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ABSTRACT

This paper studies the lower bound complexity for the optimization problem
whose objective function is the average of n individual smooth convex functions.
We consider the algorithm which gets access to gradient and proximal oracle for
each individual component. For the strongly-convex case, we prove such an algo-
rithm can not reach an ε-suboptimal point in fewer than Ω((n +

√
κn) log(1/ε))

iterations, where κ is the condition number of the objective function. This lower
bound is tighter than previous results and perfectly matches the upper bound of
the existing proximal incremental first-order oracle algorithm Point-SAGA. We
develop a novel construction to show the above result, which partitions the tridi-
agonal matrix of classical examples into n groups to make the problem difficult
enough to stochastic algorithms. This construction is friendly to the analysis of
proximal oracle and also could be used in general convex and average smooth
cases naturally.

1 INTRODUCTION

We consider the minimization of the following optimization problem

min
x∈Rd

f(x) ,
1

n

n∑
i=1

fi(x), (1)

where the fi(x) are L-smooth and µ-strongly convex. Accordingly, the condition number is defined
as κ = L/µ, which is typically larger than n in real-world applications. Many machine learning
models can be formulated as the above problem such as ridge linear regression, ridge logistic re-
gression, smoothed support vector machines, graphical models, etc. This paper focuses on the first
order methods for solving Problem (1), which access to the Proximal Incremental First-order Oracle
(PIFO) for each individual component, that is,

hf (x, i, γ) ,
[
fi(x),∇fi(x),proxγfi(x)

]
, (2)

where i ∈ {1, . . . , n}, γ > 0, and the proximal operation is defined as

proxγfi(x) = arg min
u

{
fi(u) +

1

2γ
‖x− u‖22

}
.

We also define the Incremental First-order Oracle (IFO)

gf (x, i, γ) , [fi(x),∇fi(x)] .

PIFO provides more information than IFO and it would be potentially more powerful than IFO in
first order optimization algorithms. Our goal is to find an ε-suboptimal solution x̂ such that

f(x̂)− min
x∈Rd

f(x) ≤ ε

by using PIFO or IFO.

There are several first-order stochastic algorithms to solve Problem (1). The key idea to lever-
age the structure of f is variance reduction which is effective for ill-conditioned problems. For
example, SVRG (Zhang et al., 2013; Johnson and Zhang, 2013; Xiao and Zhang, 2014) can
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find an ε-suboptimal solution in O((n+κ) log(1/ε)) IFO calls, while the complexity of the clas-
sical Nesterov’s acceleration (Nesterov, 1983) is O(n

√
κ log(1/ε)). Similar results1 also hold

for SAG (Schmidt et al., 2017) and SAGA (Defazio et al., 2014). In fact, there exists an ac-
celerated stochastic gradient method with

√
κ dependency. Defazio (2016) introduced a simple

and practical accelerated method called Point SAGA, which reduces the iteration complexity to
O((n +

√
κn) log(1/ε)). The advantage of Point SAGA is in that it has only one parameter to be

tuned, but the iteration depends on PIFO rather than IFO. Allen-Zhu (2017) proposed the Katyusha
momentum to accelerate variance reduction algorithms, which achieves the same iteration complex-
ity as Point-SAGA but only requires IFO calls.

The lower bound complexities of IFO algorithms for convex optimization have been well studied
(Agarwal and Bottou, 2015; Arjevani and Shamir, 2015; Woodworth and Srebro, 2016; Carmon
et al., 2017; Lan and Zhou, 2017; Zhou and Gu, 2019). Specifically, Lan and Zhou (2017) showed
that at least Ω((n+

√
κn) log(1/ε)) IFO calls2 are needed to obtain an ε-suboptimal solution for

some complicated objective functions. This lower bound is optimal because it matches the upper
bound complexity of Katyusha (Allen-Zhu, 2017).

It would be interesting whether we can establish a more efficient PIFO algorithm than IFO one.
Woodworth and Srebro (2016) provided a lower bound Ω(n+

√
κn log(1/ε)) for PIFO algorithms,

while the known upper bound of the PIFO algorithm Point SAGA [3] is O((n+
√
κn) log(1/ε)).

The difference of dependency on n implies that the existing theory of PIFO algorithm is not perfect.
This gap can not be ignored because the number of components n is typically very large in many
machine learning problems. A natural question is can we design a PIFO algorithm whose upper
bound complexity matches Woodworth and Srebro’s lower bound, or can we improve the lower
bound complexity of PIFO to match the upper bound of Point SAGA.

In this paper, we prove the lower bound complexity of PIFO algorithm is Ω((n+
√
κn) log(1/ε)) for

smooth and strongly-convex fi, which means the existing Point-SAGA (Defazio, 2016) has achieved
optimal complexity and PIFO can not lead to a tighter upper bound than IFO. We provide a novel
construction, showing the above result by decomposing the classical tridiagonal matrix (Nesterov,
2013) into n groups. This technique is quite different from the previous lower bound complexity
analysis (Agarwal and Bottou, 2015; Woodworth and Srebro, 2016; Lan and Zhou, 2017; Zhou and
Gu, 2019). Moreover, it is very friendly to the analysis of proximal operation and easy to follow. We
also use this technique to study general convex and average smooth cases (Allen-Zhu, 2018; Zhou
and Gu, 2019), and extend our result to non-convex problems (see Appendix J).

2 OUR ANALYSIS FRAMEWORK

In this paper, we consider the Proximal Incremental First-order Oracle (PIFO) algorithm for smooth
convex finite-sum optimization. All proofs in this section can be found in Appendices C and D for
a detailed version. We analyze the lower bounds of the algorithms when the objective functions are
respectively strongly convex, general convex, smooth and average smooth (Zhou and Gu, 2019).

Definition 2.1. For any differentiable function f : Rm → R,

• f is convex, if for any x,y ∈ Rm it satisfies f(y) ≥ f(x) + 〈∇f(x),y − x〉.

• f is µ-strongly convex, if for any x,y ∈ Rm it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖x− y‖22.

• f is L-smooth, if for any x,y ∈ Rm it satisfies ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

1SVRG, SAG and SAGA only need to introduce the proximal operation for composite objective, that is,
fi(x) = gi(x) + h(x), where h may be non-smooth. Their iterations only depend on IFO when all the fi(x)
are smooth. Hence, we regard these algorithms only require IFO calls in this paper.

2Lan and Zhou’s construction requires f to be µ-strongly convex and every fi to be convex, while this paper
studies the lower bound with stronger condition that is every fi is µ-strongly convex. For the same lower bound
complexity, the result with stronger assumptions on the objective functions is stronger.
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Upper Bounds Previous Lower Bounds Our Lower Bounds

fi is L-smooth
and µ-strongly
convex with
n = O(κ)

O
(
(n+

√
κn) log( 1

ε
)
)

(Allen-Zhu, 2017), IFO
(Defazio, 2016), PIFO

Ω
(
n+
√
κn log( 1

ε
)
)

(Woodworth and Srebro, 2016)

PIFO

Ω
(
(n+

√
κn) log( 1

ε
)
)

[Theorem 3.1]
PIFO

fi is L-smooth
and µ-strongly

convex with
κ = O(n)

O

(
n+

(
n

1+(log(nκ ))
+

)
log
(
1
ε

))
(Hannah et al., 2018),

IFO

Ω

(
n+

(
n

1+(log(nκ ))
+

)
log
(
1
ε

))
(Hannah et al., 2018)

IFO

Ω

(
n+

(
n

1+(log(nκ ))
+

)
log
(
1
ε

))
[Theorem 3.1]

PIFO

fi is L-smooth
and convex

O
(
n log( 1

ε
) +

√
nL
ε

)
(Allen-Zhu, 2017)

IFO

Ω

(
n+

√
nL
ε

)
(Woodworth and Srebro, 2016)

PIFO

Ω

(
n+

√
nL
ε

)
[Theorem 3.3]

PIFO

{fi}ni=1 is
L-average

smooth
and f is
µ-strongly

convex

O
((
n+ n

3
4
√
κ
)

log
(
1
ε

))
(Allen-Zhu, 2018)

IFO

Ω
(
n+ n

3
4
√
κ log

(
1
ε

))
(Zhou and Gu, 2019)

IFO

Ω
((
n+ n

3
4
√
κ
)

log
(
1
ε

))
[Theorem 3.5]

PIFO

{fi}ni=1 is
L-average

smooth
and f is
convex

O
(
n+ n

3
4

√
L
ε

)
(Allen-Zhu, 2018)

IFO

Ω

(
n+ n

3
4

√
L
ε

)
(Zhou and Gu, 2019)

IFO

Ω

(
n+ n

3
4

√
L
ε

)
[Theorem 3.7]

PIFO

Table 1: We compare our PIFO lower bounds with existing results of IFO or PIFO algorithms, where
κ = L/µ. Note that the call of PIFO could obtain more information than IFO. Hence, any PIFO
lower bound also can be regarded as an IFO lower bound, not vice versa.

Definition 2.2. We say differentiable functions {fi}ni=1, fi : Rm → R, to be L-average smooth if
for any x,y ∈ Rm, they satisfy

1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖22 ≤ L
2 ‖x− y‖22 . (3)

Remark 2.3. We point out that

1. if each fi is L-smooth, then {fi}ni=1 are L-average smooth.

2. if {fi}ni=1 are L-average smooth, then f(x) = 1
n

∑n
i=1 fi(x) is L-smooth.

We present the formal definition for PIFO algorithm.
Definition 2.4. Consider a stochastic optimization algorithm A to solve Problem (1). Let xt be the
point obtained at time-step t and the algorithm starts with x0. The algorithmA is said to be a PIFO
algorithm if for any t ≥ 0, we have

xt ∈ span
{
x0, . . . ,xt−1,∇fi1(x0), · · · ,∇fit(xt−1),proxγ1fi1

(x0), · · · ,proxγtfit
(xt−1)

}
, (4)

where it is a random variable supported on [n] and takes P(it = j) = pj for each t ≥ 0 and
1 ≤ j ≤ n where

∑n
j=1 pj = 1.

Without loss of generality, we assume x0 = 0 and p1 ≤ p2 ≤ · · · ≤ pn to simplify our analysis.
Otherwise, we can take {f̂i(x) = fi(x + x0)}ni=1 into consideration. On the other hand, suppose
that ps1 ≤ ps2 ≤ · · · ≤ psn where {si}ni=1 is a permutation of [n]. Define {f̃i}ni=1 such that
f̃si = fi, then A takes component f̃si in probability psi , i.e., A takes fi in probability psi .
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To demonstrate the construction of adversarial functions, we first introduce the following class of
matrices:

B(m,ω) =


−1 1

−1 1
. . . . . .

