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ABSTRACT

This paper studies the lower bound complexity for the optimization problem
whose objective function is the average of n individual smooth convex functions.
We consider the algorithm which gets access to gradient and proximal oracle for
each individual component. For the strongly-convex case, we prove such an algo-
rithm can not reach an e-suboptimal point in fewer than Q((n + v/kn) log(1/¢))
iterations, where « is the condition number of the objective function. This lower
bound is tighter than previous results and perfectly matches the upper bound of
the existing proximal incremental first-order oracle algorithm Point-SAGA. We
develop a novel construction to show the above result, which partitions the tridi-
agonal matrix of classical examples into n groups to make the problem difficult
enough to stochastic algorithms. This construction is friendly to the analysis of
proximal oracle and also could be used in general convex and average smooth
cases naturally.

1 INTRODUCTION

We consider the minimization of the following optimization problem

min f(z) £ %Zfl(zv), (D
i=1

zeRd

where the f;(x) are L-smooth and p-strongly convex. Accordingly, the condition number is defined
as k = L/u, which is typically larger than n in real-world applications. Many machine learning
models can be formulated as the above problem such as ridge linear regression, ridge logistic re-
gression, smoothed support vector machines, graphical models, etc. This paper focuses on the first
order methods for solving Problem (II]) which access to the Proximal Incremental First-order Oracle
(PIFO) for each individual component, that is,

hy(@,i7) 2 | fi(@), Vi), prox}, (@)]. @

where i € {1,...,n},y > 0, and the proximal operation is defined as

1
prox; (x) = arginin {fz(u) + ZH:C - u||§}
We also define the Incremental First-order Oracle (IFO)

PIFO provides more information than IFO and it would be potentially more powerful than IFO in
first order optimization algorithms. Our goal is to find an e-suboptimal solution & such that

N <
f(#) — min f(z) <e
by using PIFO or IFO.

There are several first-order stochastic algorithms to solve Problem (I). The key idea to lever-
age the structure of f is variance reduction which is effective for ill-conditioned problems. For
example, SVRG (Zhang et al., 2013; Johnson and Zhangl [2013} Xiao and Zhang, 2014) can
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find an e-suboptimal solution in O((n+x)log(1/e)) IFO calls, while the complexity of the clas-
sical Nesterov’s acceleration (Nesterov} [1983) is O(ny/klog(1/¢)). Similar result{'] also hold
for SAG (Schmidt et al., 2017) and SAGA (Defazio et al., [2014). In fact, there exists an ac-
celerated stochastic gradient method with /x dependency. |[Defazio| (2016) introduced a simple
and practical accelerated method called Point SAGA, which reduces the iteration complexity to
O((n + v/kn)log(1/e)). The advantage of Point SAGA is in that it has only one parameter to be
tuned, but the iteration depends on PIFO rather than IFO. |Allen-Zhu| (2017) proposed the Katyusha
momentum to accelerate variance reduction algorithms, which achieves the same iteration complex-
ity as Point-SAGA but only requires IFO calls.

The lower bound complexities of IFO algorithms for convex optimization have been well studied
(Agarwal and Bottou, 2015} |Arjevani and Shamir, 2015} [Woodworth and Srebro, 2016; [Carmon
et al, |2017; Lan and Zhoul 2017} Zhou and Gul 2019). Specifically, [Lan and Zhou! (2017) showed
that at least Q((n++/kn) log(1/¢)) TFO call{] are needed to obtain an e-suboptimal solution for
some complicated objective functions. This lower bound is optimal because it matches the upper
bound complexity of Katyusha (Allen-Zhul, 2017).

It would be interesting whether we can establish a more efficient PIFO algorithm than IFO one.
Woodworth and Srebro| (2016) provided a lower bound Q(n-++/knlog(1/¢)) for PIFO algorithms,
while the known upper bound of the PIFO algorithm Point SAGA [3] is O((n++/kn)log(1/¢€)).
The difference of dependency on n implies that the existing theory of PIFO algorithm is not perfect.
This gap can not be ignored because the number of components n is typically very large in many
machine learning problems. A natural question is can we design a PIFO algorithm whose upper
bound complexity matches [Woodworth and Srebro’s lower bound, or can we improve the lower
bound complexity of PIFO to match the upper bound of Point SAGA.

In this paper, we prove the lower bound complexity of PIFO algorithm is Q((n++/kn) log(1/¢)) for
smooth and strongly-convex f;, which means the existing Point-SAGA (Defaziol |2016) has achieved
optimal complexity and PIFO can not lead to a tighter upper bound than IFO. We provide a novel
construction, showing the above result by decomposing the classical tridiagonal matrix (Nesterov,
2013) into n groups. This technique is quite different from the previous lower bound complexity
analysis (Agarwal and Bottou, [2015}; [Woodworth and Srebrol 2016; Lan and Zhou, [2017; |Zhou and
Gul|2019). Moreover, it is very friendly to the analysis of proximal operation and easy to follow. We
also use this technique to study general convex and average smooth cases (Allen-Zhu, 2018} [Zhou
and Gu| [2019), and extend our result to non-convex problems (see Appendix [J).

