
Doubly Nested Network
for Resource-Efficient Inference

Anonymous review

Abstract

We propose a new anytime neural network which allows partial evaluation by sub-
networks with different widths as well as depths. Compared to conventional anytime
networks only with the depth controllability, the increased architectural diversity
leads to higher resource utilization and consequent performance improvement
under various and dynamic resource budgets. We highlight architectural features to
make our scheme feasible as well as efficient, and show its effectiveness in image
classification tasks.

1 Introduction

When we deploy deep neural network models on resource-constrained mobile devices or autonomous
vehicles with a strict real-time latency requirement, it is essential to develop a model which makes
the best of available resources. Although many network compaction techniques including distillation,
pruning and quantization have been proposed [8, 13, 5, 4, 10, 7, 14], this goal is still challenging
because (1) the resource availabilities are continuously changing over time while these resources are
being shared with other program instances [2], and (2) multiple resources with different characteristics
(e.g. computational capacity, memory usage) should be considered together.

Anytime machine learning algorithms have addressed the first issue, how to get the optimal perfor-
mance under dynamic resource budgets, by allowing us to activate only a part of the model with
graceful output quality degradation [15, 3]. Most anytime algorithms based on deep neural networks
appear in the form of early termination of forward processing according to the current resource budget
or the difficulty of the given task [9, 1, 11]. In other words, the conventional anytime networks are
trained to embed many potential sub-networks with different effective depths so that the best one can
be chosen according to the current budget.

In this work, we propose a new type of the anytime neural network, doubly nested network, to
solve the other issue, more efficient utilization of multiple heterogeneous resources. The proposed
network can be sliced along the width as well as the depth to generate more diverse sub-networks than
the conventional anytime networks allowing the sub-network extraction only along the depth-wise
direction. As depicted in Figure 1, the increased degree of freedom enables us to get higher resource
utilization in the devices constrained by dynamically changing resource budget with multiple criteria.

MC

Case 2

MC

Case 3

C M

I

O

I

O

Computation Memory

C M MC

C M MC

MC C M MC

(a) Conventional anytime network (b) Doubly nested network

Resource constraints

Case 1 Case 2

Resource constraints

Case 1 Case 2

C: Computational resource
M: Memory resource

C M

I

O

I

O

MC C M MC

Resource constraints

Case 1 Case 2

Resource constraints

Case 1 Case 2

C M

I

O

I

O

C M MC

Resource budget

Case 1

Resource budget

Case 1 Case 2

MC

Case 3

D
ee

pe
r

D
ee

pe
r

Wider

(a) Depth-controllable anytime network

MC

Case 2

MC

Case 3

C M

I

O

I

O

Computation Memory

C M MC

C M MC

MC C M MC

(a) Conventional anytime network (b) Doubly nested network

Resource constraints

Case 1 Case 2

Resource constraints

Case 1 Case 2

C: Computational resource
M: Memory resource

C M

I

O

I

O

MC C M MC

Resource constraints

Case 1 Case 2

Resource constraints

Case 1 Case 2

C M

I

O

I

O

C M MC

Resource budget

Case 1

Resource budget

Case 1 Case 2

MC

Case 3

D
ee

pe
r

D
ee

pe
r

Wider

(b) Doubly nested network
Figure 1: Comparison of anytime networks in resource utilization (C: Computation, M: Memory)

Preprint. Work in progress.

2 Doubly Nested Network

C1:3 C1 C1:2 C1:3

(a) (left) Conventional convolution (right) Causal conv
olution.

...

CONV

...

CONV

CONV

FC
(MxN)

FC
(MxN)

FC
(MxN)

Average

Average

Average

...
.
.
.

...

Classification stage

...

(b) Output generation stage sharing the FC layers
between sub-networks at the same depth

Figure 2: Architectural features of the doubly nested network

Causal convolution It is straightforward to form a sub-network along the depth by appending a
separate output generation stage to the final convolution layer of the sub-network. Since one specific
layer’s output does not depend on the following (upper) layers’ outputs, the jointly trained sub-
network does not suffer from the performance degradation even after the extraction. However, this
approach does not work along the width because of the interdependence between two nodes at
different horizontal locations (e.g. different channels). To address this issue, we propose a channel-
causal convolution where i-th channel group in one layer is calculated only with activation values
from the channel groups from the first to i-th channel group in the previous layer as shown in the
right of Figure 2a. The circle indicates the feature map while the square indicates the classifier. Color
refers each channel. Our network based on the causal convolution allows us to extract the sub-network
easily along any directions by making both horizontal and vertical data flow unidirectionally.

Output generation stage sharing fully-connected layers Rather than having a separate fully-
connected (FC) layer for one sub-network to generate the final output (e.g. a predicted class given
image input), our network is designed to have the FC layers each of which takes only a part of
activations from the preceding convolution layers and produce the final output for one sub-network
by averaging multiple FC layers’ outputs as depicted in Figure 2b. Sharing the FC layers between the
sub-networks at the same depth helps us to have similar computational and memory costs of the FC
layers in the depth-controllable anytime network [9] even with much more possible output locations.

Joint loss function We can obtain a loss function for each sub-network:

Ll
c = −

1

N

N∑
i=1

[yi log(ŷ
l
i,c)],∀(l, c) ∈ {1, 2, ..., L} × {1, 2, ..., C}, (1)

where L and C refer to the number of possible vertical and horizontal partitions and N is the number
of classes. yi is a target label of class i and ŷli,c is a softmax output of Zl

n,c =
∑c

k=1W
l
n,k · f lk.