−1 1
ω

 ∈ Rm×m.

Then we define

A(m,ω) , B(m,ω)>B(m,ω) =


ω2 + 1 −1
−1 2 −1

. . . . . .
−1 2 −1

−1 1

 . (5)

The matrix A(m,ω) is widely-used in the analysis of lower bounds for convex optimization (Nes-
terov, 2013; Agarwal and Bottou, 2015; Lan and Zhou, 2017; Carmon et al., 2017; Zhou and Gu,
2019). We now present a decomposition of A(m,ω) based on Eq. (5).

Denote the l-th row of the matrix B(m,ω) by bl(m,ω)> and let

Li =
{
l : 1 ≤ l ≤ m, l ≡ i− 1(mod n)

}
, i = 1, 2, · · · , n.

Our construction is based on the following class of functions

r(x;λ0, λ1, λ2,m, ω) ,
1

n

n∑
i=1

ri(x;λ0, λ1, λ2,m, ω),

where

ri(x;λ0, λ1, λ2,m, ω) =


λ1

∑
l∈L1

∥∥bl(m,ω)>x
∥∥2
2

+ λ2 ‖x‖22 − λ0〈em,x〉, for i = 1,

λ1

∑
l∈Li

∥∥bl(m,ω)>x
∥∥2
2

+ λ2 ‖x‖22 , for i = 2, 3, · · · , n.
(6)

We can determine the smooth and strongly-convex coefficients of ri as follows.
Proposition 2.5. For any λ1 > 0, λ2 ≥ 0, ω <

√
2, we have that the ri are (4λ1 + 2λ2)-smooth

and λ2-strongly convex, and {ri}ni=1 is L′-average smooth where

L′ = 2

√
4

n
[(λ1 + λ2)2 + λ2

1] + λ2
2.

We define the subspaces {Fk}mk=0 as

Fk =

{
span{em, em−1, · · · , em−k+1}, for 1 ≤ k ≤ m,
{0}, for k = 0.

The following technical lemma plays a crucial role in our proof.
Lemma 2.6. For any λ0 6= 0, λ1 > 0, λ2 ≥ 0 and x ∈ Fk, 0 ≤ k < m, we have that

∇ri(x;λ0, λ1, λ2,m, ω) and proxγri(x) ∈
{
Fk+1, if k ≡ i− 1(mod n),

Fk, otherwise.

In short, if x ∈ Fk and let fi(x) , ri(x;λ0, λ1, λ2, ω), then there exists only one i ∈ {1, . . . , n}
such that hf (x, i, γ) could (and only could) provide additional information in Fk+1. The “only
one” property is important to the lower bound analysis for first order stochastic optimization algo-
rithms (Lan and Zhou, 2017; Zhou and Gu, 2019), but these prior constructions only work for IFO
rather than PIFO.

Lemma 2.6 implies that xt = 0 will host until algorithm A draws the component f1. Then, for any
t < T1 = mint{t : it = 1}, we have xt ∈ F0 and xT1

∈ F1. The value of T1 can be regarded as
the smallest integer such that xT1

could host. Similarly, we can define Tk to be the smallest integer
such that xTk ∈ Fk could host. We give the formal definition of Tk recursively and connect it to
geometrically distributed random variables in the following corollary.
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Corollary 2.7. Let
T0 = 0, and Tk = min

t
{t : t > Tk−1, it ≡ k (mod n)} for k ≥ 1. (7)

Then for any k ≥ 1 and t < Tk, we have xt ∈ Fk−1. Moreover, Tk can be written as sum of
k independent random variables {Yl}1≤l≤k, i.e., Tk =

∑k
l=1 Yl, where Yl follows a geometric

distribution with success probability ql = pl′ where l′ ≡ l (mod n), 1 ≤ l′ ≤ n.

The basic idea of our analysis is that we guarantee the minimizer of r lies in Fm and assure the
PIFO algorithm extend the space of span{x0,x1, . . . ,xt} slowly with t increasing. We know that
span{x0,x1, . . . ,xTk} ⊆ Fk by Corollary 2.7. Hence, Tk is just the quantity that reflects how
span{x0,x1, . . . ,xt} verifies. Because Tk can be written as the sum of geometrically distributed
random variables, we needs to introduce some properties of such random variables which derive the
lower bounds of our construction.
Lemma 2.8. Let {Yi}1≤i≤N be independent random variables, and Yi follows a geometric distri-
bution with success probability pi. Then

P

(
N∑
i=1

Yi >
N2

4(
∑N
i=1 pi)

)
≥ 1− 16

9N
. (8)

From Lemma 2.8, the following result implies how many PIFO calls we need.
Lemma 2.9. If M ≥ 1 satisfies minx∈FM f(x) − minx∈Rm f(x) ≥ 9ε and N = n(M + 1)/4,
then we have

min
t≤N

Ef(xt)− min
x∈Rm

f(x) ≥ ε.

3 MAIN RESULTS

We present the our lower bound results for PIFO algorithms and summarize all of results in Table 1
and 2 . We first start with smooth and strongly convex setting, then consider the general convex and
average smooth cases.
Theorem 3.1. For any PIFO algorithm A and any L, µ, n,∆, ε such that κ = L/µ ≥ 2, and

ε/∆ ≤ 0.5, there exist a dimension d = O
(

1 +
√
κ/n log (∆/ε)

)
and n L-smooth and µ-strongly

convex functions {fi : Rd → R}ni=1 such that f(x0) − f(x∗) = ∆. In order to find x̂ ∈ Rd such
that Ef(x̂)− f(x∗) < ε, A needs at least N queries to hf , where

N =

{
Ω ((n+

√
κn) log (∆/ε)) , for n = O(κ),

Ω
(
n+

(
n

1+(log(n/κ))+

)
log (∆/ε)

)
, for κ = O(n).

Remark 3.2. In fact, the lower bound in Theorem 3.1 perfectly match the upper bound of the PIFO
algorithm Point SAGA (Defazio, 2016) 3 in n = O(κ) case and match the the upper bound of the IFO
algorithm4 prox-SVRG (Hannah et al., 2018) in κ = O(n) case. Hence, the lower bound in Theorem
3.1 is tight, while Woodworth and Srebro (2016) only provided lower bound Ω (n+

√
κn log (1/ε))

in n = O(κ) case. The theorem also shows that the PIFO algorithm can not be more powerful than
the IFO algorithm in the worst case, because Hannah et al. (2018) proposed a same lower bound
for IFO algorithms.

Next we give the lower bound when the objective function is not strongly-convex.
Theorem 3.3. For any PIFO algorithm A and any L, n,B, ε such that ε ≤ LB2/4, there exist a

dimension d = O
(

1 +B
√
L/(nε)

)
and n L-smooth and convex functions {fi : Rd → R}ni=1

such that ‖x0 − x∗‖2 ≤ B. In order to find x̂ ∈ Rd such that Ef(x̂)−f(x∗) < ε,A needs at least

Ω
(
n+B

√
nL/ε

)
queries to hf .

3Defazio (2016) proves Point SAGA requires O ((n+
√
κn) log (1/ε)) PIFO calls to find x̂ such that

E‖x̂ − x∗‖22 < ε‖x0 − x∗‖22, which is not identical to the condition Ef(x̂) − f(x∗) < ε in The-
orem 3.1. However, it is unnecessary to worry about it because we also establish a PIFO lower bound
Ω ((n+

√
κn) log (1/ε)) for E‖x̂− x∗‖22 < ε‖x0 − x∗‖22 in Theorem F.1.

4IFO algorithm is apparently also a PIFO algorithm.
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Remark 3.4. The lower bound in Theorem 3.3 is the same as the one of Woodworth and Srebro’s
result. However, our construction only requires the dimension be O

(
1 +B

√
L/(nε)

)
, which is

much smaller than O
(
L2B4

ε2 log
(
nLB2

ε

))
in (Woodworth and Srebro, 2016).

Then we extend our results to the weaker assumption: that is, the objective function F is L-average
smooth (Zhou and Gu, 2019). We start with the case that F is strongly convex.

Theorem 3.5. For any PIFO algorithm A and any L, µ, n,∆, ε such that κ = L/µ ≥√
3/n

(
n
2 + 1

)
, and ε/∆ ≤ 0.00327, there exist a dimension d = O

(
n−1/4

√
κ log (∆/ε)

)
and

n functions {fi : Rd → R}ni=1 where the {fi}ni=1 are L-average smooth and f is µ-strongly convex,
such that f(x0)− f(x∗) = ∆. In order to find x̂ ∈ Rd such that Ef(x̂)− f(x∗) < ε, A needs at
least Ω

((
n+n3/4

√
κ
)

log (∆/ε)
)

queries to hf .

Remark 3.6. Compared with Zhou and Gu’s lower bound Ω
(
n+ n3/4

√
κ log (∆/ε)

)
for IFO al-

gorithms, Theorem 3.5 shows tighter dependency on n and supports PIFO algorithms additionally.

We also give the lower bound for general convex case under the L-average smooth condition.

Theorem 3.7. For any PIFO algorithm A and any L, n,B, ε such that ε ≤ LB2/4, there exist a

dimension d = O
(

1 +Bn−1/4
√
L/ε

)
and n functions {fi : Rd → R}ni=1 which the {fi}ni=1 are

L-average smooth and f is convex, such that ‖x0 − x∗‖2 ≤ B. In order to find x̂ ∈ Rd such that

Ef(x̂)− f(x∗) < ε, A needs at least Ω
(
n+Bn3/4

√
L/ε

)
queries to hf .

Remark 3.8. The lower bound in Theorem 3.7 is comparable to the one of Zhou and Gu’s result,
but our construction only requires the dimension beO

(
1 +Bn−1/4

√
L/ε

)
, which is much smaller

than O
(
n+Bn3/4

√
L/ε

)
in (Zhou and Gu, 2019).

4 CONSTRUCTIONS IN PROOF OF MAIN THEOREMS

We demonstrate the detailed constructions for PIFO lower bounds in this section. All the omitted
proof in this section can be found in Appendix for a detailed version.

4.1 STRONGLY CONVEX CASE

The analysis of lower bound complexity for the strongly-convex case depends on the following
construction.

Definition 4.1. For fixed L, µ,∆, n, let α =
√

2(L/µ−1)
n + 1. We define fSC,i : Rm → R as follows

fSC,i(x) = ri

(
x;

√
2(L− µ)n∆

α− 1
,
L− µ

4
,
µ

2
,m,

√
2

α+ 1

)
, for 1 ≤ i ≤ n, (9)

and

FSC(x) ,
1

n

n∑
i=1

fSC,i(x) =
L− µ

4n

∥∥∥∥∥B
(
m,

√
2

α+ 1

)
x

∥∥∥∥∥
2

2

+
µ

2
‖x‖22 −

√
2(L− µ)∆

n(α− 1)
〈em,x〉.

