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Abstract
This study proposes a reinforcement learning ap-
proach to find the near-optimal dynamic order-
ing policy for a multi-product inventory system
with non-stationary demands. The distinguish-
ing feature of multi-product inventory systems
is the need to take into account the coordina-
tion among products with the aim of total cost
reduction. The Markov decision process formu-
lation has been used to obtain an optimal pol-
icy. However, the curse of dimensionality has
made it intractable for a large number of prod-
ucts. For more products, heuristic algorithms
have been proposed on the assumption of a sta-
tionary demand in literature. In this study, we
propose an extended Q-learning agent with func-
tion approximation, called the branching deep Q-
network (DQN) with reward allocation based on
the branching double DQN. Our numerical ex-
periments show that the proposed agent learns
the coordinated order policy without any knowl-
edge of other products’ decisions and outper-
forms non-coordinated forecast-based economic
order policy.

1. Introduction
Own-brand goods play an important role for retailers in
terms of their profits. At their own risk, many retail com-
panies have tried to purchase their goods in the production
country and deliver these goods directly to selling coun-
tries. In this case, the joint replenishment policy (JRP),
which takes multi-product situations into account, is re-
quired to achieve the minimum total cost. In a supply chain
where multiple products need to be delivered via a con-
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tainer ship, the maritime transportation cost depends on
the required number of containers. Thus, the transporta-
tion cost per product would decrease when several prod-
ucts are ordered simultaneously. However, JRP is con-
sidered to be non-deterministic polynomial-time (NP)-hard
because of its combinatorial nature. There has been much
research on JRP. According to (dos Bastos et al., 2017),
JRP research can be divided into three categories depend-
ing on the demand assumptions: deterministic, dynamic or
stochastic. In the real-world business setting, almost all the
businesses fall into the stochastic demand setting. Some
studies use the Markov decision process to solve the JRP
with the stochastic demand. The problem is complex in
the stochastic demand setting; therefore, a number of stud-
ies were conducted on the assumption of the stationary de-
mand which follows a Poisson or normal distribution.

On the other hand, many researchers have started using re-
inforcement learning (RL) for the supply chain manage-
ment setting because of recent advances in RL. A typical
problem setting is the Beer Game ( (Oroojlooyjadid et al.,
2017), (Chaharsooghi et al., 2008)), where a multi-echelon
supply chain problem is considered under uncertain future
demand and supply. (Oroojlooyjadid et al., 2017) used a
DQN agent, which was presented in (Mnih et al., 2015),
to obtain an order policy in the Beer Game. Although the
existing literature showed positive results in multi-echelon
supply chains, only one product has been considered so
far. This is because of the problem of large discrete action
spaces, which appear in the general RL approach. If each
product has four discrete ordering options: zero (means
not ordering), one, two and three (which are the number
of the order, lot sizes), a combination of all possible ac-
tions would be 4N (where N is the number of products). In
this case, only 10 products would be intractable because its
combination reaches 1,048,576. To take full advantage of
RL in the supply chain management, these exponentially
increasing action space problems with multiple products
need to be resolved.

(Tavakoli et al., 2017) proposed the branching DQN
(BDQN), in which function approximated Q-values are
represented with individual network branches followed by
a shared decision module that encodes a latent represen-
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tation of the input and helps with the coordination of the
branches. This architecture enables the linear growth of
the total number of network outputs with increasing action
dimensionality.

In this paper, we propose the RL agent with function
approximation to find the near-optimal dynamic multi-
product ordering policy under non-stationary demand
based on BDQN combined with credit assignment. The
proposed agent is based on the idea of treating a single
agent as a multi-agent learner with a credit assignment pol-
icy that is a hybrid of the global and the local rewards with
the aim of coping with the combinatorial increase in the ac-
tion space. From several numerical experiments, we found
that the branching deep Q-network with reward allocation
(BDQN-RA) is a promising approach for solving the afore-
mentioned problem.