2  OUR ANALYSIS FRAMEWORK

In this paper, we consider the Proximal Incremental First-order Oracle (PIFO) algorithm for smooth
convex finite-sum optimization. All proofs in this section can be found in Appendices [C|and [D] for
a detailed version. We analyze the lower bounds of the algorithms when the objective functions are
respectively strongly convex, general convex, smooth and average smooth (Zhou and Gu, |[2019).

Definition 2.1. For any differentiable function f : R™ — R,

o fis convex, if for any x,y € R™ it satisfies f(y) > f(x) + (Vf(x),y — ).
o fis p-strongly convex, if for any x,y € R™ it satisfies
f@) = @)+ (Vi(@),y - ) + Sl -yl

o fis L-smooth, if for any x,y € R™ it satisfies |V f(x) — V f(y)|l2 < L||x — yl|2-

ISVRG, SAG and SAGA only need to introduce the proximal operation for composite objective, that is,
fi(x) = gi(x) + h(x), where h may be non-smooth. Their iterations only depend on IFO when all the f;(x)
are smooth. Hence, we regard these algorithms only require IFO calls in this paper.

ZLan and Zhoufs construction requires f to be y-strongly convex and every f; to be convex, while this paper
studies the lower bound with stronger condition that is every f; is u-strongly convex. For the same lower bound
complexity, the result with stronger assumptions on the objective functions is stronger.
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Upper Bounds Previous Lower Bounds Our Lower Bounds

fiis L-smooth| O ((n + v/kn) log(L)) Q (n+ Vrnlog(3)) Q ((n+ /rn)log(2))
and p-strongly

convex with (Allen-Zhul 2017), IFO | (Woodworth and Srebro, [2016) [Theorem
n = 0O(k) (Detaziol 2016), PIFO PIFO PIFO
fi is L-smooth n 1 n 1 1
and M-Stror}g&y On+ 17+(1og<%))+ log(g) Q(n+ 174{10g(%))+ log(g) Q(n+ 7( @) log(s)
convex wit
(Hannah et al.} 2018), (Hannah et al.,|2018)) Theorem|3.1]
k= 0(n) [
IFO IFO PIFO
[nL [nL [nL
fi is L-smooth © (n log() + ) @ (n TV ) @ <n Ty
and convex (Allen-Zhu, [2017) (Woodworth and Srebro, [2016) [Theorem 3.
IFO PIFO PIFO
{f i}?:l is 3 L . .
Faverage |0 ((nentvi)los (1)) (e ntvilos (1)) o ((n s nd Vi) s (1))
SmMoo
and f is (Allen-Zhu, 2018) (Zhou and Gu,2019) [Theorem
p-strongly IFO IFO PIFO
convex
{f z} s .
L-average (@) (n—l-n% \/%) Q (n—l—n%\/z) Q (nﬁ-n%\/g)
smooth €
and f is (Allen-Zhu, |2018)) (Zhou and Gu, 2019) [Theorem |
convex IFO TIFO PIFO

Table 1: We compare our PIFO lower bounds with existing results of IFO or PIFO algorithms, where
t = L/u. Note that the call of PIFO could obtain more information than IFO. Hence, any PIFO
lower bound also can be regarded as an IFO lower bound, not vice versa.

Definition 2.2. We say differentiable functions {f;}?_,, fi : R™ — R, to be L-average smooth if
for any x,y € R™, they satisfy

1 n
~>IVhi@) - VA < L |z~ yl3- 3)
i=1

Remark 2.3. We point out that
. ifeach f; is L-smooth, then { f;}7, are L-average smooth.
2. tf{fz}?z1 are L-average smooth, then f(x) = > | fi(x) is L-smooth.

We present the formal definition for PIFO algorithm.