Note that the fSC,i are L-smooth and µ-strongly convex, and FSC(x0)− FSC(x∗) = ∆ (see Propo-
sition E.1 in Appendix for more details). Next we show that the functions {fSC,i}ni=1 are “hard
enough” for any PIFO algorithm A, and deduce the conclusion of Theorem 3.1.

Theorem 4.2. Suppose that

ε ≤ ∆

9

(
α− 1

α+ 1

)2

, and m =
1

4

(√
2
L/µ− 1

n
+ 1

)
log

(
∆

9ε

)
+ 1,

6
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where α =
√

2(L/µ−1)
n + 1. In order to find x̂ ∈ Rm such that EFSC(x̂) − FSC(x∗) < ε, PIFO

algorithm A needs at least N queries to hFSC . where

N =

Ω
((
n+

√
nL
µ

)
log
(

∆
9ε

))
, for L

µ ≥
n
2 + 1,

Ω
(
n+

(
n

1+log(nµ/L)

)
log
(

∆
9ε

))
, for 2 ≤ L

µ <
n
2 + 1.

For larger ε, we can apply following Lemma.

Lemma 4.3. For any PIFO algorithm A and any L, µ, n,∆, ε such that ε ≤ ∆/2, there exist n
L-smooth and µ-strongly convex functions {fi : R → R}ni=1 such that F (x0) − F (x∗) ≤ ∆. In
order to find x̂ ∈ R such that EF (x̂)− F (x∗) < ε, A needs at least Ω(n) queries to hF .

As we explain in Remark H.1, the lower bound in Lemma 4.3 is same as the lower bound in Theorem

4.2 for ε > ∆
9

(
α−1
α+1

)2

. In conclusion, we obtain Theorem 3.1.

4.2 CONVEX CASE

The analysis of lower bound complexity for non strongly-convex cases depends on the following
construction.

Definition 4.4. For fixed L,B, n, we define fC,i : Rm → R as follows

fC,i(x) = ri

(
x;

√
3

2

BL

(m+ 1)3/2
,
L

4
, 0,m, 1

)
(10)

and

FC(x) ,
1

n

n∑
i=1

fC,i(x) =
L

4n
‖B(m, 1)x‖22 −

√
3

2

BL

(m+ 1)3/2n
〈em,x〉.

Note that the fC,i are L-smooth and convex, and ‖x0 − x∗‖2 ≤ B (see Proposition G.1 in Appendix
for more details). Next we show the lower bound for functions fC,i defined above.

Theorem 4.5. Suppose that

ε ≤ B2L

384n
and m =

⌊√
B2L

24nε

⌋
− 1.

In order to find x̂ ∈ Rm such that EFC(x̂)−FC(x∗) < ε,A needs at least Ω
(
n+B

√
nL
ε

)
queries

to hFC .

To derive Theorem 3.3, we also need the following lemma in the case ε > B2L
384n .

Lemma 4.6. For any PIFO algorithm A and any L, n,B, ε such that ε ≤ LB2/4, there exist n
L-smooth and convex functions {fi : R → R}ni=1 such that |x0 − x∗| ≤ B. In order to find x̂ ∈ R
such that EF (x̂)− F (x∗) < ε, A needs at least Ω(n) queries to hF .

It is worth noting that if ε > B2L
384n , then Ω(n) = Ω

(
n+B

√
nL
ε

)
. Thus combining Theorem 4.5

and Lemma 4.6, we obtain Theorem 3.3.

4.3 AVERAGE SMOOTH CASE

Zhou and Gu (2019) established lower bounds of IFO complexity under the average smooth assump-
tion. Here we demonstrate that our technique can also develop lower bounds of PIFO algorithm
under this assumption.

7
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4.3.1 F IS STRONGLY CONVEX

For fixed L′, µ,∆, n, ε, we set L =
√

n(L′2−µ2)
2 − µ2, and consider {fSC,i}ni=1 and FSC defined in

Definition 4.1.

Proposition 4.7. For n ≥ 2, we have that

1. FSC(x) is µ-strongly convex and {fSC,i}ni=1 is L′-average smooth.

2. If L
′

µ ≥
√

3
n (n2 + 1), then we have

√
n
3L
′ ≤ L ≤

√
n
2L
′ and L/µ ≥ n/2 + 1.

Theorem 4.8. Suppose that

L′

µ
≥
√

3

n

(n
2

+ 1
)
, ε ≤ ∆

9

(√
2− 1√
2 + 1

)2

, and m =
1

4

√√ 2

n

L′

µ
+ 1

 log

(
∆

9ε

)
+ 1.

In order to find x̂ ∈ Rm such that EFSC(x̂) − FSC(x∗) < ε, PIFO algorithm A needs at least

Ω
((
n+ n3/4

√
L′

µ

)
log
(

∆
ε

))
queries to hFSC .

4.3.2 F IS CONVEX

For fixed L′, B, n, ε, we set L =
√

n
2L
′, and consider {fC,i}ni=1 and FC defined in Definition 4.4.

It follows from Proposition 2.5 that {fC,i}ni=1 is L′-average smooth.

Theorem 4.9. Suppose that

ε ≤
√

2

768

B2L′√
n

and m =

⌊
4
√

18

12
Bn−1/4

√
L′

ε

⌋
− 1.

In order to find x̂ ∈ Rm such that EFC(x̂) − FC(x∗) < ε, A needs at least Ω
(
n+Bn3/4

√
L′

ε

)
queries to hFC .

Similar to Lemma 4.6, we also need the following lemma for the case ε >
√

2
768

B2L′√
n

.

Lemma 4.10. For any PIFO algorithm A and any L, n,B, ε such that ε ≤ LB2/4, there exist n
functions {fi : R→ R}ni=1 which is L-average smooth, such that F (x) is convex and ‖x0−x∗‖2 ≤
B. In order to find x̂ ∈ R such that EF (x̂)− F (x∗) < ε, A needs at least Ω(n) queries to hF .

Similarly, note that if ε >
√

2
768

B2L′√
n

, then Ω(n) = Ω
(
n+Bn3/4

√
L′

ε

)
. In summary, we obtain

Theorem 3.7.

5 CONCLUSION AND FUTURE WORK

In this paper we have studied lower bound of PIFO algorithm for smooth convex finite-sum optimiza-
tion. We have given a tight lower bound of PIFO algorithms in the strongly convex case. We have
proposed a novel construction framework that is very useful to the analysis of proximal algorithms.
Based on this framework, we can extended our result to non-strongly convex, average smooth and
non-convex problems easily (Appendix J). It would be interesting to prove tight lower bounds in
more general setting, such as F is of (σ, L)-smoothness while each fi is (l, L)-smoothness.

REFERENCES

Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite sums. In ICML, 2015.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. Journal
of Machine Learning Research, 18(1):8194–8244, 2017.

8



Under review as a conference paper at ICLR 2020

Zeyuan Allen-Zhu. Katyusha X: Practical momentum method for stochastic sum-of-nonconvex
optimization. In ICML, 2018.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. In NIPS, 2015.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points I. arXiv preprint arXiv:1710.11606, 2017.

Aaron Defazio. A simple practical accelerated method for finite sums. In NIPS, 2016.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In NIPS, 2014.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. In NIPS, 2018.

Robert Hannah, Yanli Liu, Daniel O’Connor, and Wotao Yin. Breaking the span assumption yields
fast finite-sum minimization. In Advances in Neural Information Processing Systems, pages
2312–2321, 2018.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, 2013.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
programming, pages 1–49, 2017.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/kˆ2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Blake Woodworth and Nathan Srebro. Tight complexity bounds for optimizing composite objec-
tives. In NIPS, 2016.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number inde-
pendent access of full gradients. In NIPS, 2013.

Dongruo Zhou and Quanquan Gu. Lower bounds for smooth nonconvex finite-sum optimization. In
ICML, 2019.

9



Under review as a conference paper at ICLR 2020

A COMPARISON OF REQUIRED NUMBER OF DIMENSIONS

Previous Lower Bounds Our Lower Bounds

fi is L-smooth
and µ-strongly

convex

#PIFO = Ω
(
n+
√
κn log( 1

ε )
)

d = O
(
κn
ε log5

(
1
ε

))
(Woodworth and Srebro, 2016)

#PIFO = Ω
(
(n+

√
κn) log( 1

ε )
)

d = O
(√

κ
n log

(
1
ε

))
[Theorem 3.1]

fi is L-smooth
and convex

#PIFO = Ω
(
n+

√
nL
ε

)
d = O

(
L2

ε2 log
(

1
ε

))
(Woodworth and Srebro, 2016)

#PIFO = Ω
(
n+

√
nL
ε

)
d = O

(
1 +

√
L
nε

)
[Theorem 3.3]

{fi}ni=1 is L-average
smooth and f is
µ-strongly convex

#IFO = Ω
(
n+ n3/4

√
κ log

(
1
ε

))
d = O

(
n+ n3/4

√
κ log

(
1
ε

))
(Zhou and Gu, 2019)

#PIFO = Ω
((
n+ n3/4

√
κ
)

log
(

1
ε

))
d = O

(
n−1/4

√
κ log

(
1
ε

))
[Theorem 3.5]

{fi}ni=1 is L-average
smooth and f is

convex

#IFO = Ω
(
n+ n3/4

√
L
ε

)
d = O

(
n+ n3/4

√
L
ε

)
(Zhou and Gu, 2019)

#PIFO = Ω
(
n+ n3/4

√
L
ε

)
d = O

(
1 + n−1/4

√
L
ε

)
[Theorem 3.7]

Table 2: We compare our PIFO lower bounds with previous results, including the number of PIFO
or IFO calls to obtain ε-suboptimal point and the required number of dimensions in corresponding
construction.

B COMPARISON WITH EXISTING PROOFS

Recall the adversary function we used is (please see detailed defintion in Section 2)

r(x;λ0, λ1, λ2,m, ω) ,
1

n

n∑
i=1

ri(x;λ0, λ1, λ2,m, ω) (11)

=
λ1

n
x>A(m,ω)x + λ2 ‖x‖22 −

λ0

n
〈em,x〉, (12)

where

ri(x;λ0, λ1, λ2,m, ω) =


λ1

∑
l∈L1

∥∥bl(m,ω)>x
∥∥2
2

+ λ2 ‖x‖22 − λ0〈em,x〉, for i = 1,

λ1

∑
l∈Li

∥∥bl(m,ω)>x
∥∥2
2

+ λ2 ‖x‖22 , for i = 2, 3, . . . , n.