We evaluate our proposed agent by applying it to a multi-
product inventory control problem and ran numerical ex-
periments that varied the number of products and demand
stationarity. Our proposed agent achieves better perfor-
mance than the forecast-based economic order policy (F-
EOP) and exhibits a robust learning process even on a large
number of products with non-stationary demand.

The reminder of this paper is as follows. In Section 2, we
review the literature on both JRP and RL. In Section 3, we
present our proposed solution. In Section 4, we present the
results of the numerical experiment, and we provide our
conclusions in Section 5.

2. Related work
2.1. Joint replenishment policy

If we consider only one product and if the stock status is de-
termined only at the time of the review (usually called the
periodic review system), then we see that the (s, S) policy
has been widely used. In the (s, S) policy, if the inventory
position is at or below the order point s, an order is placed.
The order is supplied after a replenishment lead-time and is
available to satisfy the customer demands. The (s, S) pol-
icy produced a low total cost under the assumption of the
demand pattern and the cost factors. (Wagner & Whitin,
1958) extended this method to well-known dynamic lot-
sizing problem.

However, under a multi-product inventory system, the co-
ordination across products should be taken into account,
and (Khouja & Goyal, 2008) asserts that a coordinated or-
dering policy can achieve 13% of the cost savings as com-
pared with the economic order quantity models for a single-
item approach considering a set of twenty products. The
(σ,S) policy was proposed by (Johnson, 1967) for multi-
product inventory problem where an order would be placed

when the inventory position falls to or below σ and the in-
ventory would be raised up to S. The (S, c, s) policy was
proposed by (Balintfy, 1964), which is often referred to
as a “can-order” policy where an order is triggered by
the item j when its inventory position falls to or below
the reorder level s. Then, any item for which the inven-
tory position is at or below its can-order level c is also in-
cluded in the order and is raised to the order-up-to level S.
A number of studies have been conducted on how to find
these policy parameters with some assumptions on the de-
mand distribution or the lead time. Recent studies let the
assumption be in more realistic settings. Certain studies
(Minner & Silver, 2005), (Minner & Silver, 2007) have as-
sumed stochastic demand, formulated the Markov decision
process (MDP), and solved MDP with policy iteration. In
these cases, the transition probabilities were explicitly de-
scribed using the assumed demand distribution. Policy it-
eration with MDP is computationally intensive; therefore,
the existing study ended up with the heuristic algorithm to
handle a large number of products.

As (Larsen, 2009) pointed out, the effectiveness of JRP de-
pends on the correlation between the demands across multi-
products; the more negative the correlation, the less advan-
tageous it is to coordinate the replenishment decisions by
using JRP. In this setting, the decision maker should select
whether or not they should use the coordinated order policy
in advance.

2.2. Reinforcement learning for large discrete action
spaces

Q-learning is based on estimating the expected total
discounted future rewards of each state-action pair under
the policy
π: Qπ (st, at) = E

[
rt+1 + γrt+2 + γ2rt+2 + . . .+ γT−trT |π

]
,

where st, at, rt, γ denote the state, action, reward, and dis-
count factor respectively. The Q function can be computed
recursively with dynamic programming as follows:

Qπ(s, a) = Es′
[
r + γEa′∼π(s′) [Q

π (s′, a′)] |s, a, π
]
.
(1)

We define the optimal Q∗(s, a) = maxπ Q
π(s, a). Then,

the optimal Q function satisfies the Bellman equation:
Q∗(s, a) = Es′ [r + γmaxa′ Q∗ (s′, a′) |s, a]. Q-learning
is an off-policy TD control algorithm, and the one-step Q-
learning is defined by:

Q (st, at) = (1− αt)Q (st, at)+αt

(
rt+1 + γmax

a
Q (st+1, a)

)
,

(2)
where α is the learning rate. When the state-action space is
small enough for the Q-values to be represented as a lookup
table, this iterative approximation converges to the true Q-
values. However, this tabular-type Q-value representation
soon faces problems because of the large state-action space.
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Q-learning with function approximation has been proposed
to overcome this problem. In function approximated Q-
learning, the following loss function needs to be minimized
in the training process:

L(θ) = E[(y −Q(s, a; θ))2], (3)

where
y = r + γmax

a′
Q(s′, a′; θ′), (4)

and θ is the parameter of the neural network. A target net-
work and experience replay have been proposed to cope
with the problems relating to non-stationarity and correla-
tion in the sequence of observations (Mnih et al., 2015).