Definition 2.4. Consider a stochastic optimization algorithm A to solve Problem (I)). Let , be the
point obtained at time-step t and the algorithm starts with xq. The algorithm A is said to be a PIFO
algorithm if for any t > 0, we have

S sSpan {2130, ey Lp—1, vfll (wo), T 7Vfit (wtfl)vprox’}jl (wO)v e 7prOX’}; (wtfl)}v (4)

where i, is a random variable supported on [n] and takes P(i, = j) = p; for each t > 0 and
1< j<nwhere) 7 p;=1

Without loss of generality, we assume g = 0 and p; < pg < --- < p, to simplify our analysis.
Otherwise, we can take {f;(z) = f;(@ 4 20)}?_, into consideration. On the other hand, suppose
that p,, < ps, < --- < ps, where {s;}7_, is a permutation of [n]. Define {f;}?, such that
fsi = f;, then A takes component fbl in probability py,, i.e., A takes f; in probability p;, .
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To demonstrate the construction of adversarial functions, we first introduce the following class of
matrices:

-1 1
-1 1
B(m,w) — c Rmxm_
-1 1
w
Then we define
w2+l -1
-1 2 -1
A(m,w) 2 B(m,w) B(m,w) = . 5)
-1 2 -1
-1 1

The matrix A(m,w) is widely-used in the analysis of lower bounds for convex optimization (Nes-
terov,, 2013; |Agarwal and Bottou, 2015} |Lan and Zhou, 2017; |Carmon et al., 2017; Zhou and Gu)
2019). We now present a decomposition of A(m,w) based on Eq. .

Denote the I-th row of the matrix B(m,w) by b;(m,w) " and let
Li={l:1<I<m,l=i—1(modn)}, i=12-,n.
Our construction is based on the following class of functions

1 n
r(@; Ao, A, Ag,m,w) £ = ri(@; Ao, Ay Ao, s w),
n
i—1
where
A Y [lbi(m,w) T2+ A l@l|2 — Aolem, @), fori=1,
1EZ, ©)

Ti :c;)\o,)\l,)\z,m,w = .
( ) )\1[22 ||bl(m7w)T:cH§+)\2 |2, fori =2,3,--- ,n.
€L,

We can determine the smooth and strongly-convex coefficients of r; as follows.

Proposition 2.5. For any \; > 0, Xy > 0,w < /2, we have that the r; are (41 + 2)o)-smooth
and Xo-strongly convex, and {r;}?_, is L'-average smooth where

4
L'= 2\/n [(A1 + X2)2 + Af] + A3

We define the subspaces {Fj }77, as

F = Span{emaem—h e )em—k-‘rl}a forl1 <k < m,
"~ 4o}, fork = 0.

The following technical lemma plays a crucial role in our proof.
Lemma 2.6. For any \g # 0,A\1 > 0, X2 > 0and x € F, 0 < k < m, we have that
Frt1, ifk=1i—1(modn),
\% % 7)‘ 7A 7)\ s 110y d i € .

ri(@; Ao, Auy Azym,w) and prox;, () {fk, otherwise.
In short, if z € F}, and let f;(x) = r;(x; Ao, \1, A2, w), then there exists only one i € {1,...,n}
such that hy(x,%,y) could (and only could) provide additional information in Fjy1. The “only
one” property is important to the lower bound analysis for first order stochastic optimization algo-

rithms (Lan and Zhou!, 2017; [Zhou and Gul |2019)), but these prior constructions only work for IFO
rather than PIFO.

Lemma [2.6)implies that 2; = 0 will host until algorithm A draws the component f;. Then, for any
t < Ty = ming{t : iz = 1}, we have x; € Fy and &, € F1. The value of T} can be regarded as
the smallest integer such that 7, could host. Similarly, we can define T}, to be the smallest integer
such that x1, € Fj, could host. We give the formal definition of T}, recursively and connect it to
geometrically distributed random variables in the following corollary.
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Corollary 2.7. Let
Ty =0, and T}, = mtin{t it > Tio1,it =k (mod n)} fork > 1. @)

Then for any k > 1 and t < Ty, we have xy € Fi_1. Moreover, T}, can be written as sum of

k independent random variables {Y;}1<i<y, ie., T, = Zle Y], where Y] follows a geometric
distribution with success probability g, = py where I’ =1 (mod n),1 <’ < n.

The basic idea of our analysis is that we guarantee the minimizer of r lies in F,,, and assure the

PIFO algorithm extend the space of span{xg, x1, ..., x;} slowly with ¢ increasing. We know that
span{xg, 1, ...,z } C Fj by Corollary Hence, T} is just the quantity that reflects how
span{xo, x1,...,x;} verifies. Because T}, can be written as the sum of geometrically distributed

random variables, we needs to introduce some properties of such random variables which derive the
lower bounds of our construction.

Lemma 2.8. Let {Yi}lgig N be independent random variables, and Y; follows a geometric distri-
bution with success probability p;. Then

N
N2 16
P Yi>—— | >1- —. 8)
(Z 4(251@-)) o
From Lemma[2.8] the following result implies how many PIFO calls we need.

Lemma 2.9. If M > 1 satisfies mingecr,, f(x) — mingegm f(x) > 9c and N = n(M + 1) /4,
then we have

?%i]{]lEf(mt) - wmin f(x) > e.