The constructions in previous work (Lan and Zhou, 2017; Zhou and Gu, 2019) for IFO algorithms
employ an aggregation of r , that is,

f(x) ,
1

n

n∑
i=1

fi(x), where fi(x) = nr(xi),

x =


x1

x2

...
xn

 ∈ Rmn, and xi ∈ Rm for i = 1, . . . , n.

10
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The disadvantage of their construction is in that the important property from Lemma 2.6, which we
can obtain information of only one extra dimension at each PIFO query, cannot be held. Note that
the framework in this paper is the first lower bound analysis that utilize the decomposition form (11),
which makes the “only one” property also hold for PIFO query. The previous works only consider
the presentation (12) and are unaware of the decomposition (11). Moreover, the fact r : Rm → R
and f : Rmn → R provide an intuitive understanding why our construction requires a smaller
dimension (see Table 2).

The analysis in (Woodworth and Srebro, 2016; Fang et al., 2018) considers a very complicated
approach to dealing with the proximal operator (completely different from how to deal with gradient
operator). In contrast, our construction holds “only one” property (Lemma 2.6) both for proximal
and gradient operator, which leads the proof is more concise. Our construction more clearly shows
that PIFO algorithms are not more powerful than IFO algorithms in the sense of lower complexity
bound. We also use our technique to prove the tight lower bound of PIFO algorithm when κ = O(n),
which is a new result.

C DETAILED PROOF FOR SECTION 2

In this section, we use ‖A‖ to denote the spectral radius of A.

For simplicity, let

B = B(m,ω) =


−1 1

−1 1
. . . . . .

−1 1
ω

 ∈ Rm×m,

b>l is the l-th row of B, and fi(x) = ri(x;λ0, λ1, λ2,m, ω).

Recall that
Li = {l : 1 ≤ l ≤ m, l ≡ i− 1(modn)}, i = 1, 2, · · · , n.

For 1 ≤ i ≤ n, let Bi be a submatrix which is formed from rows Li of B, that is

Bi = B[Li; ]

Then fi can be wriiten as

fi(x) = λ1 ‖Bix‖22 + λ2 ‖x‖22 − ηi〈em,x〉,
where η1 = λ0, ηi = 0, i ≥ 2.

Proof of Proposition 2.5. Note that

〈u,B>i Biu〉 = ‖Biu‖22
=
∑
l∈Li

(b>l u)2

=

{∑
l∈Li\{m}(um−l − um−l+1)2 + ω2u2

m (if m ∈ Li)∑
l∈Li(um−l − um−l+1)2

≤ 2 ‖u‖22 ,

where the last inequality is according to (x+y)2 ≤ 2(x2 +y2), and |l1− l2| ≥ n ≥ 2 for l1, l2 ∈ Li.
Hence,

∥∥B>i Bi

∥∥ ≤ 2, and∥∥∇2fi(x)
∥∥ =

∥∥2λ1B
>
i Bi + 2λ2I

∥∥ ≤ 4λ1 + 2λ2.

Next, observe that

‖∇fi(x)−∇fi(y)‖22 =
∥∥(2λ1B

>
i Bi + 2λ2I)(x− y)

∥∥2

2

11
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Let u = x− y.
Note that

blb
>
l u =

{
(um−l − um−l+1)(em−l − em−l+1), l < m,

ω2u1e1, l = m.

Thus, if m /∈ Li, then∥∥(2λ1B
>
i Bi + 2λ2I)u

∥∥2

2

=

∥∥∥∥∥2λ1

∑
l∈Li

(um−l − um−l+1)(em−l − em−l+1) + 2λ2u

∥∥∥∥∥
2

2

=
∑

m−l∈Li

[
(2λ1(ul − ul+1) + 2λ2ul)

2 + (−2λ1(ul − ul+1) + 2λ2ul+1)2
]

+
∑

m−l/∈Li
m−l+1/∈Li

(2λ2ul)
2

≤
∑

m−l∈Li

8
[
(λ1 + λ2)2 + λ2

1

]
(u2
l + u2

l+1) + 4λ2
2 ‖u‖

2
2 .

Similarly, if m ∈ Li, then

∥∥(2λ1B
>
i Bi + 2λ2I)u

∥∥2

2

≤
∑

m−l∈Li
l 6=0

8
[
(λ1 + λ2)2 + λ2

1

]
(u2
l + u2

l+1) + 4(λ1ω
2 + λ2)2u2

1 + 4λ2
2 ‖u‖

2
2 .

Therefore, we have

1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖22

≤ 1

n

[
m−1∑
l=1

8
[
(λ1 + λ2)2 + λ2

1

]
(u2
l + u2

l+1) + 4(2λ1 + λ2)2u2
1

]
+ 4λ2

2 ‖u‖
2
2

≤ 16

n

[
(λ1 + λ2)2 + λ2

1

]
‖u‖22 + 4λ2

2 ‖u‖
2
2 ,

where we have used (2λ1 + λ2)2 ≤ 2
[
(λ1 + λ2)2 + λ2

1

]
.

In summary, we get that {fi}1≤i≤n is L′-average smooth, where

L′ = 2

√
4

n
[(λ1 + λ2)2 + λ2

1] + λ2
2.

Proof of Lemma 2.6. For x ∈ Fk (k ≥ 1), we have

b>l x = 0 for l > k,

bl ∈ Fk for l < k,

bk ∈ Fk+1.

Consequently, for l 6= k, blb>l x = (b>l x)bl ∈ Fk, and bkb
>
k x ∈ Fk+1.

For k = 0, we have x = 0, and

∇f1(x) = λ0em ∈ F1,

∇fj(x) = 0 (j ≥ 2).

12
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Moreover, we suppose k ≥ 1, k ∈ Li. Since

∇fj(x) = 2λ1B
>
j Bjx + 2λ2x− ηjem

= 2λ1

∑
l∈Lj

b>l blx + 2λ2x− ηjem.

Hence, ∇fi(x) ∈ Fk+1 and ∇fj(x) ∈ Fk (j 6= i).

Now, we turn to consider u = proxγfj (x). We have(
2λ1B

>
j Bj +

(
2λ2 +

1

γ

)
I

)
u = ηjem +

1

γ
x,

i.e.,

u = c1(I + c2B
>
j Bj)

−1y,

where c1 = 1
2λ2+1/γ , c2 = 2λ1

2λ2+1/γ , and y = ηjem + 1
γx.

Note that

(I + c2B
>
j Bj)

−1 = I −B>j

(
1

c2
I + BjB

>
j

)−1

Bj .

If k = 0 and j > 1, we have y = 0 and u = 0.
If k = 0 and j = 1, we have y = λ0em. On this case, B1em = 0, so u = c1y ∈ F1.

For k ≥ 1, we know that y ∈ Fk. And observe that if |l − l′| ≥ 2, then b>l bl′ = 0, and conse-
quently BjB

>
j is a diagonal matrix, so we can assume that 1

c2
I+BjB

>
j = diag(βj,1, · · · , βj,|Lj |).

Therefore,

u = c1y − c1
|Lj |∑
s=1

βj,sblj,sb
>
lj,sy,

where we assume that Lj = {lj,1, · · · , lj,|Lj |}.

Thus, we have proxγfi(x) ∈ Fk+1 for k ∈ Li and proxγfj (x) ∈ Fk (j 6= i).

Proof of Corollary 2.7. Denote

span{∇fi1(x0), · · · ,∇fit(xt−1),proxγ1fi1
(x0), · · · ,proxγtfit

(xt−1)}

byMt. We know that xt ∈Mt.

Suppose thatMT ⊆ Fk−1 for some T and let T ′ = arg min t : t > T, it ≡ k(mod n).

By Lemma 2.6, for T < t < T ′, we can use a simple induction to obtain that

span{∇fit(xt−1),proxγtfit
(xt−1)} ⊆ Fk−1

andMt ⊆ Fk−1.

Moreover, since iT ′ ≡ k(mod n), we have

span{∇fiT ′ (xT ′−1),prox
γT ′
fi
T ′

(xT ′−1)} ⊆ Fk
andMT ′ ⊆ Fk.

Following from above statement, it is easily to check that for t < Tk, we have xt ∈Mt ⊆ Fk−1.

Next, note that

P (Tk − Tk−1 = s)

= P
(
iTk−1+1 6≡ k(mod n), · · · , iTk−1+s−1 6≡ k(mod n), iTk−1+s ≡ k(mod n)

)
= P

(
iTk−1+1 6= k′, · · · , iTk−1+s−1 6= k′, iTk−1+s = k′

)
= (1− pk′)s−1pk′ ,

13
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where k′ ≡ k(mod n), 1 ≤ k′ ≤ n. So Tk − Tk−1 is a geometric random variable with success
probability pk′ .

On the other hand, Tk − Tk−1 is just dependent on iTk−1+1, · · · , iTk , thus for l 6= k, Tl − Tl−1 is
independent with Tk − Tk−1.

Therefore,

Tk =

k∑
l=1

(Tl − Tl−1) =

k∑
i=1

Yl,

where Yl follows a geometric distribution with success probability ql = pl′ where l′ ≡ l(mod
n), 1 ≤ l′ ≤ n.

Proof of Remark 2.3. If each fi is L-smooth, then for any x,y ∈ Rm we have

‖∇fi(x)−∇fi(y)‖22 ≤ L
2 ‖x− y‖22 ,

and consequently,

1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖22 ≤ L
2 ‖x− y‖22 . (13)

If {fi}ni=1 is L-average smooth, then for any x,y ∈ Rm we have

‖∇f(x)−∇f(y)‖22 =
1

n2

∥∥∥∥∥
n∑
i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

2

≤ 1

n2

(
n∑
i=1

‖∇fi(x)−∇fi(y)‖2

)2

≤ 1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖22

≤ L2 ‖x− y‖22 .

Proof of Lemma 2.9. Denote minx∈Rm f(x) by f∗. For t ≤ N , we have

Ef(xt)− f∗ ≥ E[f(xt)− f∗|N < TM+1]P (N < TM+1)

≥ E[ min
x∈FM

f(x)− f∗|N < TM+1]P (N < TM+1)

≥ 9εP (TM+1 > N) ,

where TM+1 is defined in (7), and the second inequality follows from Corollary 2.7 (if N < TM+1,
then xt ∈ FM for t ≤ N ).

