the data distribution in an auto-regressive pattern
(Papamakarios et al., 2017; Oord et al., 2016); another is to express it as an invertible transformation
of a simple distribution using the change of variable formula, where the invertible transformation
is defined using a normalizing flow network (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018).
While being mathematically clear and well defined, normalizing flows keep the dimensionality of the
original data in order to maintain bijectivity. Consequently, they cannot provide low-dimensional
representations of the data and training is computationally expensive. Considering the prohibitively
long training time and advanced hardware requirements in training large scale flow models such as
(Kingma & Dhariwal, 2018), we believe that it is worth exploring the application of flows in the low
dimensional representation spaces rather than for the original data.

Another class of generative models employs an encoder-decoder structure and low dimensional latent
variables to represent and generate the data. An encoder is used to produce estimates of the latent
variables corresponding to a particular data point, and samples from a predefined prior distribution on
the latent space are passed through a decoder to produce new samples from the data distribution. We
call these auto-encoder (AE) based models, of which variational auto-encoders (VAEs) are perhaps

1



Under review as a conference paper at ICLR 2020

the most influential (Kingma & Welling, 2013; Rezende et al., 2014). VAEs use the encoder to
produce approximations to the posterior distribution of the latent variable given the data, and the
training objective is to maximize a variational lower bound of the data log likelihood. VAEs are easy
to train, but their generation quality still lies far below that of GANs, as they tend to generate blurry
images (Dosovitskiy & Brox, 2016).

Whereas the original VAE uses a standard Gaussian prior, it can be extended by introducing a
learnable parameterized prior distribution. There have been a number of studies in this direction (see
section 2), some of which use a normalizing flow parameterization, where the prior is modeled as
a trainable continuous bijective transformation of the standard Gaussian. We carefully study this
method, and make the surprising novel observation that in order to produce high quality samples,
it is necessary to significantly increase the weight on the reconstruction loss. This corresponds to
decreasing the variance of the observational noise of the generative model at each pixel, where we are
assuming the data distribution is factorial Gaussian conditioned on the output of the decoder, which
yields the MSE as the reconstruction loss. It is important to note that increasing this weight alone
without access to a trainable prior does not consistently improve generation quality.

We show that as this weight increases, we approach a vanishing noise limit that corresponds to a
deterministic auto-encoder. This leads to a new algorithm we call Generative Latent Flow (GLF),
which combines a deterministic auto-encoder that learns a mapping to and from a latent space, and
a normalizing flow that matches the standard Gaussian to the distribution of latent variables of the
training data produced by the encoder.

Our contributions are summarized as follows: i) we carefully study the effects of equipping VAEs
with a normalizing flow prior on image generation quality as the weight of the reconstruction loss
is increased. ii) Based on this finding, introduce Generative Latent Flow, which uses auto-encoders
instead of VAEs. iii) Through standard evaluations, we show that our proposed model achieves
state-of-the-art sample quality among competing AE based models, and has the additional advantage
of faster convergence.

2 RELATED WORK

In general, in order for an AE based model with encoder-decoder structure to generate samples
resembling the training data distribution, two criteria need to be ensured: (a) the decoder is able
to produce a good reconstruction of a training image given its encoded latent variable z; and (b)
the empirical latent distribution q(z) of z’s returned by the encoder is close to the prior p(z). In
VAEs, the empirical latent distribution is often called aggregated or marginal posterior: q(z) =
Ex∼pdata [q(z|x)]. While (a) is mainly driven by the reconstruction loss, satisfying criterion (b) is
more complicated. Intuitively, criterion (b) can possibly be achieved by designing mechanisms that
either modify the empirical latent distribution q(z), or conversely modify the prior p(z). There is
plenty of previous work in both directions.

Modifying the empirical latent distribution q(z): In the classic VAE model, DKL(q(z|x)‖p(z))
in the ELBO loss can be decomposed as DKL(q(z)‖p(z)) plus a mutual information term as shown
in (Hoffman & Johnson, 2016). Therefore, VAEs modify q(z) indirectly through regularizing
the posterior distribution q(z|x). Several modifications to VAE’s loss (Chen et al., 2018; Kim
& Mnih, 2018), which are designed for the task of unsupervised disentanglement, put a stronger
penalty specifically on the mismatch between q(z) and p(z). There are also attempts to incorporate
normalizing flows into the encoder to provide more flexible approximate posteriors (Rezende &
Mohamed, 2015; Kingma et al., 2016; Berg et al., 2018). However, empirical evaluation shows that
VAEs with flow posteriors do not reduce the mismatch between q(z) and p(z) (Rosca et al., 2018).
Furthermore, as of yet, all these modifications to VAEs have not been shown to improve generation
quality. Adversarial auto-encoders (AAEs) (Makhzani et al., 2015) and Wasserstein auto-encoders
(WAEs) (Tolstikhin et al., 2017) use an adversarial regularizer or MMD regularizer (Gretton et al.,
2012) to force q(z) to be close to p(z). WAEs are shown to improve generation quality, as they
generate sharper images than VAEs do.