ER™

3 MAIN RESULTS

We present the our lower bound results for PIFO algorithms and summarize all of results in Table/[I]
and[2]. We first start with smooth and strongly convex setting, then consider the general convex and
average smooth cases.

Theorem 3.1. For any PIFO algorithm A and any L,p,n,A e such that k = L/u > 2, and
e/A < 0.5, there exist a dimension d = O (1 + /k/nlog (A/s)) and n L-smooth and p-strongly

convex functions { f; : RY — R}, such that f(xo) — f(x*) = A. In order to find € R? such
that Ef (&) — f(x*) < e, A needs at least N queries to hy, where

N Q ((n++/kn)log (A/e)), forn = O(k),

0 (n + (m) log (A/E)) ,  Jork=0(n).
Remark 3.2. In fact, the lower bound in Theorem|3.1|\perfectly match the upper bound of the PIFO
algorithm Point SAGA (Defaziol 12016 )ﬂin n = O(k) case and match the the upper bound of the IFO
alorithnﬂprox-SVRG (Hannah et al.||2018) in & = O(n) case. Hence, the lower bound in Theorem
is tight, while |Woodworth and Srebro|(2016) only provided lower bound ) (n++/knlog (1/¢))
inn = O(k) case. The theorem also shows that the PIFO algorithm can not be more powerful than

the IFO algorithm in the worst case, because Hannah et al.| (2018) proposed a same lower bound
for IFO algorithms.

Next we give the lower bound when the objective function is not strongly-convex.

Theorem 3.3. For any PIFO algorithm A and any L,n, B, e such that ¢ < LB? /4, there exist a
dimension d = O (1 + B\/W) and n L-smooth and convex functions {f; : R4 — R},
such that ||zo — z* ||, < B. In order to find & € R? such that Ef () — f(x*) < &, A needs at least

Q (n—|—B\/nL/€) queries to hy.

Defazio| (2016) proves Point SAGA requires O ((n + v/&n)log (1/¢)) PIFO calls to find & such that
E|l& — |3 < el|lzo — «*||3, which is not identical to the condition Ef(&) — f(x*) < e in The-
orem However, it is unnecessary to worry about it because we also establish a PIFO lower bound
Q((n+ rn)log (1/¢)) for E||& — x*||2 < ]|l@o — 2*||3 in Theorem

*IFO algorithm is apparently also a PIFO algorithm.
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Remark 3.4. The lower bound in Theorem is the same as the one of|Woodworth and Srebrol's
result. However, our construction only requires the dimension be O (1 + B\/L/ (ne)) which is

much smaller than O (L2B4 log (%BQ)) in (Woodworth and Srebro| |2016)).

£2
Then we extend our results to the weaker assumption: that is, the objective function F' is L-average
smooth (Zhou and Gul 2019). We start with the case that F' is strongly convex.

Theorem 3.5. For any PIFO algorithm A and any L,p,n,A e such that k = L/u >
V3/n (% +1), and e/ A < 0.00327, there exist a dimension d = O (n=Y*/klog (A/e)) and
n functions { f; : R? — R}, where the { f;}"_, are L-average smooth and f is ji-strongly convex,
such that f(xo) — f(x*) = A. In order to find & € R? such that Ef (2) — f(x*) < ¢, A needs at
least Q ((n+n*/4\/k) log (A/e)) queries to hy.

Remark 3.6. Compared with|Zhou and Gu['s lower bound X (n + n3/4\/klog (A /<)) for IFO al-
gorithms, Theorem shows tighter dependency on n and supports PIFO algorithms additionally.

We also give the lower bound for general convex case under the L-average smooth condition.
Theorem 3.7. For any PIFO algorithm A and any L,n, B, ¢ such that ¢ < LB? /4, there exist a
dimension d = O (1 + Bn~ /4 M) and n functions { f; : R* — R}™_, which the {f;}"_, are
L-average smooth and f is convex, such that |xo — x*||, < B. In order to find & € R? such that
Ef(x) — f(x*) < e, Aneeds at least (n + Bnd3/4 \/T/E> queries to hy.

Remark 3.8. The lower bound in Theorem [3.7]is comparable to the one of [Zhou and Gu['s result,
but our construction only requires the dimension be O (1 + Bn=1/%/ L/E) , which is much smaller

than O (n + Bn3/4\/L/5) in (Zhou and Gul |2019).

4 CONSTRUCTIONS IN PROOF OF MAIN THEOREMS

We demonstrate the detailed constructions for PIFO lower bounds in this section. All the omitted
proof in this section can be found in Appendix for a detailed version.

4.1 STRONGLY CONVEX CASE

The analysis of lower bound complexity for the strongly-convex case depends on the following
construction.