By Corollary 2.7, TM+1 can be written as TM+1 =
∑M+1
l=1 Yl, where {Yl}1≤l≤M+1 are independent

random variables, and Yl follows a geometric distribution with success probability ql = pl′ (l′ ≡
l(mod n), 1 ≤ l′ ≤ n). Moreover, recalling that p1 ≤ p2 ≤ · · · ≤ pn, we have

∑M+1
l=1 ql ≤ M+1

n .

Therefore, by Lemma 2.8, we have

P (TM+1 > N) = P

(
M+1∑
l=1

Yl >
(M + 1)n

4

)
≥ 1− 16

9(M + 1)
≥ 1

9
,

Hence, we can conclude that Ef(xN )− f∗ ≥ 9εP (TM+1 > N) ≥ ε.

14
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Remark In fact, a more strong conclusion hosts:

E
[
min
t≤N

f(xt)

]
− min

x∈Rm
f(x) ≥ ε.

D RESULTS ABOUT SUM OF GEOMETRIC DISTRIBUTED RANDOM
VARIABLES

Lemma D.1. Let X1 ∼ Geo(p1), X2 ∼ Geo(p2) be independent random variables. For any
positive integer j, if p1 6= p2, then

P (X1 +X2 > j) =
p2(1− p1)j − p1(1− p2)j

p2 − p1
, (14)

and if p1 = p2, then

P (X1 +X2 > j) = jp1(1− p1)j−1 + (1− p1)j . (15)

Proof.

P (X1 +X2 > j) =

j∑
l=1

P (X1 = l)P (X2 > j − l) + P (X1 > j)

=

j∑
l=1

(1− p1)l−1p1(1− p2)j−l + (1− p1)j

= p1(1− p2)j−1

j∑
l=1

(
1− p1

1− p2

)l−1

+ (1− p1)j

Thus if p1 = p2, P (X1 +X2 > j) = jp1(1− p1)j−1 + (1− p1)j .

For p1 6= p2,

P (X1 +X2 > j) = p1
(1− p1)j − (1− p2)j

p2 − p1
+ (1− p1)j

=
p2(1− p1)j − p1(1− p2)j

p2 − p1
.

Lemma D.2. For x ≥ 0 and j ≥ 2,

1− j − 1

x+ j/2
≤
(

x

x+ 1

)j−1

. (16)

Proof. We just need to show that

(x+ 1)j−1(x+ j/2)− (j − 1)(x+ 1)j−1 ≤ xj−1(x+ j/2),

that is

(x+ 1)j − j(x+ 1)j−1/2− xj−1(x+ j/2) ≤ 0,

i.e.,
j−2∑
l=0

[(
j

l

)
− j

2

(
j − 1

l

)]
xl ≤ 0.

Note that for l ≤ j − 2, (
j

l

)
− j

2

(
j − 1

l

)
=

(
1− j − l

2

)(
j

l

)
≤ 0,

thus inequality (16) hosts for x ≥ 0 and j ≥ 2.

15
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Lemma D.3. Let X1 ∼ Geo(p1), X2 ∼ Geo(p2), Y1, Y2 ∼ Geo
(
p1+p2

2

)
be independent random

variables with 0 < p1 ≤ p2 ≤ 1. Then for any positive integer j, we have

P (X1 +X2 > j) ≥ P (Y1 + Y2 > j) .

Proof. If j = 1, then P (X1 +X2 > j) = 1 = P (Y1 + Y2 > j).
If p1 = p2 = 1, then P (X1 +X2 > j) = 0 = P (Y1 + Y2 > j) for j ≥ 2.

Let j ≥ 2, and c , p1 + p2 < 2 be a given constant.

We prove that f(p1) , P (X1 +X2 > j) is a decreasing function.

Employing equation (14), for p1 < c/2, we have

f(p1) =
(c− p1)(1− p1)j − p1(1 + p1 − c)j

c− 2p1
,

and

f ′(p1) =
−(1− p1)j − j(c− p1)(1− p1)j−1 − (1 + p1 − c)j − jp1(1 + p1 − c)j−1

c− 2p1

+ 2
(c− p1)(1− p1)j − p1(1 + p1 − c)j

(c− 2p1)2

=
[c(1− p1)− j(c− p1)(c− 2p1)](1− p1)j−1 − [c(1 + p1 − c) + jp1(c− 2p1)](1 + p1 − c)j−1

(c− 2p1)2
.

Hence f ′(p1) < 0 is equivalent to

c(1− p1)− j(c− p1)(c− 2p1)

c(1 + p1 − c) + jp1(c− 2p1)
<

(
1 + p1 − c

1− p1

)j−1

. (17)

Note that
c(1− p1)− j(c− p1)(c− 2p1)

c(1 + p1 − c) + jp1(c− 2p1)

= 1− (j − 1)c(c− 2p1)

c(1 + p1 − c) + jp1(c− 2p1)

= 1− j − 1
1+p1−c
c−2p1

+ j p1c

Denote x = 1+p1−c
c−2p1

. If c ≤ 1, then p1 > 0 and x > 1−c
c ≥ 0. And if c > 1, then p1 ≥ c − 1 and

x ≥ 1+c−1−c
2−c = 0.

Rewrite inequality (17) as

1− j − 1

x+ jp1/c
<

(
x

x+ 1

)j−1

.

Recall inequality (16), we have(
x

x+ 1

)j−1

≥ 1− j − 1

x+ j/2
> 1− j − 1

x+ jp1/c
.

Consequently, f ′(p1) < 0 hosts for p1 < c/2 and j ≥ 2.
With the fact that limp1→c/2 f(p1) = f(c/2) according to equation (15), we have

P (X1 +X2 > j) ≥ P (Y1 + Y2 > j) .

for any positive integer j and 0 < p1 ≤ p2 ≤ 1.

16
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Corollary D.4. LetX1 ∼ Geo(p1), X2 ∼ Geo(p2), Y1, Y2 ∼ Geo
(
p1+p2

2

)
be independent random

variables with 0 < p1 ≤ p2 ≤ 1. Suppose Z is a random variable that takes nonnegative integer
values, and Z is independent with X1, X2, Y1, Y2. Then for any positive integer j, we have

P (Z +X1 +X2 > j) ≥ P (Z + Y1 + Y2 > j) .

Proof. With applying Lemma D.3, we have

P (Z +X1 +X2 > j) =

j−1∑
l=0

P (Z = l)P (X1 +X2 > l − j) + P (Z > j − 1)

≥
j−1∑
l=0

P (Z = l)P (Y1 + Y2 > l − j) + P (Z > j − 1)

= P (Z + Y1 + Y2 > j) .

Corollary D.5. Let {Xi}1≤i≤m be independent variables, and Xi follow a geometric distribution
with success probability pi. For any positive integer j, we have

P

(
m∑
i=1

Xi ≥ j

)
≥ P

(
m∑
i=1

Yi ≥ j

)
,

where {Yi}1≤i≤m are i.i.d. random variables, Yi ∼ Geo(
∑m
i=1 pi/m), and Yi is independent with

Xi′(1 ≤ i′ ≤ m).

Proof. Let

f(p1, p2, · · · , pm) , P

(
m∑
i=1

Xi ≥ j

)
.

Our goal is to minimize f(p1, p2, · · · , pm) such that
∑m
i=1 pi = S < 1.

By Corollary D.4, we know that

f(p1, p2, · · · , pi, · · · , pj , · · · , pm) ≥ f(p1, p2, · · · ,
pi + pj

2
, · · · , pi + pj

2
, · · · , pm).

This fact implies that (p1, p2, · · · , pm) such that p1 = p2 = · · · = pm = S/m is a minimizer of the
function f .

Lemma D.6. Let {Xi}1≤i≤m be i.i.d. random variables, and Xi follows a geometric distribution
with success probability p. We have

P

(
m∑
i=1

Xi >
m

4p

)
≥ 1− 16

9m
(18)

Proof. Denote
∑m
i=1Xi by τ . We know that

Eτ =
m

p
, Var(τ) =

m(1− p)
p2

.

17



Under review as a conference paper at ICLR 2020

Hence, we have

P
(
τ >

1

4
Eτ
)

= P
(
τ − Eτ > −3

4
Eτ
)

= 1− P
(
τ − Eτ ≤ −3

4
Eτ
)

≥ 1− P
(
|τ − Eτ | ≥ 3

4
Eτ
)

≥ 1− 16Var(τ)

9(Eτ)2

= 1− 16m(1− p)
9m2

≥ 1− 16

9m
.

Corollary D.7. Let {Xi}1≤i≤m be independent random variables, and Xi follows a geometric
distribution with success probability pi. Then

P

(
m∑
i=1

Xi >
m2

4(
∑m
i=1 pi)

)
≥ 1− 16

9m
.

E PROOF OF THEOREM 4.2

Proposition E.1. For any n ≥ 2, m ≥ 2, fSC,i and FSC in Definition 4.1 satisfy:

1. fSC,i is L-smooth and µ-strongly convex.

2. The minimizer of the function FSC is

x∗ = arg min
x∈Rm

FSC(x) =

√
2∆n(α+ 1)2

(L− µ)(α− 1)
(qm, qm−1, · · · , q)>,

where q = α−1
α+1 . Moreover, FSC(x∗) = −∆.

3. For 1 ≤ k ≤ m− 1, we have

min
x∈Fk

FSC(x)− FSC(x∗) ≥ ∆q2k. (19)

Proof.

1. Just recall Proposition 2.5.

2. Denote ξ =
√

2∆n(α+1)2

(L−µ)(α−1) .

Let ∇FSC(x) = 0, that is(
L− µ

2n
A

(√
2

α+ 1

)
+ µI

)
x =

L− µ
n(α+ 1)

ξem,

or 
ω2 + 1 + 2nµ

L−µ −1

−1 2 + 2nµ
L−µ −1

. . . . . .
−1 2 + 2nµ

L−µ −1

−1 1 + 2nµ
L−µ

x =


0
0
...
0
2ξ
α+1

 (20)

18
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Note that q = α−1
α+1 is a root of the equation

z2 −
(

2 +
2nµ

L− µ

)
z + 1 = 0,

and
ω2 + 1 +

2nµ

L− µ
=

1

q
,

2

α+ 1
= 1− q = −q2 + (1 +

2nµ

L− µ
)q.

Hence, it is easily to check that the solution to Equation (20) is

x∗ = ξ(qm, qm−1, · · · , q)>,

and
FSC(x∗) = − L− µ

2n(α+ 1)
ξ2q = −∆.

3. If x ∈ Fk, 1 ≤ k < m, then x1 = x2 = · · · = xm−k = 0.

Let y = xm−k+1:m ∈ Rk and Ak be last k rows and columns of the matrix in Equation
(21). Then we can rewrite F (x) as

Fk(y) , FSC(x) =
L− µ

4n
y>Aky −

L− µ
n(α+ 1)

ξ〈em,y〉.