Modifying the prior distribution p(z): An alternative to modifying the approximate posterior is
using a trainable prior. (Tomczak & Welling, 2017; Klushyn et al., 2019; Bauer & Mnih, 2018)
propose different ways to approximate q(z) using a sampled mixture of posteriors during training,
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and then use the approximated q(z) as the prior in the VAE. This is a natural way to let the prior
match q(z), however, these methods have not been shown to improve generation quality. Two-stage
VAE (Dai & Wipf, 2019) introduces another VAE on the latent space defined by the first VAE to
learn the distribution of its latent variables. VQ-VAE (Oord et al., 2017) first trains an auto-encoder
with discrete latent variables, and then fits an auto-regressive prior on the latent space. GLANN
(Hoshen et al., 2019) learns a latent representation by GLO (Bojanowski et al., 2017) and matches
the densities of the latent variables with an implicit maximum likelihood estimator (Li & Malik,
2018). RAE+GMM (Ghosh et al., 2019) trains a regularized auto-encoder (Alain & Bengio, 2014)
and fits a mixture of Gaussian distribution on the latent space. Note that all these methods involve
two stage-training, which means that the prior distribution is fitted after training the variational or
deterministic auto-encoder. They have been shown to improve the quality of the generated images.
VAEs with a normalizing flow as a learnable prior (Chen et al., 2016b; Huang et al., 2017) also fall
into this category. Since these are the main focus of this paper, we discuss them in detail in Section
3.2.

We note that modifications of VAEs with a normalizing flow posterior have been extensively studied.
In contrast, VAEs with flow prior have attracted much less attention. (Huang et al., 2017) briefly
discusses this model to solve the distribution mismatch in the latent space, and recently (Xu et al.,
2019) shows the advantages of learning a flow prior over learning a flow posterior. However, these
papers only focus on improvements of the data likelihood. Here we study the model from the
perspective of the effects of the normalizing flow prior on sample generation quality, leading to some
important and novel observations.
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Figure 1: (a) Illustration of the GLF model. The red arrow contains a stop gradient operation (see
section 3.3). (b) Structure of one flow block. The input is split into two parts y = (y1, y2), go through
two coupling layers C (see section 3.1). Finally a random permutation P is applied.

3 COMBINING NORMALIZING FLOW WITH AE BASED MODELS

In this section, we discuss the combination of normalizing flow priors with AE based models in
detail. We first review normalizing flows in section 3.1, then in section 3.2 we introduce VAEs with
normalizing flow prior and present some novel observations with respect to this model. Finally in
section 3.3 we propose Generative Latent Flow (GLF) to further simplify the model and improve
performance.

3.1 REVIEW: NORMALIZING FLOWS

Normalizing flows are carefully-designed invertible networks that map the training data to a simple
distribution. Let z ∈ Z be an observation from an unknown target distribution z ∼ p(z) and pε be
the unit Gaussian prior distribution on E . Given a bijection fθ : Z → E , we define a probability
model pθ(z) with parameters θ on Z . The negative log likelihood (NLL) of z is computed by the
change of variable formula:

LNLL(fθ(z)) , − log(pθ(z)) = −
(

log pε(fθ(z)) + log

∣∣∣∣det

(
∂fθ(z)

∂z

)∣∣∣∣) , (1)
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where ∂fθ(z)
∂z is the Jacobian matrix of fθ. In order to learn the flow fθ, the NLL objective of z is

minimized, which is equivalent to maximizing the likelihood of z. Since the mapping is a bijection,
sampling from the trained model pθ(z) is trivial: simply sample ε ∼ pε and compute z = f−1θ (ε).

The key to designing a normalizing flow model is defining the transformation fθ so that the inverse
transformation and the determinant of the Jacobian matrix can be efficiently computed. Based on
(Dinh et al., 2016), we adopt the following layers to form the flows used in our model.

Affine coupling layer: Given D dimensional input data z and d < D, we partition the input into
two vectors z1 = z1:d and z2 = zd+1:D. The output of one affine coupling layer is given by
y1 = z1, y2 = z2 � exp(s(z1)) + t(z1) where s and t are functions from Rd → RD−d and �
is the element-wise product. The inverse of the transformation is explicitly given by z1 = y1,
z2 = (y2 − t(y1)) � exp(−s(y1)). The determinant of the Jacobian matrix of this transformation
is det∂y∂z =

∏d
j=1(exp[s(z1)j]). Since computing both the inverse and the Jacobian of an affine

coupling layer does not require computing the inverse and Jacobian of s and t, both functions can be
arbitrarily complex.

Combining coupling layers with random permutation: Affine coupling layers leave some compo-
nents of the input data unchanged. In order to transform all the components, two coupling layers are
combined in an alternating pattern to form a coupling block, so that the unchanged components in the
first layer can be transformed in the second layer. In particular, we add a fixed random permutation of
the coordinates of the input data at the end of each coupling block. See Figure 1b for an illustration
of a coupling block used in our model.

3.2 VAES WITH NORMALIZING FLOW PRIOR

We begin by introducing the training loss of the model. Consider the ELBO loss of standard VAEs
with Gaussian prior and posterior (η, φ denote the parameters of encoder and decoder, respectively):

ELBO(η, φ) = Epdata(x)Eqη(z|x) [β · log pφ(x|z) + log p(z)− log qη(z|x)] . (2)

The first term is related to the reconstruction loss, while the last two terms can be combined as
DKL(q(z|x)‖p(z)). β > 0 is a hyper-parameter that controls the relative weight of the reconstruction
loss and the KL divergence loss. In the standard formulation of VAEs, pφ assumes an independent
Gaussian distribution with variance 1 at each pixel. The parameter β allows us to adjust this variance
as 1/β.