Definition 4.1. For fixed L, i, A, n, let o = 4/ W + 1. We define fsc; : R™ — R as follows

2(L—pnA L—p p 2 .
(x) =71 | 231/ Eom,y/ <i<
fSC,z(x) T (mv a—1 ) 4 9 27ma CY+1 3f0r1 1M, (9)
5 2
B<m,,/>gc
a+1

o 2
+ )3 -
2
Note that the fsc ; are L-smooth and p-strongly convex, and Fsc(xg) — Fsc(z*) = A (see Propo-
sition in Appendix for more details). Next we show that the functions { fsc;}7, are “hard
enough” for any PIFO algorithm A, and deduce the conclusion of Theorem [3.1]

and

L 2(L — p)A

K 0 (em,x).

Fc(z) & %Zfsc,i@) =
=1

4n n(a —

Theorem 4.2. Suppose that

A fa—-1)° 1( [ L/ju—1 A
6‘9(@—}-1) , and m 4< - + 0g<9€)+ )
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where o = 4/ Lffl) + 1. In order to find & € R™ such that EFsc(&) — Fsc(x*) < €, PIFO
algorithm A needs at least N queries to hg,.. where

(G ). mEzaen
Q(H(W)Mg(%))’ for2<L<miy

For larger €, we can apply following Lemma.

Lemma 4.3. For any PIFO algorithm A and any L, u,n, A e such that € < A/2, there exist n

L-smooth and p-strongly convex functions {f; : R — R}, such that F(zo) — F(z*) < A. In

order to find & € R such that EF (%) — F(x*) < ¢, A needs at least Q(n) queries to hp.

As we explain in Remark [H.T] the lower bound in Lemma[4.3]is same as the lower bound in Theorem
2

for e > % (2—;}) . In conclusion, we obtain Theorem 3.1

4.2 CONVEX CASE
The analysis of lower bound complexity for non strongly-convex cases depends on the following

construction.
Definition 4.4. For fixed L, B, n, we define fc; : R™ — R as follows

3 BL L
f 703 m7 1)

fea@) = (“” 2 d (10

and

Al L 3 BL
Fe(x) = E;fc,i(m) = ||B(m71)33||§ - \g(m_i_l)y,/%<em7$>-

Note that the fc ; are L-smooth and convex, and [|z:o — x*||, < B (see Proposition|G.1in Appendix
for more details). Next we show the lower bound for functions fc ; defined above.

Theorem 4.5. Suppose that

In order to find & € R™ such that EFc(2) — Fe(x*) < €, A needs at least (n +B "L) queries

&
to hFC-
B?L

To derive Theorem we also need the following lemma in the case € > 7=

Lemma 4.6. For any PIFO algorithm A and any L,n, B, such that ¢ < LB?/4, there exist n
L-smooth and convex functions {f; : R — R}"_; such that |xq — x*| < B. In order to find & € R
such that EF (%) — F(z*) < ¢, A needs at least §(n) queries to hp.

It is worth noting that if ¢ > %, then Q(n) = Q (n +B %) Thus combining Theorem

and Lemma[4.6] we obtain Theorem 3.3]

4.3  AVERAGE SMOOTH CASE

Zhou and Gu|(2019) established lower bounds of IFO complexity under the average smooth assump-
tion. Here we demonstrate that our technique can also develop lower bounds of PIFO algorithm
under this assumption.
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4.3.1 F'1S STRONGLY CONVEX

For fixed L', i, A, n, e, we set L = M

Definition 4.1
Proposition 4.7. Forn > 2, we have that

— 12, and consider { fsc,;}? , and Fsc defined in

1. Fyc(z) is p-strongly convex and { fsc;}7 is L'-average smooth.

2. If% > \/g(% + 1), then we have \/5L' < L < /5L and L/ju > n/2 + 1.
Theorem 4.8. Suppose that

2
L 3/n A(V2-1 1 2L A
“ > /2 (2 1), <= candm =~ [ [y/2=+1]log (=) + 1.
wo n(2+ €_9<\/§+1> anam =y nu+ og<9€>—|—

In order to find & € R™ such that EFsc(&) — Fsc(x*) < ¢, PIFO algorithm A needs at least

Q ((n + n3/4\/%) log (%)) queries to hp,,.

4.3.2 F1S CONVEX

For fixed L', B,n, e, we set L = /%L, and consider { fc;}}-, and F¢ defined in Deﬁnition
It follows from Proposition [2.5]that { fc ; }7-, is L’-average smooth.

Theorem 4.9. Suppose that
2 B2L/ V1 [ L'
e < i and m = —8an1/4 — | —1.
768 \/n 12 €

In order to find & € R™ such that EF¢(&) — Fe(x*) < €, A needs at least (n + Bn?/%,/ %)
queries to hp.,.