Let ∇Fk(y) = 0, that is
2 + 2nµ

L−µ −1

−1 2 + 2nµ
L−µ −1

. . . . . .
−1 2 + 2nµ

L−µ −1

−1 1 + 2nµ
L−µ

y =


0
0
...
0
2ξ
α+1

 . (21)

By some calculation, the solution to above equation is

ξqk+1

1 + q2k+1

(
q−1 − q, q−2 − q2, · · · , q−k − qk

)>
.

Thus

min
x∈Fk

FSC(x) = min
y∈Rk

Fk(y) = − L− µ
2n(α+ 1)

ξ2q
1− q2k

1 + q2k+1
= ∆

1− q2k

1 + q2k+1
,

and

min
x∈Fk

FSC(x)− FSC(x∗) = ∆

(
1− 1− q2k

1 + q2k+1

)
= ∆q2k 1 + q

1 + q2k+1
≥ ∆q2k.

Proof of Theorem 4.2. Let M =
⌊

log(9ε/∆)
2 log q

⌋
, then we have

arg min
x∈FM

FSC(x)− FSC(x∗) ≥ ∆q2M ≥ 9ε,

where the first inequality is according to the third property of Proposition E.1.
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Following from Lemma 2.9, for M ≥ 1 and N = (M + 1)n/4, we have

min
t≤N

EFSC(xt)− FSC(x∗) ≥ ε.

Therefore, in order to find x̂ ∈ Rm such that EFSC(x̂)− FSC(x∗) < ε, A needs at least N queries
to hFSC .

We estimate − log(q) and N in two cases.

1. If L/µ ≥ n/2 + 1, then α =
√

2L/µ−1
n + 1 ≥

√
2. Observe that function h(β) =

1

log( β+1
β−1 )

− β
2 is increasing when β > 1. Thus, we have

− 1

log(q)
=

1

log
(
α+1
α−1

) ≥ α

2
+ h(
√

2)

=
1

2

√
2
L/µ− 1

n
+ 1 + h(

√
2)

≥
√

2

4

(√
2
L/µ− 1

n
+ 1

)
+ h(
√

2)

≥ 1

2

√
L/µ− 1

n
+

√
2

4
+ h(
√

2),

and

N = (M + 1)n/4 =
n

4

(⌊
log(9ε/∆)

2 log q

⌋
+ 1

)
≥ n

8

(
− 1

log(q)

)
log

(
∆

9ε

)
≥ n

8

(
1

2

√
L/µ− 1

n
+

√
2

4
+ h(
√

2)

)
log

(
∆

9ε

)

= Ω

((
n+

√
nL

µ

)
log

(
∆

9ε

))

2. If 2 ≤ L/µ < n/2 + 1, then we have

− log(q) = log

(
α+ 1

α− 1

)
= log

(
1 +

2(α− 1)

α2 − 1

)

= log

1 +

√
2L/µ−1

n + 1− 1

L/µ−1
n

 ≤ log

(
1 +

(
√

2− 1)n

L/µ− 1

)

≤ log

(
(
√

2− 1/2)n

L/µ− 1

)
≤ log

(
(2
√

2− 1)n

L/µ

)
, (22)

where the first inequality and second inequality follow from L/µ − 1 < n/2 and the last
inequality is according to 1

x−1 ≤
2
x for x ≥ 2.

Note that n ≥ 2, thus n
n−1 ≤ 2 ≤ n

L/µ−1 , and hence n ≥ L/µ, i.e. log(nµ/L) ≥ 0.

Therefore,

N = (M + 1)n/4 ≥ n

8

(
− 1

log(q)

)
log

(
∆

9ε

)
= Ω

((
n

1 + log(nµ/L)

)
log

(
∆

9ε

))
.
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Recalling that we assume that 9ε/∆ ≤ q2, thus we have

N ≥ n

8

(
− 1

log(q)

)
log

(
∆

9ε

)
≥ n

8

(
− 1

log(q)

)
(−2 log(q)) =

n

4
.

Therefore, N = Ω
(
n+

(
n

1+log(nµ/L)

)
log
(

∆
9ε

))
.

At last, we must to ensure that 1 ≤M < m, that is

1 ≤ log(9ε/∆)

2 log q
< m. (23)

Note that limβ→+∞ h(β) = 0, so −1/ log(q) ≤ α/2. Thus the above conditions are satisfied when

m =
log(∆/(9ε))

2(− log q)
+ 1 ≤ 1

4

(√
2
L/µ− 1

n
+ 1

)
log

(
∆

9ε

)
+ 1 = O

(√
L

nµ
log

(
∆

ε

))
,

and

ε

∆
≤ 1

9

(
α− 1

α+ 1

)2

.

F LOWER BOUND FOR ANOTHER FORM OF SUBOPTIMAL SOLUTION

Defazio (2016) showed that the PIFO algorithm Point SAGA has the convergence result
E ‖xt − x∗‖22 ≤ (q′)t ‖x0 − x∗‖2, where q′ satisfies −1/ log(q′) = O

(
n+

√
nL/µ

)
. To match

this form of upper bound, we point out that a similar result holds for {fSC,i}ni=1.
Theorem F.1. Suppose that

L

µ
≥ n

2
+ 1, ε ≤ 1

18

(√
2− 1√
2 + 1

)2

, and m =
1

2

(√
2
L/µ− 1

n
+ 1

)
log

(
1

18ε

)
+ 1.

In order to find x̂ ∈ Rm such that E ‖x̂− x∗‖22 < ε ‖x0 − x∗‖22, PIFO algorithm A needs at least

Ω
((
n+

√
nL
µ

)
log
(

1
ε

))
queries to hFSC .

Proof. Denote ξ =
√

2∆n(α+1)2

(L−µ)(α−1) , and M =
⌊

log(18ε)
2 log q

⌋
.

For 1 ≤M ≤ m/2, N = n(M + 1)/4 and t ≤ N , we have

E ‖xt − x∗‖22 ≥ E
[
‖xt − x∗‖22

∣∣∣∣N < TM+1

]
P (N < TM+1)

≥ E
[

min
x∈FM

‖x− x∗‖22

∣∣∣∣N < TM+1

]
P (N < TM+1)

≥ 1

9
min

x∈FM
‖x− x∗‖22 .

where TM+1 is defined in (7), the second inequality follows from Corollary 2.7 (if N < TM+1,
then xt ∈ FM for t ≤ N ), and the last inequality is established because of our Corollary 2.7 (More
detailed explanation refer to our proof of Lemma 2.9).

By Proposition E.1, we know that x∗ = ξ(qm, qm−1, · · · , q)>, and

‖x0 − x∗‖22 = ‖x∗‖22 = ξ2 q
2 − q2(m+1)

1− q2
.
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Note that if x ∈ FM , then x1 = x2 = · · · = xm−M = 0, thus

min
x∈FM

‖x− x∗‖22 = ξ2
m∑

l=m−M

q2(m−l+1) = ξ2 q
2(M+1) − q2(m+1)

1− q2
.

Thus, for t ≤ N and M ≤ m/2, we have

E ‖xt − x∗‖22
‖xt − x∗‖22

≥ 1

9

q2M − q2m

1− q2m

≥ 1

18
q2M =

1

18
q2b log(18ε)

2 log q c ≥ ε,

where the second inequality is due to

q2M − q2m

1− q2m
− q2M

2
=
q2M − 2q2m + q2(m+M)

2(1− q2m)

=
q2M

2(1− q2m)
(1− 2q2(m−M) + q2m)

≥ q2M

2(1− q2m)
(1− 2qm + q2m) ≥ 0.

Therefore, in order to find x̂ ∈ Rm such that E‖x̂−x∗‖22
‖x0−x∗‖22

< ε, A needs at least N queries to hFSC .

As we have showed in proof of Theorem 4.2, for L/µ ≥ n/2 + 1, we have

1

2

√
2
L/µ− 1

n
+ 1 ≥ − 1

log(q)
≥ c1

(√
L/µ− 1

n
+ 1

)
,

and

N =
n

4
(M + 1) ≥ n

4

log(18ε)

2 log q

≥ c1
8

(
n+

√
n(L/µ− 1)

)
log

(
1

18ε

)
= Ω

((
n+

√
nL

µ

)
log

(
1

ε

))
.

At last, we have to ensure that 1 ≤M ≤ m/2, that is

1 ≤ log(18ε)

2 log q
< m/2.

The above conditions are satisfied when

m =
log(1/(18ε))

− log q
+ 1 ≤ 1

2

(√
2
L/µ− 1

n
+ 1

)
log

(
1

18ε

)
+ 1 = O

(√
L

nµ
log

(
1

ε

))
,

and

ε ≤ 1

18
q2.

Observe that when L/µ ≤ n/2 + 1, we have α ≥
√

2 and q = α−1
α+1 ≥

√
2−1√
2+1

. Hence, we just need

ε ≤ 1
18

(√
2−1√
2+1

)2

≈ 0.00164.
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G PROOF OF THEOREM 4.5

Proposition G.1. For any n ≥ 2, m ≥ 2, following properties hold:

1. fC,i is L-smooth and convex.

2. The minimizer of the function FC is

x∗ = arg min
x∈Rm

FC(x) =
2ξ

L
(1, 2, · · · ,m)

>
,

where ξ =
√

3
2

BL
(m+1)3/2

. Moreover, FC(x∗) = −mξ
2

nL and ‖x0 − x∗‖22 ≤ B2.

3. For 1 ≤ k ≤ m, we have

min
x∈Fk

FC(x)− FC(x∗) =
ξ2

nL
(m− k). (24)

Proof.

1. Just recall Proposition 2.5.

2. Denote ξ =
√

3
2

BL
(m+1)3/2n

. Let ∇FC(x) = 0, that is

L

2n
A(1)x =

ξ

n
em,

or 
2 −1
−1 2 −1

. . . . . .
−1 2 −1

−1 1

x =


0
0
...
0
2ξ
L

 . (25)

Hence, it is easily to check that the solution to Equation (25) is

x∗ =
2ξ

L
(1, 2, · · · ,m)>,

and

FC(x∗) = −mξ
2

nL
.

Moreover, we have

‖x0 − x∗‖22 =
4ξ2

L2

m(m+ 1)(2m+ 1)

6

≤ 4ξ2

3L2
(m+ 1)3 = B2.

3. By similar calculation to above proof, we have

arg min
x∈Fk

FC(x) =
2ξ

L
(1, 2, · · · , k)>,

and

min
x∈Fk

FC(x) = −kξ
2

nL
.