Whereas deep reinforcement learning has achieved remark-
able success for a large state space as described above,
the problem associated with a large action space remains
unsolved. To manage the large discrete action spaces,
(Tavakoli et al., 2017) proposed BDQN in which n dimen-
sional action branches followed the shared state represen-
tation in the neural network Q-function approximation (see
Fig. 1 left-hand side). The results showed that this branch-
ing agent performed well against the state-of-the-art contin-
uous control algorithm, deep deterministic policy gradient
(DDPG). In this architecture, the temporal difference target
using a single global reward and loss function are defined
as follows:

y = r + γ
1

N

∑
d

Q−
d

(
s′, argmax

a′
d∈Ad

Qd (s
′, a′d)

)
, (5)

L = E(s,a,r,s′)∼D

[
1

N

∑
d

(yd −Qd (s, ad))
2

]
. (6)

Here, ad ∈ Ad denotes the action for the branch d; Qd

denotes the Q-function for the branch d; Q−
d denotes the

target network; D denotes the experience replay buffer;
and A denotes the joint-action tuple (a1, a2, ..., aN ). The
researchers stated that Equation (6) showed better results
than the naive setting for the temporal difference target:

yd = r + γQ−
d

(
s′, argmax

a′
d∈Ad

Qd (s
′, a′d)

)
. (7)

They also applied a dueling network into their branching
architecture by setting the common state-value estimator
and advantage as:

Qd (s, ad) = V (s)+

Ad (s, ad)−
1

n

∑
a′
d∈Ad

Ad (s, a
′
d)

 ,

(8)

where V (s) denotes the common state value and Ad (s, ad)
denotes the corresponding advantage. In this study, we at-
tempted to extend this BDQN agent such that the agent
could learn coordinated ordering policy across multiple
products. The explanation of the proposed agent is pro-
vided in Section 3.

2.3. Reinforcement learning for partially observable
Markov decision process

Regarding the inventory control with the demand forecast,
we need to consider the partial observability. The partially
observable Markov decision process (POMDP) provides a
framework for making decisions under uncertainties. A
POMDP is defined as a tuple (S,A,O, T, Z,R) where S,
A, and O are the state, action, and observation space,
respectively. The state-transition function T (s, a, s′) =
P (s′ | a, s) is the probability of the agent being in state
s′ after taking action a in state s. The observation func-
tion Z(s, a, o) = P (o | a, s) is the probability of the agent
receiving observation o after taking action a in state s.

In a POMDP, the agent cannot know its exact state, and be-
lief b(s), which is probability distribution over S, is used.
We can define b(s) as b(s) = P (s | h), where h de-
notes past observation and action. Although belief states
along with the updating rule form a completely observ-
able MDP, its learning process is computationally inten-
sive. Among the several heuristic approaches for POMDP,
(Littman et al., 1995) proposed Q-MDP approximation, in
which Q(b, a) =

∑
s b(s)Q

MDP (s, a) was defined.