Similar to Lemma we also need the following lemma for the case € > % B\;g .

Lemma 4.10. For any PIFO algorithm A and any L,n, B, ¢ such that ¢ < LB? /4, there exist n
Sunctions { f; : R — R}, which is L-average smooth, such that F(x) is convex and ||xg — 2*||2 <
B. In order to find & € R such that EF (&) — F(x*) < e, A needs at least Q)(n) queries to hp.

Similarly, note that if ¢ > W\ﬁs B\j%, then Q(n) = Q (n + Bn3/%, /%) In summary, we obtain
Theorem 3.7

5 CONCLUSION AND FUTURE WORK

In this paper we have studied lower bound of PIFO algorithm for smooth convex finite-sum optimiza-
tion. We have given a tight lower bound of PIFO algorithms in the strongly convex case. We have
proposed a novel construction framework that is very useful to the analysis of proximal algorithms.
Based on this framework, we can extended our result to non-strongly convex, average smooth and
non-convex problems easily (Appendix J). It would be interesting to prove tight lower bounds in
more general setting, such as F is of (o, L)-smoothness while each f; is ({, L)-smoothness.
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A COMPARISON OF REQUIRED NUMBER OF DIMENSIONS

Previous Lower Bounds

Our Lower Bounds

fi is L-smooth
and p-strongly
convex

#PIFO = Q (n + v/wnlog(1))
d=0 (%log’ (2))
(Woodworth and Srebro, [2016))

#PIFO = Q ((n + v/rm) log(1))
d=0(\/Tlog (1))

[Theorem |

fi is L-smooth
and convex

#PIFO = 0 (n+ \/2L)
a=0(L0g(1))

(Woodworth and Srebro, [2016))

#PIFO = 0 (n+/2E)
a=0(1+ /L)
[Theorem

{fi}™_, is L-average
smooth and f is
u-strongly convex

#IFO = Q(n—l—n?’/‘l\flog (1))
d=0 (n+n%*/rlog (1))
(Zhou and Gul, [2019)

APIFO = Q ((n +n3/4/k) log (1))
d=0 (n""*/rlog (1))

[Theorem

{fi}_, is L-average
smooth and f is
convex

#TFO = Q (n +n3/4\/§)
d=0 (n+n3/4\/§>

(Zhou and Gu, |2019)

#PIFO = Q (n n n3/4\/g)

d=0 (14014 /L)
[Theorem

Table 2: We compare our PIFO lower bounds with previous results, including the number of PIFO
or IFO calls to obtain e-suboptimal point and the required number of dimensions in corresponding

construction.

B COMPARISON WITH EXISTING PROOFS

Recall the adversary function we used is (please see detailed defintion in Section [2)

r(x; Moy A1, A2, M, w)

where

ri(T; Aoy A1, A2, m,w) =

Z

)\1
n

x5 Aoy A1, Ao, M, w)

el A(m,w)e + A |5 -

A Y [bi(m,w) TS + Az |22 — Aolem, ),
lely

(1)
(12)

Ao
o —(em,x),

fort =1,

A YD Hbl(m,w)Tm||z+)\g 3, fori =2,3,...,n
€L,

The constructions in previous work (Lan and Zhou| [2017; Zhou and Gul 2019)) for IFO algorithms
employ an aggregation of r , that is,

s I
_E;fi(aj)

T
T2

, where fi(z) = nr(z:),

eR™ andx; e R™fori=1,...,n

Ln

10
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The disadvantage of their construction is in that the important property from Lemma[2.6] which we
can obtain information of only one extra dimension at each PIFO query, cannot be held. Note that
the framework in this paper is the first lower bound analysis that utilize the decomposition form (TT),
which makes the “only one” property also hold for PIFO query. The previous works only consider
the presentation and are unaware of the decomposition (TI). Moreover, the fact 7 : R™ — R
and f : R™ — R provide an intuitive understanding why our construction requires a smaller
dimension (see Table [2).

The analysis in (Woodworth and Srebro, 2016} [Fang et al., 2018) considers a very complicated
approach to dealing with the proximal operator (completely different from how to deal with gradient
operator). In contrast, our construction holds “only one” property (Lemma [2.6) both for proximal
and gradient operator, which leads the proof is more concise. Our construction more clearly shows
that PIFO algorithms are not more powerful than IFO algorithms in the sense of lower complexity
bound. We also use our technique to prove the tight lower bound of PIFO algorithm when x = O(n),
which is a new result.

C DETAILED PROOF FOR SECTION [2|

In this section, we use || A|| to denote the spectral radius of A.

For simplicity, let

-1 1
-1 1
B = B(m,w) = a e R™*™
-1 1
w
b/ is the I-th row of B, and f;(x) = ri(x; Ao, A1, A2, m, w).