If we introduce a normalizing flow fθ for the prior distribution, then the prior pθ becomes pθ(z) =

pε(fθ(z))
∣∣∣det

(
∂fθ(z)
∂z

)∣∣∣, where pε is the standard Gaussian density. Substituting this prior into
equation 2, we obtain ELBO(η, φ, θ) for VAEs with flow prior:

Epdata(x)Eqη(z|x)
[
β · log pφ(x|z) + log pε (fθ(z)) + log

∣∣∣∣det

(
∂fθ(z)

∂z

)∣∣∣∣− log qη(z|x)

]
. (3)

The second and third terms together are the log-likelihood of z under the prior distribution modeled
by the flow (corresponding to the negative of equation 1). The last term corresponds to the entropy of
the posterior distribution returned by the encoder. Both the VAE and the normalizing flow are trained
by minimizing −ELBO(η, φ, θ).

Previous work on VAEs with a flow prior did not consider tuning β (which means the reconstruction
loss and the KL loss are weighted equally) as they focused on comparing the obtained log likelihoods
with those from plain VAEs. However, we observe that when β = 1, VAEs with a flow prior do not
significantly improve the generation quality (see section 4.2 and Table 1). The reason might be that
although p(z) is matched with q(z) due to the flow transformation, the decoder is not good enough to
reconstruct sharp images (i.e, criterion (a) is not ensured). In contrast, we find that increasing β in
the objective produces samples with significantly higher quality (see Figure 3). Intuitively, larger
weight on the reconstruction loss forces the decoder to produce sharper reconstructed images, while
the normalizing flow prior is flexible enough to match the latent distribution.

To the best of our knowledge, we are the first to observe such a relation between the weight of the
reconstruction loss and the generation quality of VAEs with flow prior. As β increases, two things
occur as demonstrated empirically in Section 4.2.1. First the estimated variances from the encoder
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decrease, and second the generation quality consistently improves. In the limit, as the posterior
variance goes to zero, we obtain a deterministic encoder, leading to a deterministic auto-encoder and
a normalizing flow that is used to match the distribution of the latent variables obtained from the data.
This is described in detail in the next section.

3.3 GENERATIVE LATENT FLOW (GLF)

In an auto-encoder, z = Eη(x) is deterministic so that q(z|x) in equation 3 becomes a delta
distribution and the entropy term in equation 3 can be removed. The overall training loss is then

Lreg
β (η, φ, θ) =

1

N

N∑
i=1

(
βLrecon

(
xi, Gφ(Eη(xi))

)
+ LNLL

(
fθ(Eη(xi))

))
, (4)

where Lrecon
(
xi, Gφ(Eη(xi))

)
corresponds to − log pφ(xi|zi) and LNLL

(
fθ(Eη(xi)) to − log pθ(z)

in the negative of equation 3.

As noted in section 3.2, larger β’s yield better results, in which case the parameters of the auto-encoder
are affected almost exclusively by Lrecon, while LNLL only affects the parameters θ of the normalizing
flow. Therefore, optimizing (4) with extremely large β is approximately equivalent to optimizing

L(η, φ, θ) =
1

N

N∑
i=1

(
Lrecon

(
xi, Gφ(Eη(xi))

)
+ LNLL

(
fθ(sg [Eη(xi)])

))
, (5)

where sg[·] is the stop gradient operation. The weight parameter β is no longer needed because the
two loss terms affect independent sets of parameters. We name the model trained by equation 5
as Generative Latent Flow (GLF), to highlight that our model applies normalizing flows on latent
variables. See Figure 1a for an illustration of the GLF model. We call the model trained by equation 4,
without stopped gradient, regularized GLF, since the flow acts as a regularizer on the encoder.

Note that when stopping the gradients, GLF can also be trained in two stages, namely an auto-encoder
is trained first, and then the flow is trained to map the distribution of estimated latent variables to
the standard Gaussian. Empirically, we find that the two-stage training strategy leads to similar
performance, so we only focus on one-stage training as it follows our derivation more naturally.

3.3.1 NECESSITY OF STOPPING THE GRADIENTS

The stop gradient operation is necessary when using deterministic auto-encoders. In VAEs with
flow prior, the entropy term, which encourages the posterior to have large variance, prevents the
degeneracy of the z’s. However, when using a deterministic encoder, if we let gradients of LNLL back
propagate into the latent variables, training can lead to degenerate z’s produced by the encoder Eη.
This is because fθ has to transform the z’s to unit Gaussian noise, so the smaller the scale of the
z’s, the larger the magnitude of the log-determinant of the Jacobian. Since there is no constraint on
the scale of the output of Eη, the Jacobian term can dominate the entire objective. While the latent
variables cannot become exactly 0 because of the presence of the reconstruction loss, the extremely
small scale of z may cause numerical issues that lead to severe fluctuations. In summary, we stop the
gradient of LNLL at the latent variables, preventing it from modifying the values of z and affecting
the parameters of the encoder. We demonstrate the issues with regularized GLF in Section 4.2.1.

4 EXPERIMENTS

To demonstrate the performance of our method, we present both quantitative and qualitative eval-
uations on four commonly used datasets for generative models: MNIST (Lecun, 2010), Fashion
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and CelebA (Liu et al., 2015).
Throughout the experiments, we use 20-dimensional latent variables for MNIST and Fashion MNIST,
and 64-dimensional latent variables for CIFAR-10 and CelebA.

(Lucic et al., 2018) adopted a common network architecture based on InfoGAN (Chen et al., 2016a)
to evaluate GANs. In order to make fair comparisons without designing arbitrarily large networks
to achieve better performance, we use the generator architecture of InfoGAN as our decoder’s
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architecture, and the encoder is set symmetric to the decoder. For details of the AE network structures,
see Appendix A. For the flow applied on the latent variables, we use 4 affine coupling blocks as
shown in Figure 1b, where each block contains 3 fully connected layers each with k hidden units.
For MNIST and Fashion MNIST, k = 64, while for CIFAR-10 and CelebA, k = 256. Note that the
flow only adds a small parameter overhead on the auto-encoder (less than 3%).