3. Method
3.1. Problem setting

We consider a multi-product inventory system between one
supplier and one retailer. Our objective is to minimize the
total retailer cost, which includes the holding, penalty, and
transportation costs. We assumed a non-stationary demand
and a demand forecast conditioned by the forecast error
parameter, which means the agent knows the expected de-
mand forecast accuracy as prior knowledge. We have used
the following notations:

i : Item number, i = 1, ..., N ,
t : Period, t = 1, ...., T ,
LTi : Lead time of item i from supplier to retailer,
li : Lot size of item i, (in palette),
di,t : Demand for item i during period t, (in palette),
fi,t : Forecast of the demand for item i during period t,(in
palette),
xi,t : Order quantity for item i made at time t, (in palette),
ri,t : Replenishment for item i from supplier during period
t, (in palette),
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r̂i,t : Replenishment forecast for item i from supplier dur-
ing period t, (in palette),
Ii,t : Inventory position of item i at the start of time t, (in
palette),
Îi,t,t̂ : Inventory position forecast for item i at time t̂ fore-
casted at time t (in palette),
ui,t : Unsatisfied demand of item i during period t, (in
palette),
si,t : Shipment of item i from retailer during period t, (in
palette),
Ei : Forecast error parameter of item i.

The demand forecasts are generated so that the proportion
of standard deviation of forecast error to the standard devi-
ation of demand itself equals Ei. Thus, Ei represents the
degree of demand forecast accuracy. Ei = 0 means perfect
forecast whereas Ei = 1 means no effect of prediction.
Let Ei be 0.5 for all items in our experiments. We per-
mit lost sales. Replenishment at time t can be used from
time t+ 1. In this study, we do not take supplier stock-out
or any supply delay into consideration. Thus, the relation-
ship between inventory, replenishment, shipment, demand,
unsatisfied demand and inventory position forecast can be
formulated as follows.

r̂i,t+LTi = xi,t, (9)
ri,t = r̂i,t, (10)

si,t = min(di,t, Ii,t), (11)
ui,t = di,t − si,t, (12)

Ii,t+1 = Ii,t − si,t + ri,t, (13)

Îi,t,t̂+1 = Ii,t −
t̂∑

t′=t

fi,t′ +

t̂∑
t′=t

r̂i,t′ . (14)

Cost is defined as follows:

Chold
i,t = Uhold × Ii,t, (15)

Cpel
i,t = Upel × ui,t, (16)

Ctrans
t = U trans × ⌈

∑
i xi,t

CAP
⌉, (17)

where CAP represents container capacity (in palette) and
⌈·⌉ is ceiling function. Chold

i,t , Cpel
i,t , and Ctrans

t represent
the holding, penalty, and transportation costs of item i dur-
ing period t respectively, and Uhold, Upel, and U trans are
the unit holding, shortage, and transportation costs respec-
tively.

In this problem setting, we tried to set our unit costs and
other logistic conditions to as realistic a value as possible.
When we deliver goods from China to Japan using a 20-ft

container ship, its maritime cost would be approximately
$400. The holding cost in Japan is approximately $1.5 per
m3 per day, and a palette is approximately 1.2 m3 in its
size. Each product demand is fit onto a palette, which is the
usual method of packing in a container ship, so that the cost
calculation would be consistent with an actual business set-
ting. A 20-ft container can accommodate approximately 15
to 20 palettes; therefore, our container capacity (CAP ) is
20 palettes. The order quantity unit size, which we call the
lot size, should be integer in palette. Demand and forecast
can be specified in decimals because a customer’s order to
the retailer would be stated in pieces rather than palettes.
Throughout our study, we let LTi (which is the time re-
quired from order to delivery) be three weeks, assuming
maritime transportation between China and Japan.

3.2. MDP formulation for multi-product inventory
system with demand forecasts

3.2.1. OBSERVATIONS AND STATE VARIABLES

With the availability of demand forecast information, the
order decision at time t has been made primary based
on the future inventory position at time t + LT to en-
sure that our inventory satisfies future demands after or-
der replenishment. At every time step, the agent ob-
tains information about the future inventory positions ac-
cording to the demand forecast. The on-order quantity
OOi,t of item i at time t (i.e. the items that have been
ordered but have yet been received) can be defined by∑

t r̂i,t. Let [·]st:T be the summation of [·] from st to
st + T . In each period, the agent has observations ot =
[(Ii,t, OOi,t, Îi,t,t+LT , f