Thus

min
x∈Fk

FC(x)− FC(x∗) =
ξ2

nL
(m− k).
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Proof of Theorem 4.5. Since ε ≤ B2L
384n , we have m ≥ 3. Let ξ =

√
3

2
BL

(m+1)3/2
.

For M =
⌊
m−1

2

⌋
≥ 1, we have m−M ≥ (m+ 1)/2, and

min
x∈FM

FC(x)− FC(x∗) =
ξ2

nL
(m−M) =

3B2L

4n

m−M
(m+ 1)3

≥ 3B2L

8n

1

(m+ 1)2
≥ 9ε,

where the first equation is according to the 3rd property in Proposition G.1 and the last inequality
follows from m+ 1 ≤ B

√
L/(24nε).

Similar to the proof of Theorem 4.2, by Lemma 2.9, we have

min
t≤N

EFC(xt)− FC(x∗) ≥ ε.

In other words, in order to find x̂ ∈ Rm such that EFC(x̂)−FC(x∗) < ε,A needs at leastN queries
to hF .

At last, observe that

N = (M + 1)n/4 =
n

4

⌊
m+ 1

2

⌋
≥ n(m− 1)

8

≥ n

8

(√
B2L

24nε
− 2

)

= Ω

(
n+B

√
nL

ε

)
,

where we have recalled ε ≤ B2L
384n in last equation.

H PROOF OF LEMMA 4.3, LEMMA 4.6 AND LEMMA 4.10

Proof of Lemma 4.6. Consider the following functions {gi}1≤i≤n, gi : R→ R, where

g1(x) =
L

2
x2 − nLBx,

gi(x) =
L

2
x2,

G(x) =
1

n

n∑
i=1

gi(x) =
L

2
x2 − LBx.

First observe that

x∗ = arg min
x∈R

G(x) = B,

G(0)−G(x∗) =
LB2

2
,

and |x0 − x∗| = B.

For i > 1, we have dgi(x)
dx |x=0 = 0 and proxγgi(0) = 0. Thus xt = 0 will host till our first-order

method A draws the component f1. That is, for t < T = arg min{t : it = 1}, we have xt = 0.
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Hence, for t ≤ 1
2p1

, we have

EG(xt)− F (x∗) ≥ E
[
G(xt)−G(x∗)

∣∣∣ 1

2p1
< T

]
P
(

1

2p1
< T

)
=
LB2

2
P
(

1

2p1
< T

)
.

Note that T follows a geometric distribution with success probability p1 ≤ 1/n, and

P
(
T >

1

2p1

)
= P

(
T >

⌊
1

2p1

⌋)
= (1− p1)

⌊
1

2p1

⌋

≥ (1− p1)
1

2p1 ≥ (1− 1/n)n/2 ≥ 1

2
,

where the second inequality follows from h(z) = log(1−z)
2z is a decreasing function.

Thus, for t ≤ 1
2p1

, we have

EG(xt)− F (x∗) ≥ LB2

4
≥ ε

Thus, in order to find x̂ ∈ R such that EF (x̂) − F (x∗) < ε, A needs at least 1
2p1
≥ n/2 = Ω (n)

queries to hG.

Proof of Lemma 4.10. Note that {gi}ni=1 defined in proof of Lemma 4.6 is also L-average smooth,
so Lemma 4.10 hosts for the same reason.

Proof of Lemma 4.3. Let B =
√

2∆/L. Then ε/∆ ≤ 1/2 is equivalent to ε ≤ LB2/4. Note
that {gi}ni=1 defined in proof of Lemma 4.6 is also µ-strongly convex for any µ ≤ L, and satisfy
|G(0)−G(x∗)| = ∆. Therefore Lemma 4.3 hosts for the same reason.

Remark H.1. Suppose that

ε

∆
>

1

9

(
α− 1

α+ 1

)2

, α =

√
2
κ− 1

n
+ 1.

1. If κ ≥ n/2 + 1, then we have α ≥
√

2 and(
n+
√
κn
)

log

(
∆

9ε

)
≤ 2

(
n+
√
κn
)

log

(
α+ 1

α− 1

)
≤ 4 (n+

√
κn)

α− 1
= O(n) +

4
√
κn

(1−
√

2/2)α

≤ O(n) +
4√

2− 1

√
κn√
κ/n

= O(n),

where the second inequality follows from log(1+x) ≤ x and the last inequality is according
to α ≥

√
2κ/n. That is

Ω(n) = Ω

((
n+
√
κn
)

log

(
∆

9ε

))
.

2. If 2 ≤ L/µ < n/2 + 1, then we have(
n

1 + log(nµ/L)

)
log

(
∆

9ε

)
≤
(

n

1 + log(nµ/L)

)(
2 log

(
α+ 1

α− 1

))
≤
(

n

1 + log(nµ/L)

)(
2 log

(
(2
√

2− 1)n

L/µ

))
= O(n),
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where the second inequality follows from (22). That is

Ω(n) = Ω

((
n

1 + log(nµ/L)

)
log

(
∆

9ε

)
+ n

)
.

I DETAILED PROOF FOR SECTION 4.3

Proof of Proposition 4.7.

1. It is easily to check that FSC(x) is µ-strongly convex. Following from Proposition 2.5, then
{fSC,i}ni=1 is L̂-average smooth, where

L̂ =

√√√√16

n

[(
L+ µ

4

)2

+

(
L− µ

4

)2
]

+ µ2

=

√
2(L2 + µ2)

n
+ µ2 = L′.

2. Clearly, L =
√

n(L′2−µ2)
2 − µ2 ≤

√
n
2L
′.

Furthermore, according to L′

µ ≥
√

3
n (n2 + 1), we have

L2 − n

3
L′2 =

n

2
(L′2 − µ2)− µ2 − n

3
L′2

=
1

2

(n
2

+ 1
)2

µ2 − n+ 2

2
µ2

=

(
n2

8
− 1

2

)
µ2 ≥ 0,

and, L/µ ≥
√

n
3L
′/µ ≥ n/2 + 1.

Proof of Theorem 4.8. By 2nd property of Proposition 4.7, we know that L/µ ≥ n/2 + 1. More-
over,

m =
1

4

√√ 2

n

L′

µ
+ 1

 log

(
∆

9ε

)
+ 1

≥ 1

4

(√
2
L/µ− 1

n
+ 1

)
log

(
∆

9ε

)
+ 1,

Then, by Theorem 4.2 5, in order to find x̂ ∈ Rm such that EFSC(x̂) − FSC(x∗) < ε, A needs at
least N queries to hFSC , where

N = Ω

((
n+

√
nL

µ

)
log

(
∆

ε

))

= Ω

n+

√
n
√
n/3L′

µ

 log

(
∆

ε

)
= Ω

((
n+ n3/4

√
L′

µ

)
log

(
∆

ε

))
.

5By the proof of Theorem 4.2, a larger dimension m does not affect the conclusion of the theorem.
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Proof of Theorem 4.9. Note that

ε ≤
√

2

768

B2L′√
n

=
B2L

384n
,

m =

⌊
4
√

18

12
Bn−1/4

√
L′

ε

⌋
− 1 =

⌊√
B2L

24nε

⌋
− 1.

By Theorem 4.5, in order to find x̂ ∈ Rm such that EFC(x̂) − FC(x∗) < ε, A needs at least N
queries to hFC , where

N = Ω

(
n+B

√
nL

ε

)

= Ω

n+B

√
n
√
n/2L′

ε


= Ω

(
n+Bn3/4

√
L′

ε

)
.

J NON-CONVEX CASE

In non-convex case, our goal is to find an ε-approximate stationary point x̂ of our objective function
f , which satisfies

‖∇f(x̂)‖2 ≤ ε. (26)

J.1 PRELIMINARIES

We first introduce a general concept about smoothness.
Definition J.1. For any differentiable function f : Rm+1 → R, we say f is (l, L)-smooth, if for any
x,y ∈ Rm we have

l

2
‖x− y‖22 ≤ f(x)− f(y)− 〈∇f(y),x− y〉 ≤ L

2
‖x− y‖22 ,

where L > 0, l ∈ R.

Especially, if f is L-smooth, then it can be checked that f is (−L,L)-smooth.

If f is (−σ, L)-smooth, in order to make the operator proxγf valid, we set 1
γ > σ to ensure the

function

f̂(u) , f(u) +
1

2γ
‖x− u‖22

is a convex function.

Next, we introduce a class of function which is original proposed in (Carmon et al., 2017). Let
GNC : Rm+1 → R be

GNC(x;α,m) =
1

2

∥∥B(m+ 1, 4
√
α)x

∥∥2

2
−
√
α〈e1,x〉+ α

m∑
i=1

Γ(xi),

where the non-convex function Γ : R→ R is

Γ(x) , 120

∫ x

1

t2(t− 1)

1 + t2
dt. (27)

We need following properties about GNC(x;α,m).
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Proposition J.2 (Lemmas 3,4, Carmon et al. (2017)). For any 0 < α ≤ 1, it holds that

1. Γ(x) is (−45(
√

3 − 1), 180)-smooth and GNC(x;α,m) is (−45(
√

3 − 1)α, 4 + 180α)-
smooth.

2. GNC(0;α,m)−minx∈Rm+1 GNC(x;α,m) ≤
√
α/2 + 10αm.

3. For x which satisfies that xm = xm+1 = 0, we have

‖∇GNC(x;α,m)‖2 ≥ α
3/4/4.

J.2 OUR RESULT

Theorem J.3. For any PIFO algorithmA and any L, σ, n,∆, ε such that ε2 ≤ ∆Lα
81648n , there exist a

dimension d =
⌊

∆L
√
α

40824nε2

⌋
+ 1 and n (−σ, L)-smooth nonconvex functions {fi : Rd → R}ni=1 such

that f(x0) − f(x∗) ≤ ∆. In order to find x̂ ∈ Rd such that E ‖∇f(x̂)‖2 < ε, A needs at least

Ω
(

∆L
√
α

ε2

)
queries to hf , where we set α = min

{
1, (
√

3+1)nσ
30L , n

180

}
.

Remark J.4. For n > 180, wehave

Ω

(
∆L
√
α

ε2

)
= Ω

∆

ε2
min

L,
√√

3 + 1

30

√
nσL,

√
nL√
180


 = Ω

(
∆

ε2
min{L,

√
nσL}

)
.

Thus, our result is comparable to the one of Zhou and Gu’s result (their result only related to
IFO algorithms, so our result is more strong), but our construction only requires the dimension
be O

(
1 + ∆

ε2 min{L/n,
√
σL/n}

)
, which is much smaller than O

(
∆
ε2 min{L,

√
nσL}

)
in (Zhou

and Gu, 2019).