4.1 METRICS

Estimated test data log likelihood is a popular metric to evaluate models based on VAEs. It is not
trivial to estimate the log likelihood obtained from GLF, as it uses an deterministic auto-encoder. More
importantly, as shown in (Grover et al., 2018; Theis et al., 2015), likelihood is not well correlated
with sample quality. We use the Fréchet Inception Distance (FID) (Heusel et al., 2017) as a metric for
image generation quality. FID is computed by first extracting features of a set of real images x and a
set of generated images g from an intermediate layer of the Inception network (Szegedy et al., 2015).
Each set of features is fitted with a Gaussian distribution, yielding means µx, µg and co-variances
matrices Σx,Σg . The FID score is defined to be the Fréchet distance between these two Gaussians:

FID(x, g) = ‖µx − µg‖22 + Tr
(

Σx + Σg − 2 (ΣxΣg)
1
2

)
It is claimed that the FID score is sensitive to mode collapse and correlates well with human perception
of generator quality (Lucic et al., 2018). Recently, (Sajjadi et al., 2018) proposed using Precision and
Recall for Distributions (PRD) which can assess both the quality and diversity of generated samples.
We also include PRD in our studies.

(a) MNIST (b) Fashion MNIST (c) CIFAR-10 (d) CelebA

(e) CelebA-HQ (f) Noise interpolation

Figure 2: (a)-(e): Randomly generated samples from our method trained on different datasets. (f):
Random noise interpolation on CelebA.

4.2 RESULTS

Table 1 summarizes the main results of this work. We compare the FID scores obtained by GLF with
the scores of the VAE baseline and several existing AE based models that are claimed to produce high
quality samples. Instead of directly citing their reported results, we re-ran the experiments because we
want to evaluate them under standardized settings so that all models adopt the same AE architectures,
latent dimensions and image pre-processing. We report the results of VAE+flow prior/posterior with
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Table 1: FID scores obtained from different models. For our reported results, we executed 10
independent trials and report the mean and standard deviation of the FID scores. Each trail is
computing the FID between 10k generated images and 10k real images.

MNIST Fashion CIFAR-10 CelebA

VAE 28.2± 0.3 57.5± 0.4 142.5± 0.6 71.0± 0.5
WAE-GAN 12.4± 0.2 31.5± 0.4 93.1± 0.5 66.5± 0.7
Two-Stage VAE 10.9± 0.7 26.1± 0.9 96.1± 0.9 65.2± 0.8
RAE + GMM 10.8± 0.1 25.1± 0.2 91.6± 0.6 57.8± 0.4
VAE+flow prior 28.3± 0.2 51.8± 0.3 110.4± 0.5 54.3± 0.3
VAE+flow posterior 26.7± 0.3 55.1± 0.3 143.6± 0.8 67.9± 0.3
GLF (ours) 8.2 ± 0.1 21.3 ± 0.2 88.3 ± 0.4 53.2 ± 0.2

GLANN with perceptual loss 8.6± 0.1 13.0± 0.1 46.5± 0.2 46.3± 0.1
GLF+perceptual loss (ours) 5.8 ± 0.1 10.3 ± 0.1 44.6 ± 0.3 41.8 ± 0.2

β = 1. For other methods, we largely follow their proposed experimental settings. Details of each
experiment are presented in Appendix B.

Note that the authors of WAE propose two variants, namely WAE-GAN and WAE-MMD. We only
report the results of WAE-GAN, as we found it consistently outperforms WAE-MMD. Note also that,
GLANN (Hoshen et al., 2019) obtains impressive FID scores, but it uses perceptual loss (Johnson
et al., 2016) as the reconstruction loss, while other models use MSE loss. The perceptual loss
is obtained by feeding both training images and reconstructed images into a pre-trained network
such as VGG (Simonyan & Zisserman, 2014), and computing the L1 distance between some of the
intermediate layers’ activation. We also train our method with perceptual loss and compare with
GLANN in the last two rows of Table 1.

As shown in Table 1, our method obtains significantly lower FID scores than competing AE based
models across all four datasets. In particular, GLF greatly outperforms VAE+flow prior with the
default setting of β = 1. A more detailed analysis and comparison between the two methods will
be done in Section 4.2.1. We also confirm that VAE+flow posterior cannot improve generation
quality. Perhaps the competing model with the closest performances to ours is RAE+GMM, which
shares some similarity with GLF in that both methods fit the density of the latent variables of an
AE explicitly. To compare our method with GANs, we also include the results from (Lucic et al.,
2018) in Appendix D. In (Lucic et al., 2018), the authors conduct standardized and comprehensive
evaluations of representative GAN models with large-scale hyper-parameter searches, and therefore,
their results can serve as a strong baseline. The results indicate that our method’s generation quality
is competitive with that of carefully tuned GANs.

In Table 3, Appendix C, we present the Precision and Recall scores of our method and several
competing methods. As shown in the table, GLF obtains state-of-the-art Precision and Recall scores
across all datasets, indicating that our method outperforms competing methods in terms of both
sample quality and diversity.