t:LT
i,t , f t+LT :M

i,t )]Ni=1 and makes a
decision based on ot. Here, M is the parameter which de-
cides how far the future demand needs to be considered and
we let M be four weeks. The definition of MDP states that
the next state and the next reward should be decided only
by the current state and the action taken at time t; ot cannot
be defined as a state because the actual future inventory po-
sition or/and future demand can be different from the fore-
casted inventory and demand. However, true information
on Ii,t+LT , dt:LT

i,t , and dt+LT :M
i,t can be observed afterward

by use of the actual demand. Thus, we can define the state
by st = [(Ii,t, OOi,t, Ii,t+LT , d

t:LT
i,t , dt+LT :M

i,t )]Ni=1.

Let us assume that the average demand forecast error does
not change from time to time and the agent knows its de-
gree of forecast error as prior knowledge. Then, our belief
state b(s) should be conditioned only on ot and can be de-
fined by P (st|ot) instead of P (st|h) in a general POMDP.
Also assuming that expected forecast error follows normal
distribution, we can infer state st from observation ot by
using Ei (see Section 4 for further explanation).

Here, we have several approaches for this problem set-
ting. Since we can obtain true state information, experience
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memory can consist of the true state so that the Markovian
property holds. Otherwise, we can use observation while
ignoring partial observability. For action selection, we have
to take action based on our observation, and we have two
options to: 1) use demand forecast itself, or 2) estimate
the true state by using our prior knowledge about demand
forecast accuracy. Illustrations of these approaches are pro-
vided in Table.1.

Note that our belief state b(s) can be calculated by the use
of only ot and Ei. When selecting action greedily in vali-
dation with option 2, we used the following for the greedy
policy:

at = argmax
a

E[Q(ŝt, a)], (18)

where ŝt are estimated states that use the Monte Carlo sam-
pling. In our experiments, we generated 300 samples at
each step. Contrary to our initial expectations, the combi-
nation of option 2 in experience memory and option 2 in
action selection performed the best. Therefore, we adopted
this strategy for our experiments.

3.2.2. ACTION SPACE

In each period, an agent orders xi,t ∈ Xi, which can be any
multiples of lot sizes li. However, infinite action space is
not practical and also taking a large number of orders com-
pared with the demand is unrealistic from a supply chain
point of view. Therefore, we limited action space Xi to
Xi = {lia | a ∈ {0, 1, 2, 3}}.

3.3. Branching deep Q-network with reward allocation

In (Tavakoli et al., 2017), they examined the action branch-
ing agent for environment in which only a global reward
was available. In our case, each branch consisted of
one product. Our objective variable was total cost; the
transportation cost was calculated across multiple products
whereas the holding cost and penalty cost were calculated
independently of each product, which means that the total
cost included both global and local rewards.

After several numerical experiments, our best result came
from the architecture shown on the right side in Fig. 1
which had the distinguishing feature of allocating rewards
to each branch.

3.3.1. REWARD ALLOCATION

Unlike (Tavakoli et al., 2017), we modified our temporal
difference target equation as follows:

yd = rd + γQ−
d

(
s′, argmax

a′
d∈Ad

Qd (s
′, a′d)

)
, (19)

where rd refers to the reward per product. The transporta-
tion costs depend on the number of containers; the remain-

ing costs can be calculated separately for each product.
There are several options for allocating the total transporta-
tion cost to each product. The best results come from the
following allocation by which the total transportation cost
is allocated equally to all the products even if a specific
product is not ordered:

rd = −(Chold
i,t + Cpel

i,t +
Ctrans

t

N
). (20)

Intuitively, this allocation method would encourage each
branch to put an order simultaneously.

Thus, the loss function should be defined for each branch,
and all the branches backpropagation gradients are rescaled
by 1/N for the shared part of our architecture.

Ld = E(s,ad,rd,s′)∼D [Lδ (yd, Qd (s, ad))] , (21)

where Lδ is the Huber loss function.