Recall that
L;={l:1<1<m,l=i—1(modn)},i=1,2,--- ,n.

For 1 < i < n, let B; be a submatrix which is formed from rows £; of B, that is
B; = B[L;;]
Then f; can be wriiten as
fi(®) = M | Bazls + A2 |@]|5 — ni(em, @),
where 1 = A\g,n; = 0,7 > 2.
Proof of Proposition Note that
(u, B Bju) = | Bjul);

= (bu?

leL;
_ Pie fmyUm—t — Um—141)% +w?u2, (ifm € L;)
Zleﬁi (Um—l - Um—l+1)2
2
< 2|ull;,

where the last inequality is according to (z+y)? < 2(z2+y?), and |l; —ls| > n > 2forly,ls € L;.
Hence, BZ-TBiH < 2, and

V2 fi(z)|| = ||2A1B; B; + 2X2I|| < 41 + 2.

Next, observe that

IVfi(@) — V)2 = |2\ B] B, + 22I)(x — y)|

11
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Letu=x —y.
Note that

Um—1 — Um—1+1)€m—1 — Em—[+1
bzblTUZ{LzTZlel mt1)(Em mt1);
?

Thus, if m ¢ £;, then

|2\ B B; + 2\ Il
2

2)\1 Z (um—l - um—l+1)(em—l - em—l+1) + 2)\2'“'
leL;

2

m—IleL;

< Z (M + A2)? + )\%] (uf +ujyy) + 43 HUII§
m—IleL;

Similarly, if m € L;, then

|2\ B] B + 2\ Iul;

< Z )\1 + /\2 + )\ﬂ (ul2 + U12+1) + 4(/\1W2 + >‘2)2U%

m—IleL;
1£0

Therefore, we have

n

2 L IVA(E) - VAW

m—1
1
<- [Z 8 [\ + A2)? + N2] (uf +ufyy) +4(2A1 + X2)?u
=1
16 2 2 2 2 2
< o (A1 4 A2) + AT] [luelly + 423 [Jull3

where we have used (2A1 + A2)? < 2 [(A1 4+ X2)? + Af).

In summary, we get that { f; }1<i<, is L’-average smooth, where

4
L'= 2\/n (A1 + X2)2 4+ Af] + A3.

Proof of Lemma[2.6] For x € F, (k > 1), we have

b/ x=0forl >k,
b, € Fi forl < k,
br € Frt1.
Consequently, for [ # k, blblTa: = (blTa:)bl € Fi, and bkbzm € Frt1-
For k = 0, we have x = 0, and
Vfi(x) = doen € Fi,
Vfi(®)=0(j > 2).

12

> @M = wg) + 200w)? + (<20 (w — wg) + 200u)?] + Y

2
+ A3 [Jull; -

2
2l +4X2 [l

(2)\2Ul)2
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Moreover, we suppose k > 1, k € L£;. Since
Vfi(x) =20\ B/ Bjz + 2\x — njen,

=2\ Z b/ bix 42Xz — nje,.
leﬁj

Hence, Vf;(x) € Fiy1 and Vf;(x) € Fi (§ #9).

Now, we turn to consider u = prox}j (x). We have

1 1
(2/\1_BJTB] + <2)\2 + ’Y> I) U =n;e, + ;GC,

ie.,
_ Tp -1
u=c (I +cB; Bj) 'y,
where ¢; = 5=, 2 = 522t —, and y = e, + 1
L= 2371/ %2 = 225+1 /4 jEmM T b
Note that

_ 1 -
(I+cB/B;)™' =I—-B/ (CzI+BjB]T> B;.
Ifk=0andj > 1, wehavey = 0 and u = 0.
If k =0and j = 1, we have y = A\ge,,,. On this case, Bie,, = 0,s0u = c1y € F.

For k > 1, we know that y € Fj. And observe that if || — I'| > 2, then blTblr = 0, and conse-
quently BjBJT is a diagonal matrix, so we can assume that éI—i—BjBJT = diag(Bj1, -, 5j,|£,~\)-
Therefore,
1£]
u=cy-—oc Z B,sbi, b Y,
s=1

where we assume that £; = {1, ,1jc,(}-

Thus, we have prox} (x) € Fi41 for k € £; and prox}j (x) € Fr (j #1).