Finally, we can obtain a joint loss function by aggregating all loss functions coming from all possible
partial models as:

L =

∑
l,c λ(l, c)Ll

c∑
l,c λ(l, c)

(2)

3 Experiments

Experimental setup We evaluated the proposed method on the CIFAR-10 and the SVHN datasets.
Similarly to the ResNet-32 model [6], our full network architecture consists of one convolution
layer fed by external input, the following 15 residual blocks and fully-connected layers for the
final output generation. The network has 16 possible output locations along the depth from the first
convolution layer and all residual blocks, and 22 locations along the width. Thus, we can extract
16×22 sub-networks with different widths and depths from the base network.

Resource usages of the sub-networks As the selected sub-network gets deeper or wider, all compu-
tational and memory requirements such as the number of MAC (multiply-accumulate) operations, the
number of parameters and the size of the largest feature map increase. However, their rates of the
increase are different from each other as shown in Figure 3. This means that our scheme can benefit
from the larger diversity of resource usage compared to the conventional anytime methods.

2

(a) Number of MAC operations (b) Number of parameters (c) Size of the largest feature map

Figure 3: Resource usages of the 16×22 sub-networks (horizontal axis: width, vertical axis: height)

Comparison with other methods One of the key advantages of the proposed architecture is non-
trivial nesting of sub-networks along the width direction. Figure 4 shows that our scheme outperforms
two straightforward vertical slicing schemes (Brute-force slicing, Fine-tuning) that can generate
sub-networks with different widths to a large extent without significant performance degradation
compared to the upper bound (Full training).

(a) CIFAR-10 (b) SVHN

Figure 4: Comparison with other schemes to generate sub-networks with different widths. Full
training: Training separate ResNet-32 models with various numbers of channels from scratch, Brute-
Force (BF) slicing: Training a full-sized ResNet-32, then, extracting sub-networks by slicing vertically,
Fine-tuning: BF slicing, then, only the classifier is re-trained while the network parameters are fixed.

Figure 5 shows a comparison between (a) a conventional anytime network trained to support only the
slicing along the depth and (b) ours. If we are allowed to spend 24 million or less MAC operations
with sufficient memory space, our network can get 9% higher accuracy by choosing the narrower but
deeper sub-network (D14 & W12) than the best one (D5) in the conventional scheme.

W22

D1 52
D2 65
D3 71
D4 72
D5 73
D6 74
D7 79
D8 84
D9 85
D10 86
D11 86
D12 88
D13 89
D14 89
D15 89
D16 88

D
ee

p
er

Best sub-network

(a) Depth-controllable anytime network

W1 W2 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22

D1 17 23 44 44 43 45 45 47 47 47 47 47 47 47 47
D2 17 26 52 54 54 55 55 56 57 58 58 58 58 58 58
D3 17 27 56 59 60 61 62 62 63 64 65 65 65 65 65
D4 18 28 60 62 63 64 65 65 66 67 68 68 68 68 68
D5 19 29 60 63 64 65 66 66 67 68 69 69 69 69 69
D6 19 32 61 63 65 66 67 67 68 68 69 69 69 69 69
D7 22 38 67 68 70 71 71 72 72 73 73 74 73 73 73
D8 27 40 73 74 75 76 77 77 78 78 79 79 79 79 79
D9 28 40 74 75 76 77 78 78 78 79 79 79 79 79 79
D10 29 41 74 75 76 77 78 78 78 79 79 79 79 79 79
D11 31 42 74 75 76 77 78 78 78 79 80 80 80 80 80
D12 37 51 79 79 81 81 81 82 82 82 82 83 83 83 83
D13 39 53 80 81 82 82 83 83 83 83 83 84 84 84 84
D14 40 54 80 81 81 82 83 83 83 83 83 84 83 83 83
D15 40 54 80 81 82 82 83 83 83 83 83 83 83 83 83
D16 39 53 79 80 81 81 82 82 83 83 83 83 83 83 1

...

Best sub-network

D
ee

p
er

Wider

(b) Doubly nested network

Figure 5: CIFAR-10 accuracies (%) of all feasible sub-networks under the budget of 24 million MACs

4 Discussion

We revealed that resource-constrained devices could benefit from the architectural diversity enriched
by our anytime prediction scheme. Our future works include adding adaptive conditioning [12]
which modulates intermediate activations or weight parameters depending on the current sub-network
configuration to improve the performance only with a small increase of conditioning parameters.

3

References
[1] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive neural networks for efficient

inference. In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, pages 527–536, 2017.

[2] Computer Vision Machine Learning Team. An on-device deep neural network for face
detection. Apple Machine Learning Journal, Vol. 1, Issue 7, 2017 (Retrieved from
https://machinelearning.apple.com/2017/11/16/face-detection.html).

[3] A. Grubb and D. Bagnell. Speedboost: Anytime prediction with uniform near-optimality. In
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012, pages 458–466, 2012.

[4] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In International Conference on Learning
Representations (ICLR), 2016.

[5] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient
neural network. In Advances in Neural Information Processing Systems (NIPS), 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 770–778, 2016.

[7] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 1398–1406, 2017.

[8] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015.

[9] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger. Multi-scale dense
networks for resource efficient image classification. CoRR, abs/1703.09844, 2017.

[10] J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 2178–2188, 2017.

[11] M. McGill and P. Perona. Deciding how to decide: Dynamic routing in artificial neural networks.
In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, pages 2363–2372, 2017.

[12] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, 2018.

[13] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for
thin deep nets. CoRR, abs/1412.6550, 2014.

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural
networks. In Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
2074–2082, 2016.

[15] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83,
1996.

4

	Introduction
	Doubly Nested Network
	Experiments
	Discussion