3.3.2. n-STEP TD METHOD

n-step TD method was devised to take the merits of both
the Monte Carlo and TD methods. The target in Monte
Carlo backups is the return; whereas, the target in the one-
step TD method is the first reward plus the discounted esti-
mated value of the next state. In the n-step TD method, the
target for the n-step backup is as follows:
Rt+1 + γRt+2 + γ2Rt+3 + · · · + γn−1Rt+n +
γnVt (St+n) , ∀n ≥ 1.

In our problem setting, there is obviously a reward delay
because of the lead time from the supplier to the retailer.
Thus, we let step size n be lead time in our learning setting.

3.3.3. STATE-VALUE ESTIMATOR

As mentioned in Section 2, BDQN has a common state-
value estimator. It is natural to set the branch-independent
state-value estimator as an adaptation of dueling network
into our proposed agent with reward allocation. Thus, the
branch independent state value and advantage can be sim-
ply defined as follows:

Qd (s, ad) = Vd(s) +Ad(s, ad), (22)

where Vd(s) denotes the branch independent state-value
and Ad (s, ad) denotes the corresponding advantage.

4. Experiments
4.1. Experimental settings

We conducted numerical experiments to examine the fol-
lowing questions:
1) Can the proposed agent learn the coordinated order pol-
icy across multiple products?
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Table 1. Training and validation approach.
Training Select Action at ← argmaxa Q(ot, at)

Memorize Experience 1: D ← [st, at, r, st+1]
2: D ← [ot, at, r, ot+1]

Validation Select Action 1: at ← argmaxa[Q(ot, a)]
2: at ← argmaxa[

∑
st
b(st)Q(st, a)]
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Figure 1. Left: BDQN. Right : BDQN-RA

2) Can the proposed agent converge with a large number of
products?
3) Can the proposed agent converge with a non-stationary
demand?
4) Can the proposed agent find an optimal policy as com-
pared with the benchmark policy?

For validation, we used the standard Dueling Double DQN,
which we simply call DQN in this paper, and a forecast-
based economic order policy (F-EOP) as the benchmark
approach. DQN was used to validate the learning conver-
gence of this proposed approach, whereas F-EOP was used
to validate the optimality of the result obtained by using this
proposed approach. Each episode consisted of 200 time
steps, and initial 20 steps were ignored from the evaluation
so as to exclude the effect of initial inventory setting.

Regarding the branching architecture, we tried three types
of agents: BDQNs (BDQN with state-value estimator),
BDQN-RA (BDQN with reward allocation), and BDQN-
RAs (BDQN with reward allocation and state-value esti-
mator).

In order to validate above-mentioned questions, we con-
ducted three experiments by varying the number of prod-
ucts and the demand stationarity. Detailed explanations on
experiments are given in Section 4-D.

4.2. Benchmark methodology: Forecast-based
economic order policy

There has been no established JRP under non-stationary de-
mand and demand forecast; therefore, we selected a non-
coordinated order policy based on (Ishigaki & Hirakawa,
2008) as our benchmark policy, which consisted of

forecast-based order-point and an economic replenishment
quantity based on Wagner-Whitin dynamic lot size model
with extension to incorporate demand forecasts.

4.2.1. FORECAST-BASED ORDER-POINT

When demand forecasts are available, a replenishment or-
der takes place when the forecasted inventory position at
time t + LT drops to order-point or lower. Assuming that
forecast error follows normal distribution, order-point can
be defined as s = k × σ

√
LT where k is the safety fac-

tor and σ is the standard deviation of forecast error. k can
be determined so that sum of the expected penalty cost and
expected holding cost for the safety stock are minimized.