Some qualitative results are shown in Figure 2. Besides samples of the datasets used for quantitative
evaluation, samples of CelebA-HQ (Karras et al., 2017) with the larger size of 256× 256 are also
included in Figure 2e to show our method’s ability to scale up to images with higher resolution.
Qualitative results show that our model can generate sharp and diverse samples in each dataset. In
Figure 2f, we show CelebA images generated by linearly interpolating two sampled random noise
vectors. The smooth and natural transition shows that our model can generate samples that have not
been seen during training. To provide further evidence that our model does not overfit or ‘memorize’
the training set, we show nearest neighbors in the training set for some generated samples in Appendix
G. For more qualitative results, including samples from models trained with perceptual loss, see
Appendix H. We observe that samples from models trained with perceptual loss have higher quality.

4.2.1 COMPARISONS: GLF VS. REGULARIZED GLF AND VAE+FLOW PRIOR.

As discussed in section 1 and section 3.2, we underline the novel finding regarding the relation
between the weight on the reconstruction loss and the sample quality of VAEs with flow prior. In this
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section, we present detailed experiments on this relation. We train VAEs+flow prior on CIFAR-10 for
different choices of β, plus one with a learnable β (Dai & Wipf, 2019). We record the progression of
FID scores of these models in Figure 3a. In Figure 3b, we plot the entropy term, which is the last
term in equation 3, the objective of VAE+flow prior. The entropy is expressed as −

∑d
j=1 log(σj)/2,

where σj is the standard deviation of the approximate posterior on the jth latent variable. Higher
entropy means that the latent variables have lower variances. In Figure 3c, we plot the NLL loss. We
omit the results for β = 1 because the obtained FID scores are too high to fit the scale of the plot.
Settings for the experiments in this subsection can be found in Appendix B.6.
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Figure 3: (a) Record of FID scores on CIFAR-10 for VAEs+flow prior with different values of β
and GLF. (b) Record of entropy losses for corresponding models. (c) Record of NLL losses for
corresponding models.

From Figure 3a, we clearly observe the trend that the generation quality measured by FID scores
improves as β increases. We also observe that as β increases, the performance gap between VAE+flow
prior and GLF closes, indicating that GLF captures the limiting behavior of VAE+flow prior. We
also find that learnable β is not effective, probably due to the relatively small values of β at the
early stages of training. When β is large, as indicated by Figure 3b, the posterior variances of VAEs
become very small, so that effectively we are training an AE. For example, as shown in Figure 3b,
when β = 400, the corresponding average posterior variance is around 10−4. This motivates us to
use a deterministic auto-encoder in GLF, which as we have said above can be seen as the vanishing
observational variance limit of VAE+flow prior. It is important to note that the relation between β
and generation quality only exists for VAEs with a trainable prior (such as normalizing flow), as we
verify empirically that increasing β on plain VAEs leads to worse FID scores.

As discussed in section 3.3.1, training regularized GLF is unstable because of the degeneracy of
the latent variables driven by the NLL loss. We empirically study the effect of latent regularization
as a function of β and present results in Figure 4. For low values of β = 1 and 10, the NLL loss
completely dominates the learning signal and the reconstruction loss quickly diverges, therefore we
omit them in the plot. For larger values of β = 50, 100, 400 we observe that the NLL loss decreases to
a negative value of very large magnitude, and although overall performance is reasonable, it oscillates
quite strongly as training proceeds. In contrast, for GLF, where the flow does not modify z, the NLL
loss does not degenerate, resulting in stable improvements of FID scores as training progress.

In contrast to regularized GLF, which uses a deterministic encoder, no degeneracy in the latent
variables is observed for VAE+flow prior, thanks to the noise introduced in the stochastic encoder
and the corresponding entropy term. Indeed, Figure 3c shows that the training of VAE+flow prior
does not over-fit the NLL loss, as opposed to regularized GLF where severe over-fitting to NLL loss
occurs as shown in Figure 4c. Comparing Figure 3a and 4a, we observe that unlike regularized GLF,
VAE+flow prior does not suffer from divergence or fluctuations in FID scores, even with relatively
small β. In summary, the results of FID scores show that regularized GLF is unstable, while as β
increases, the performance of VAE+flow prior converges to that of GLF. Note that although GLF only
slightly outperforms VAE+flow prior even when β is very large, it has the advantage that there is no
need to tune β.
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Figure 4: (a) Record of FID scores on CIFAR-10 for regularized GLF with different values of β and
GLF. β = 1 and 10 are omitted because they lead to divergence in the reconstruction loss. (b) Record
of reconstruction loss for the corresponding models. (c) Record of NLL loss for the corresponding
models.

4.3 TRAINING TIME

Besides better performance, our method also has the advantage of faster convergence among compet-
ing methods such as GLANN and Two-stage VAE. In Table 5, Appendix F, we compare the number
of training epochs to obtain the FID scores in Table 1. We also compare the per epoch training clock
time in Table 6, Appendix F. The combined results indicate that GLF requires much less training
time while generating samples with higher quality.

5 CONCLUSION

In this paper, we introduce Generative Latent Flow, a novel generative model which uses an auto-
encoder to learn a latent space from training data and a normalizing flow to match the distribution of
the latent variables with the prior. Under standardized evaluations, our model achieves state-of-the-art
results in image generation quality and diversity among several recently proposed auto-encoder based
models. While we are not claiming that our GLF model is superior to GANs, we do believe that it
opens the door to realizing the potential of AE based models to produce high quality samples just
as GANs do. Our proposed model is motivated by our novel finding on the relation between large
reconstruction weight and generation quality of VAEs with normalizing flow prior. The finding itself
is important, as it can potentially motivate future work to study the trade-off between reconstruction
and density matching in the objective of VAEs with learnable priors.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (gans). In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 224–232. JMLR. org, 2017.

Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders. arXiv preprint
arXiv:1810.11428, 2018.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. arXiv preprint arXiv:1803.05649, 2018.

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Optimizing the latent space
of generative networks. arXiv preprint arXiv:1707.05776, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentan-
glement in variational autoencoders. In Advances in Neural Information Processing Systems, pp.
2610–2620, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pp. 2172–2180, 2016a.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731,
2016b.

Bin Dai and David Wipf. Diagnosing and enhancing vae models. arXiv preprint arXiv:1903.05789,
2019.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based
on deep networks. In Advances in neural information processing systems, pp. 658–666, 2016.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From
variational to deterministic autoencoders. arXiv preprint arXiv:1903.12436, 2019.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood
and adversarial learning in generative models. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

10



Under review as a conference paper at ICLR 2020

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, pp. 6626–6637, 2017.

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the
variational evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference,
NIPS, volume 1, 2016.

Yedid Hoshen and Lior Wolf. Nam: Non-adversarial unsupervised domain mapping. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 436–451, 2018.

Yedid Hoshen, Ke Li, and Jitendra Malik. Non-adversarial image synthesis with generative latent
nearest neighbors. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5811–5819, 2019.

Chin-Wei Huang, Ahmed Touati, Laurent Dinh, Michal Drozdzal, Mohammad Havaei, Laurent
Charlin, and Aaron Courville. Learnable explicit density for continuous latent space and variational
inference. arXiv preprint arXiv:1710.02248, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint arXiv:1802.05983,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pp. 4743–4751, 2016.

Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, and Patrick van der Smagt. Learning
hierarchical priors in vaes. arXiv preprint arXiv:1905.04982, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Y. Lecun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 2010.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681–4690, 2017.

Ke Li and Jitendra Malik. Implicit maximum likelihood estimation. arXiv preprint arXiv:1809.09087,
2018.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans created
equal? a large-scale study. In Advances in Neural Information Processing Systems 31, pp. 700–709,
2018.

11



Under review as a conference paper at ICLR 2020

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Pfau David Metz Luke, Poole Ben and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, pp. 6306–6315, 2017.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pp. 2338–2347, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Mihaela Rosca, Balaji Lakshminarayanan, and Shakir Mohamed. Distribution matching in variational
inference. arXiv preprint arXiv:1802.06847, 2018.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. In Advances in Neural Information Processing Systems
31, pp. 5228–5237, 2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems, pp.
2234–2242, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In Advances in Neural
Information Processing Systems, pp. 3308–3318, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.
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Table 2: Network structure for auto-encoder based on InfoGAN

Encoder Decoder

Input x Input z
4× 4 Conv64, ReLU FC nz→ 1024, BN, ReLU
4× 4 Conv128, BN, ReLU FC 1024→ 128×M ×M , BN, ReLU
Flatten, FC 128×M ×M → 1024, BN, ReLU 4× 4 Deconv64, BN, ReLU
FC 1024→ nz 4× 4 Deconv128, Sigmoid

A NETWORK ARCHITECTURES

In this section we provide Table 2 that summarizes the auto-encoder network structure. The network
structure is adopted from InfoGAN(Chen et al., 2016a), and the difference between the networks
we used for each dataset is the size of the fully connected layers, which depends on the size of the
image. All convolution and deconvolution layers have stride = 2 and padding = 1 to ensure the
spatial dimension decreases/increases by a factor of 2. M is simply the size of an input image divided
by 4. Specifically, for MNIST and Fashion MNIST, M = 7; for CIFAR-10, M = 8; for CelebA,
M = 16. BN stands for batch normalization.

For VAEs, the final FC layer of the encoder will have doubled output size to return both the mean and
standard deviation of latent variables.

B EXPERIMENT SETTINGS

In this section, we present the details of our experimental settings for results in Table 1. Since the
settings for MNIST and Fashion MNIST are the same, we only mention MNIST for simplicity. For
GLANN, we directly cite the results from (Hoshen et al., 2019), as their experimental settings is very
similar to ours.

We use the original images in the training sets for MNIST, Fashion MNIST and CIFAR-10. For
CelebA, we follow the same pre-processing as in (Lucic et al., 2018): center crop to 160× 160 and
then resize to 64× 64. We normalize the pixel values to [0, 1], without adding noise to pixels (i.e, no
de-quantization).

B.1 SETTINGS FOR TRAINING GLF

For all datasets (except CelebA-HQ), we use batch size 256 and Adam (Kingma & Ba, 2014)
optimizer with initial learning rate 10−3 for the parameters of both the AE and the flow. We add a
weight decay 2× 10−5 to the optimizer for the flow. For MNIST, we train our model for 100 epochs,
with learning rate decaying by a factor of 2 after 50 epochs. For CIFAR-10, we train our model for
200 epochs, with the learning rate decaying by a factor of 2 every 50 epochs. For CelebA, we train
our model for 40 epochs with no learning rate decay.

For GLF with perceptual loss, we compute the perceptual loss as suggested in (Hoshen & Wolf,
2018). See https://github.com/facebookresearch/NAM/blob/master/code/
perceptual_loss.py for their implementation. Other settings are the same.

For CelebA-HQ dataset, we adopt our AE network structure based on DCGAN (Radford et al., 2015).
Note that this is a relatively simple network for high resolution imgaes. We use batch size 64, with
initial learning rate 10−3 for both the AE and the flow. We train our model for 60 epochs, with
learning rate decaying by a factor of 2 after 40 epochs.