J.3 CONSTRUCTIONS

Consider

F (x;α,m, λ, β) = λGNC(x/β;α,m). (28)

Similar to our construction we introduced in Section 2, we denote the l-th row of the matrix B(m+
1, 4
√
α) by bl and

Li = {l : 1 ≤ l ≤ m,m+ 1− l ≡ i(mod n)}, i = 1, 2, · · · , n. (29)

Let Gk = span{e1, e2, · · · , ek}, 1 ≤ k ≤ m, G0 = {0} and compose F (x;α,m, λ, β) to
f1(x;α,m, λ, β) = λn

2β2

∑
l∈Li

∥∥b>l x∥∥2

2
− λn

√
α

β 〈e1,x〉+ λα
m∑
i=1

Γ(xi/β),

fi(x;α,m, λ, β) = λn
2β2

∑
l∈Li

∥∥b>l x∥∥2

2
+ λα

m∑
i=1

Γ(xi/β), for i ≥ 2.
(30)

Clearly, F (x;α,m, λ, β) = 1
n

∑n
i=1 fi(x;α,m, λ, β). Moreover, by Proposition J.2, we have fol-

lowing properties about F (x;α,m, λ, β) and {fi(x;α,m, λ, β)}ni=1.
Proposition J.5. For any 0 < α ≤ 1, it holds that

1. fi(x;α,m, λ, β) is
(
−45(

√
3−1)αλ
β2 , (2n+180α)λ

β2

)
-smooth.

2. F (0;α,m, λ, β)−minx∈Rm+1 F (x;α,m, λ, β) ≤ λ(
√
α/2 + 10αm).

3. For x which satisfies that xm = xm+1 = 0, we have

‖∇F (x;α,m, λ, β)‖2 ≥
α3/4λ

4β
.
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Similar to Lemma 2.6, similar conclusion hosts for {fi(x;α,m, λ, β)}ni=1.

Lemma J.6. For x ∈ Fk, 0 ≤ k < m and γ <
√

2+1
60

β2

λα , we have

∇fi(x;α,m, λ, β),proxγfi(x) ∈
{
Gk+1, if k ≡ i− 1(mod n),

Gk, otherwise.

Proof. Let G(x) ,
m∑
i=1

Γ(xi) and Γ′(x) be the derivative of Γ(x).

First note that Γ′(0) = 0, so if x ∈ Gk, then

∇G(x) =
(
Γ′(x1),Γ′(x2), · · · ,Γ′(xm)

)> ∈ Gk.
Moreover, for x ∈ FG (k ≥ 1), we have

b>l x = 0 for l < m− k,
bl ∈ Gk for l > m− k,

bm−k ∈ Gk+1.

Consequently, for l 6= m− k, blb>l x = (b>l x)bl ∈ Gk, and bm−kb
>
m−kx ∈ Gk+1.

For k = 0, we have x = 0, and

∇f1(x) = λn
√
α/β e1 ∈ G1,

∇fj(x) = 0 (j ≥ 2).

For k ≥ 1, we suppose that m− k ∈ Li. Since

∇fj(x) =
λn

β2

∑
l∈Lj

b>l blx +
λα

β
∇G(x/β)− ηje1,

where η1 = λn
√
α/β, ηj = 0 for j ≥ 2.

Hence, ∇fi(x) ∈ Fk+1 and ∇fj(x) ∈ Fk (j 6= i).

Now, we turn to consider v = proxγfj (x).

We have

∇fj(v) +
1

γ
(v − x) = 0,

that is λn
β2

∑
l∈Lj

b>l bl +
1

γ
I

v +
λα

β
∇G(v/β) = ηje1 +

1

γ
x. (31)

Denote

A =
λn

β

∑
l∈Lj

b>l bl +
β

γ
I, u =

1

β
v, y = ηje1 +

1

γ
x,

then we have

Au +
λα

β
∇G(u) = y. (32)

Next, if s satisfies {
s > max{1, k} for j = 1,

s > k for j > 1,
(33)
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then we know that the s-th element of y is 0.

If s satisfies (33) and m − s ∈ Lj , then the s-th and (s + 1)-th elements of Au is
((ξ + β/γ)us − ξus+1) and (−ξus + (ξ + β/γ)us+1) respectively where ξ = λn/β. So by Equa-
tion (32), we have 

β
γ us + ξ(us − us+1) + 120λα

β
u2
s(us−1)
1+u2

s
= 0.

β
γ us+1 + ξ(us+1 − us) + 120λα

β

u2
s+1(us+1−1)

1+u2
s+1

= 0.

Following from Lemma J.9, for 120λα
β < (2+2

√
2)β

γ , we have us = us+1 = 0.
That is

1. if m− s ∈ Lj and s satisfies (33), then us = 0.

2. if m− s+ 1 ∈ Lj and s− 1 satisfies (33), then us = 0.

For s which satisfies (33), if m − s 6∈ Lj and m − s + 1 6∈ Lj , then the s-th element of Au is
(β/γ us). Similarly, by Equation (32), we have

β

γ
us +

120λα

β

u2
s(us − 1)

1 + u2
s

= 0.

Following from Lemma J.8, for 120λα
β < (2+2

√
2)β

γ , we have us = 0.

Therefore, we can conclude that

1. if s− 1 satisfies (33), then us = 0.

2. if s satisfies (33) and m− s+ 1 6∈ Lj , then us = 0.

Moreover, we have that

1. if k = 0 and j = 1, then m− 1,m− 2 6∈ Lj , so u2 = 0.

2. if k = 0 and j > 1, then for s = 1, we have m− s+ 1 6∈ Lj , so u1 = 0.

3. if k = 0, then for s > 2, we have s− 1 > 1 satisfies (33), so us = 0.

4. if k > 0, then for s > k + 1, we have s− 1 > k satisfies (33), so us = 0.

5. if k > 0 and m− k 6∈ Lj , then for s = k + 1, we have m− s+ 1 6∈ Lj , so uk+1 = 0.

In short,

1. if k = 0 and j > 1, then u ∈ G0.

2. if k = 0 and j = 1, then u ∈ G1.

3. if k > 1 and m− k 6∈ Lj , then u ∈ Gk.

4. if k > 1 and m− k ∈ Lj , then u ∈ Gk+1.

Remark J.7. In order to make the operator proxγfi valid, γ need to satisfy

γ <

√
3 + 1

90

β2

λα
<

√
2 + 1

60

β2

λα
.

So for any valid PIFO call, the condition about γ in Lemma J.6 must be satisfied.
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Lemma J.8. Suppose that 0 < λ2 < (2 + 2
√

2)λ1, then z = 0 is the only real solution to the
equation

λ1z + λ2
z2(z − 1)

1 + z2
= 0. (34)

Proof. Since 0 < λ2 < (2 + 2
√

2)λ1, we have

λ2
2 − 4λ1(λ1 + λ2) < 0,

and consequently, for any z, (λ1 + λ2)z2 − λ2z + λ1 > 0.

On the other hand, we can rewrite Equation (34) as

z
(
(λ1 + λ2)z2 − λ2z + λ1

)
= 0.

Clearly, z = 0 is the only real solution to Equation (34).

Lemma J.9. Suppose that 0 < λ2 < (2 + 2
√

2)λ1 and λ3 > 0, then z1 = z2 = 0 is the only real
solution to the equation λ1z1 + λ3(z1 − z2) + λ2

z21(z1−1)

1+z21
= 0.

λ1z2 + λ3(z2 − z1) + λ2
z22(z2−1)

1+z22
= 0.

(35)

Proof. If z1 = 0, then z2 = 0. So let assume that z1z2 6= 0. Rewrite the first equation of Equation
(35) as

λ1 + λ3

λ3
+
λ2

λ3

z1(z1 − 1)

1 + z2
1

=
z2

z1

Note that

1−
√

2

2
≤ z(z − 1)

1 + z2
.

Thus, we have

λ1 + λ3

λ3
+
λ2

λ3

1−
√

2

2
≤ z2

z1
.

Similarly, it also holds

λ1 + λ3

λ3
+
λ2

λ3

1−
√

2

2
≤ z1

z2
.

By 0 < λ2 < (2 + 2
√

2)λ1, we know that λ1 + 1−
√

2
2 λ2 > 0. Thus

λ1 + λ3

λ3
+
λ2

λ3

1−
√

2

2
> 1.

Since z1/z2 > 1 and z2/z1 > 1 can not hold at the same time, so we get a contradiction.

Following from Lemma J.6, we know following Lemma which is similar to Lemma 2.9.

Lemma J.10. If M ≥ 1 satisfies minx∈GM ‖∇F (x)‖2 ≥ 9ε and N = n(M + 1)/4, then we have

min
t≤N

E ‖∇F (xt)‖2 ≥ ε.
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Theorem J.11. Set

α = min

{
1,

(
√

3 + 1)nσ

30L
,
n

180

}
,

λ =
3888nε2

Lα3/2
,

β =
√

3λn/L,

m =

⌊
∆L
√
α

40824nε2

⌋
Suppose that ε2 ≤ ∆Lα

81648n . In order to find x̂ ∈ Rm+1 such that E ‖∇F (x̂)‖2 < ε, PIFO algorithm

A needs at least Ω
(

∆L
√
α

ε2

)
queries to hF .

Proof. First, note that fi is (−l1, l2)-smooth, where

l1 =
45(
√

3− 1)αλ

β2
=

45(
√

3− 1)L

3n
α ≤ 45(

√
3− 1)L

3n

(
√

3 + 1)nσ

30L
= σ,

l2 =
(2n+ 180α)λ

β2
=

L

3n
(2n+ 180α) ≤ L.

Thus each fi is (−σ, L)-smooth.

Next, observe that

F (x0)− F (x∗) ≤ λ(
√
α/2 + 10αm) =

1944nε2

Lα
+

38880nε2

L
√
α

m

≤ 1944

40824
∆ +

38880

40824
∆ = ∆.

For M = m− 1, we know that

min
x∈GM

‖∇F (x)‖2 ≥
α3/4λ

4β
=

α3/4λ

4
√

3λn/L
=

√
λL

3n

α3/4

4
= 9ε.

With recalling Lemma J.10, in order to find x̂ ∈ Rm+1 such that E ‖∇F (x̂)‖2 < ε, PIFO algorithm
A needs at least N queries to hF , where

N = n(M + 1)/4 = nm/4 = Ω

(
∆L
√
α

ε2

)
.

At last, we need to ensure that m ≥ 2. By ε2 ≤ ∆Lα
81648n , we have

∆L
√
α

40824nε2
≥ ∆Lα

40824nε2
≥ 2,

and consequently m ≥ 2.
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