4.2.2. ECONOMIC REPLENISHMENT QUANTITY WITH
DEMAND FORECASTS

At each time step, we choose the order quantity xi,t ∈ Xi.
When x ∈ Xi is selected at time t, the expected unit time
cost from t+LT to the next replenishment timing is calcu-
lated by dividing the sum of the expected holding cost and
the transportation cost by T :

C(x) =
U trans × ⌈ x

CAP ⌉+ Uhold ×
∑t+LT+T

t̂=t+LT
Îi,t,t̂

T
, (23)

where T is determined by estimating the timing for which
the forecasted inventory position drops to or lower than the
order-point on condition that x is replenished at time t +
LT . Thus, the economic replenishment quantity with the
demand forecasts can be derived by argminx(C(x)).
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Table 2. Summary of experiment settings and results
ID # of Products Demand Stationarity F-EOP DQN BDQNs BDQN-RA BDQN-RAs Improved(%)
1 2 Stationary 133.2 105.3 108.0 (*) 106.7 107.3 19.9%
2 2 Upward Trend 216.5 205.2 266.3 (*) 192.0 195.2 11.3%
3 10 Upward Trend 447.8 - 817.2 346.8 (*) 341.3 23.8%

The final results for DQN and BDQN-family were derived by calculating the averaged total cost with a greedy policy using the trained
model after 10,000 episodes over 6 runs. Improved(%) represents the decrease in total cost compared with F-EOP. (*) denotes the item

used for calculating Improved(%).
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Figure 2. Performance in total cost (multiplied by −1) during evaluation on the y-axis and training episodes on the x-axis. The solid
lines represent average over 6 runs with initialization seeds and shaded areas represent standard deviation. Evaluations using the greedy
policy were conducted every 50 episodes.

4.3. Experiment result

Table.2 and Fig.2 summarize the experiments’ results and
the learning curve. Our proposed agent performed better
than did the non-coordinated F-EOP policy. As the num-
ber of products increased, DQN and BDQN (without re-
ward allocation) suffered from convergence whereas our
proposed agent, BDQN-RA(s), performed well even with
10 products. DQN suffered from its combinatorial increas-
ing action space for a large number of products. When the
number of products equaled 10, its action space was around
106. As for BDQN, using a single global reward made the
learning convergence unstable because the feedback signal
to each branch was considered to be too noisy. For the
proposed agent, the reward allocation strategy worked well
in stable learning while achieving coordinated orders. The
state-value estimator in the proposed agent did not show a
significant impact on the results.

4.3.1. EXPERIMENT 1: TWO-PRODUCTS WITH
STATIONARY DEMAND

One of the most important validation items regarding the
action branching agent in JRP is whether or not the coordi-
nated order is possible across multiple products. We con-
ducted a simple experiment to examine this possibility. In
this setting, the total demand per unit time was much less
than the transportation capacity, allowing room for coordi-
nated orders to minimize the total cost.

As the learning process proceeded, our proposed agent
learned to order these two products simultaneously such
that the transportation cost was minimized. The left part

of Fig. 3 shows the result of the time series. Even if the
inventory position of one item was relatively high (i.e., im-
mediate order did not need to take place), the order took
place in accordance with the other order. Throughout these
200 time steps, most of the total order quantities per unit
time equaled 16, whereas the order quantity of each prod-
uct per unit time was 8. Considering the lot size of both
products being 8, coordinated orders occurred despite the
fact that our proposed agent decided the order for each item
independently. By doing so, our proposed agent achieved
a low level of inventory while maintaining a high fill-rate
for maritime transportation. As a result, the total cost de-
creased by 19.9% in comparison with the benchmark re-
sult where the coordinated order did not take place, and
the inventory level remained high as a result of indepen-
dently minimizing the cost. DQN agent performed best
and it can be considered near-optimal JRP because the ac-
tion space is small. In comparison with DQN, our proposed
agent showed a slightly lower performance but still showed
a significant improvement over F-EOP. Despite this simple
experimental setting, these results show the possibility to
learn a coordinated ordering policy across multiple prod-
ucts with our branching architecture.