B.2 SETTINGS FOR TRAINING VAES AND VAE VARIANTS

We adopt common settings for our reported results of VAE, VAE+flow prior and VAE+flow posterior.
We use β = 1 for all three VAE variants. We still use batch size 256, and Adam optimizer with initial
learning rate 10−3 for both the VAE and the flow, if applicable. We find VAEs need longer time to
converge, so we double the training epochs. We train MNIST for 200 epochs, with learning rate
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decaying by a factor of 2 after 100 epochs. We train CIFAR-10 for 400 epochs, with the learning
rate decaying by a factor of 2 every 100 epochs. We train CelebA for 80 epochs with learning rate
decaying by a factor of 2 after 40 epochs.

B.3 SETTINGS FOR TRAINING WAE-GAN

We follow the settings introduced in the original WAE paper(Tolstikhin et al., 2017). The adversary
in WAE-GAN has the following architecture:

z ∈ Rd → FC512 → ReLU

→ FC512 → ReLU

→ FC512 → ReLU

→ FC512 → ReLU→ FC1

where d is the dimension of the latent variables.

WAE has two major hyper-parameters: λ that controls the weight coefficient of the adversarial
regularizer, and σ2 which is the variance of the prior. Batch size is 100 for all datasets. For MNIST,
λ = 10 and σ2 = 1, and the model is trained for 100 epochs. The initial learning rate is 10−3 for the
AE and 5× 10−4 for the adversary. After 30 epochs both learning rates decreased both by factor of
2, and after first 50 epochs further by factor of 5. For CIFAR, λ = 10 and σ2 = 1 and the model is
trained for 200 epochs. The initial learning rates are the same as training MNIST, and the learning
rate decays by a factor of 2 after first 60 epochs, and further by a factor of 5 after 120 epochs. For
CelebA, λ = 1 and σ2 = 2. The model is trained for 55 epochs. The initial learning rate is 3× 10−4

for the AE and 10−3 for the adversary. Both learning rates decays by factor of 2 after 30 epochs,
further by factor of 5 after 50 first epochs.

B.4 SETTINGS FOR TRAINING TWO STAGE VAE

We adopt the settings in the original paper (Dai & Wipf, 2019). For all datasets, the batch size is set
to be 64, and the initial learning rate for both the first and the second is 10−4. For MNIST, the first
VAE is trained for 400 epochs, with learning rate halved every 150 epochs; the second VAE is trained
for 800 epochs with learning rate halved every 300 epochs. For CIFAR-10, 1000 and 2000 epochs
are trained for the two VAEs respectively, and the learning rates are halved every 300 and 600 epochs
for the two stages. For CelebA, 120 and 300 epochs are trained for the two VAEs respectively, and
the learning rates are halved every 48 and 120 epochs for the two stages.

Explaining the discrepancy between our reported results and the results in the original paper:
The original Two stage VAE paper adopts similar settings with our experiments, but we observe
large discrepancies on the results of CIFAR-10 and CelebA. After carefully reviewing their published
codes, we find that there is an issue in their FID score computation particularly for CIFAR-10 dataset.
Specifically, the true images used for computing the FID on CIFAR-10 is obtained from saving the
original data file in .jpg format and reading them back, and the saving will cause some errors in
pixel values. After fixing this issue, we re-ran their published codes and obtained similar results
as we reported. We also run through their original FID computation protocol using samples from
our models, and we obtain scores around 65. For CelebA, one particular detail worth noting is that,
(Dai & Wipf, 2019) applies 128 × 128 center-crop before re-sizing on CelebA, while 160 × 160
center-crop is used in our evaluations. With smaller center-crops the human faces occupy a larger
portion of the image with less background, making the generative modeling easier.

B.5 SETTINGS FOR TRAINING RAE+GMM

The settings of batch size, learning rate scheduling and number of epochs for training RAE are the
same as those of GLF. The objective of the RAE is reconstruction loss plus a penalty on the norm
of the latent variable. Since the author does not report their choices for the penalty coefficient γ,
we search over γ ∈ 0.1, 0.5, 1, 2, and we find that β = 0.5 leads to the best overall performances,
and therefore we let γ = 0.5. After training the RAE, we fit a 10-component Gaussian mixture
distribution on the latent variables.
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B.6 SETTINGS FOR EXPERIMENTS IN SECTION 4.2.1

For all experiments in Section 4.2.1, we use batch size 256 and initial learning rate 10−3 for both AE
and flow. We train all models for 500 epochs with learning rates decaying by a factor of 2 every 150
epochs.

C PRECISION AND RECALL

In this section, we report the precision and recall (PRD) evaluation of samples on each dataset in
Table 3. We include WAE-GAN, Two-stage VAE, RAE+GMM and GLANN (with perceptual loss)
for comparisons. As the case of FID scores, for GLANN, we directly cite their reported results, and
we compute the results ofr other models. We report the PRD of models trained under the settings
introduced in Appendix B.

The two numbers in each entry are F8, F 1
8

that capture recall and precision, respectively. See (Sajjadi
et al., 2018) for more details. Higher numbers are better.

Table 3: Evaluation of sample quality by precision/recall.

MNIST Fashion CIFAR-10 CelebA

WAE-GAN (0.978, 0.956) (0.901, 0.837) (0.414, 0.723) (0.501, 0.512)
Two-stage VAE (0.982, 0.977) (0.937, 0.845) (0.382, 0.669) (0.452, 0.558)
RAE+GMM (0.988, 0.971) (0.922, 0.924) (0.370, 0.733) (0.333, 0.445)
GLF (ours) (0.982, 0.985) (0.932, 0.926) (0.485, 0.767) (0.542, 0.618)

GLANN+perceptual loss (0.971, 0.979) (0.985, 0.963) (0.860, 0.825) (0.574, 0.681)
GLF+perceptual loss (ours) (0.990, 0.992) (0.987, 0.980) (0.765, 0.845) (0.760, 0.778)

D COMPARISON WITH GANS

In Table 4 we combine our reported results of AE based models and the FID scores of GANs cited
from (Lucic et al., 2018).

Table 4: FID score comparisons of GANs and various AE based models

MNIST Fashion CIFAR-10 CelebA

MM GAN 9.8± 0.9 29.6± 1.6 72.7± 3.6 65.6± 4.2
NS GAN 6.8± 0.5 26.5± 1.6 58.5± 1.9 55.0± 3.3
LSGAN 7.8± 0.6 30.7± 2.2 87.1± 47.5 53.9± 2.8
WGAN 6.7± 0.4 21.5± 1.6 55.2± 2.3 41.3± 2.0
WGAN GP 20.3± 5.0 24.5± 2.1 55.8± 0.9 30.3± 1.0
DRAGAN 7.6± 0.4 27.7± 1.2 69.8± 2.0 42.3± 3.0
BEGAN 13.1± 1.0 22.9± 0.9 71.4± 1.6 38.9± 0.9

VAE 28.2± 0.3 57.5± 0.4 142.5± 0.6 71.0± 0.5
WAE-GAN 12.4± 0.2 31.5± 0.4 93.1± 0.5 66.5± 0.7
Two-Stage VAE 10.9± 0.7 26.1± 0.9 96.1± 0.9 65.2± 0.8
RAE + GMM 10.8± 0.1 25.1± 0.2 91.6± 0.6 57.8± 0.4
GLANN (with perceptual loss) 8.6± 0.1 13.0± 0.1 46.5± 0.2 46.3± 0.1
VAE+flow prior 28.3± 0.2 51.8± 0.3 110.4± 0.5 54.3± 0.3
VAE+flow posterior 26.7± 0.3 55.1± 0.3 143.6± 0.8 67.9± 0.3
GLF (ours) 8.2± 0.1 21.3± 0.2 88.3± 0.4 53.2± 0.2
GLF+perceptual loss (ours) 5.8± 0.1 10.3± 0.1 44.6± 0.3 41.8± 0.2
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E ISSUES WITH LATENT REGULARIZATION

In this appendix section, we present the plots of FID scores, reconstruction loss and NLL loss of
regularized GLF. Related results are discussed in Section 4.2.1.

F TRAINING TIME COMPARISONS

In Table 5, we report the number of training epochs of our method, two-stage VAE and GLANN. In
Table 6, we report the clock training time per epoch of these methods. Note that for methods using
perceptual loss, the per epoch training time is longer because VGG activations need to be computed.
These two tables show that GLF needs much shorter training time than the two competing methods.
In GLF, training the flow does not add much computational time due to the low dimensionality.

Table 5: Number of training epochs for Two-stage VAE, GLANN, and GLF

MNIST/Fashion CIFAR-10 CelebA

Two-stage VAE First/Second 400/800 1000/2000 120/300
GLANN First/Second 500/50 500/50 500/50
GLF 100 200 40

Table 6: Per-epoch training time in seconds

MNIST/Fashion CIFAR-10 CelebA

2-stage VAE 1st/2nd 5/2 6/2 60/28
GLF 10 13 108
GLANN with perceptual loss 14 16 292
GLF with perceptual loss 16 19 343

G NEAREST NEIGHBORS OF GENERATED SAMPLES IN THE TRAINING SET

Quantitative measurements of sample quality, such as FID score and Precision/Recall can be min-
imized by letting the generative model memorize the training set. The smooth transition of noise
interpolation shown in Figure 2 provides evidence that our model can generalize, i.e., it generate
samples that have not be seen during training. Here we provide additional evidence showing that our
generative model generalizes well.

We randomly generate some samples from the models trained on MNIST and CelebA datasets. Then
we present the 5 nearest neighbors of each generated samples in the training set. The nearest neighbor
is defined in terms of L2 distance. Results are shown in Figure 5. By inspecting the figure, we find
that we can easily differentiate each generated sample from the closest training data. This indicates
that our model generalizes well.

H MORE QUALITATIVE RESULTS

In Figure 6, we show more samples of each dataset generated by GLF, using either MSE or perceptual
loss as reconstruction loss. In Figure 7, we show samples of CelebA-HQ datasets from GLF trained
with perceptual loss. In Figure 8, we show examples of interpolations between two randomly sampled
noises on CelebA from GLF trained with perceptual loss.
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(a) MNIST (b) CelebA

Figure 5: Some randomly generated samples are presented in the leftmost column in each picture.
The other 5 columns of each picture show the top 5 nearest neighbors of the corresponding sample in
the training set.
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(a) MNIST (b) Fashion MNIST (c) CIFAR-10 (d) CelebA

(e) MNIST (f) Fashion MNIST (g) CIFAR-10 (h) CelebA

Figure 6: (a)-(d) Randomly generated samples from our method with MSE loss. (e)-(h) Randomly
generated samples from our method with perceptual loss.
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Figure 7: Randomly generated samples from our method with perceptual loss on CelebA-HQ dataset
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Figure 8: Noise interpolation on CelebA
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