4.3.2. EXPERIMENT 2: TWO-PRODUCTS WITH UPWARD
DEMAND

With upward demands, we expected that the ordering fre-
quency should change from time to time as the total av-
erage demand per unit time increased. The bottom-right of
Fig. 3 shows the result of BDQN-RA and we see that the or-
der timing is aligned among these two products in most of



A Reinforcement Learning Approach for Joint Replenishment Policy

the time, and its frequency becomes shorter as the average
demand increases. On the other hand, learning of BDQN
agent was ill-behaved, which can be considered to be the
result of the agent’s having been affected by noisy joint-
action selection under uncertain future demands. Although
our agent performed better, a slight drop in performance
and instability during the latter part of the training process
was observed; it is considered to have suffered from a non-
stationary environment caused by branch-independent ac-
tion selection, as seen in the general multi-agent reinforce-
ment learning setting.

4.3.3. EXPERIMENT 3: TEN-PRODUCTS WITH UPWARD
DEMAND

We extended our experiments to a more complicated set-
ting with 10 products, and an average unit time demand
was still much less than the container capacity. BDQN
failed to converge, whereas our proposed agent exhibited
an efficient and stable learning process. BDQN-RAs agent
achieved a 23.8% cost reduction as compared with F-EOP.
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Figure 3. Time series movement of each product derived from the
validation result of benchmark (top) and BDQN-RA (bottom) for
Experiment 1(left) and 2(right). Each figure represents results of
product 1 and 2, as well as total order quantity of both products
(top to bottom). Orange, blue, green, and red lines represent de-
mand, inventory, unsatisfied demand, and order quantity respec-
tively.

4.4. Experiment detail

4.4.1. COST, DEMAND AND DEMAND FORECAST
SETTING

On the basis of the logistic condition described in Section
3, we let cost parameters Uhold, Upel, and U trans be 0.02,
1.0, and 1, respectively. The demand and lot size of each
product are provided in Table.3. Stationary demand was
generated following N(µ, σ) and we let σ

µ be 0.4. Non-
stationary data were generated by the simple addition of the

linear upward trends until the demand at the end of the 200
time steps tripled, defined by; di,t = d̂i,t +2 ∗µi ∗ (t/200)
where d̂i,t denotes stationary demand. Demand forecasts
were generated so that the proportion of the standard devi-
ation of the forecast error to the standard deviation of the
demand itself equaled 0.5.

Table 3. Demand setting in each experiment
ID µ Lot size
1 [2, 2] [8, 8]
2 [2, 2] [8, 8]

3
[.3, .4, .5, .5, .7,

.9, 1., 1., 1.2, 1.2]
[1, 1, 1, 1, 2,
2, 3, 3, 3, 3]

4.4.2. BDQNS AND BDQN-RA(S)

The network had two hidden layers with 512 and 256 units
in the shared network module and one hidden layer per
branch with 128 units. A gradient clipping of size 0.25 was
applied. We used the Adam optimizer with a learning rate
of 10−4, β1 = 0.9 and β2 = 0.999. The target network
was updated every 10 episodes. A mini-batch size was 32
and a discount factor was 0.995. We used ReLu for all hid-
den layers and linear activation on the output layers. We
adopted ϵ-greedy policy with linear annealing.

4.4.3. DQN

We used the same parameters as for BDQN-family regard-
ing gradient clipping, optimizer, learning rate, discount fac-
tor, mini-batch size, and ϵ-greedy policy.

5. Conclusion
We introduced extended branching Q-learning agent with
function approximation designed for combinatorial action
dimension with global and local reward based on the cost
structure of multi-product inventory system. Our numeri-
cal experiments showed that as the number of products in-
creased, both DQN and BDQN suffered from convergence;
however, our proposed agent performed better when com-
pared with F-EOP. Instability in the latter part of the learn-
ing process caused by the branch-independent action se-
lection using our proposed agent should be investigated in
future studies.

Our proposed agent needed only the demand forecast,
which is usual in the real business setting; this expands the
possibility to adapt our approach in real-world situations.
In future studies, we also need to investigate how to ex-
tend this by including multi-layer and multi-retailer supply
chains with realistic constraints.
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