Proof of Corollary2.7] Denote
span{V f;, (o), -,V fi,(x1-1), prox'}il1 (x0),- - ,prox}; (z1-1)}
by M;. We know that x; € M.
Suppose that M C Fj._4 for some T and let 7/ = argmint : ¢ > T, 4, = k(mod n).
By Lemma for T' < t < T’, we can use a simple induction to obtain that
span{Vfit(cct_l),prox}:t (1-1)} C Fr—1
and M; C Fj_1.
Moreover, since i7- = k(mod n), we have
span{V f;_, (x1/_1), prox'}fT'/ (xr-1)} C Fi
and My, C Fp.
Following from above statement, it is easily to check that for ¢ < T}, we have x; € M; C Fj_1.
Next, note that
P(Ty —Tp—1=35)
=P (iTk_le #Z k(mod n), - ,ir,_,+s—1 # k(mod n),ir,_,+s = k(mod n))
=P (it 141 K, im o1 F K ine_ s = K)

=(1-pr)* 'pr,

13
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where k' = k(mod n),1 < k' < n. So Ty — T_1 is a geometric random variable with success
probability py.

On the other hand, Ty, — Tj_; is just dependent on i, _, 41, - ,i7,, thus for | # k, T; — T;_4 is
independent with Ty, — T 1.

Therefore,
k

Tk:Z 7_'l 1 ZYL

=1

where Y, follows a geometric distribution with success probability ¢; = p; where I’ = [(mod
n),1 <l'<n.

O
Proof of Remark2.3] If each f; is L-smooth, then for any «,y € R™ we have
2 2
IVfi(z) = VSiyll, < L* = - yl5,
and consequently,
1 = 2 2 2
EZHVﬁ(m)*Vﬁ(y)Hz < L7l —ylf; - (13)
i=1
If { f;}7_, is L-average smooth, then for any x,y € R™ we have
1 (| ’
2
Vi) = Vil = > (V@) = Vfi(y))
i=1 2
1 [ ’
<3 (Z IV fi(x) — Vfi(y)||2>
i=1
1 n
< D IVHi®) - VW)
i=1
< -yl
O

Proof of Lemma[2.9] Denote mingcrm f(x) by f*. Fort < N, we have
Ef(z:) — f* 2 E[f(x¢) — f*IN < Tra]P (N < Tarsa)
> E[min f(z) - F'IN < Ty B (N < L)
@ M
> 9eP (T]V[+1 > N) s

where T is defined in (7)), and the second inequality follows from Corollary 2.7]if N < Ts41,
then x; € Fys fort < N).

By Corollary Thr11 canbe written as Thy 1 = Z;\ifl Y, where {Y] }1<i< 41 are independent
random variables, and Y] follows a geometric distribution with success probability ¢; = py (I’ =

I(mod n), 1 <1’ < n). Moreover, recalling that p; < py < --- < p,, we have ZM+1 q < %
Therefore, by Lemma[2.8] we have

M+1
(M+ n 16 1
P (T > N) Y, > >l—-—> =
(Thr1 <Z s = 9M+1) "9
Hence, we can conclude that Ef (xn) — f* > 9P (Th41 > N) > ¢

14
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Remark In fact, a more strong conclusion hosts:

E {gfvl f(a:t)} ~ in f(z) > e

xeR™

D RESULTS ABOUT SUM OF GEOMETRIC DISTRIBUTED RANDOM
VARIABLES

Lemma D.1. Let X1 ~ Geo(p:1),Xo ~ Geo(pz) be independent random variables. For any
positive integer j, if p1 # po, then

1—pn) — 1—mpo)
]P’(X1 Xy > j) _ p2( p1) p1( pz) ’ (14)
P2 —p1
and if py = po, then
P(X1+Xo>j) = jpi(1=p1)’ "+ (1L —p). (15)

Proof.

J
P(X14+Xy>5) =) P(X1=DP(X2>j—1)+P(Xs>))

=1

~

(1—p)!tpr(1—p2) ™+ (1 —py)

J

~

—

-1

i 1——p1 .

1(1=p2)’ E ( ) + 1 —=p)
-1 1 —po

Thus if p; = po, P (X1 4+ Xo > j) = jpi(1 —p1)’ 71 4+ (1 — p1)7.
For py # pa,

) 1—p1) —(1—=mp5) )

P (X +X2>])=P1( p)’ = (=) + (1 —p1)’
P2 —p1

p2(1 —p1)? —pi(1 —p2)’

P2 —p1

Lemma D.2. Forx > 0and j > 2,

. j—1
e (16)
r+j/2 z+1
Proof. We just need to show that

(z+17 Nz+4/2) - (- D@+1) " <27 Mz +4/2),
that is
(z+1) —jl+1y712—a7 (2 +j/2) <

w2 [()-500)] 0
()30 )= () ()=

thus inequality hosts for z > 0 and j > 2. O

Note that for [ < j — 2,

15
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Lemma D.3. Let X1 ~ Geo(p1), Xa ~ Geo(p2), Y1,Ys ~ Geo (%) be independent random
variables with 0 < p1 < pa < 1. Then for any positive integer j, we have

P(X;1+Xo>j7)>P(Y1+Yy > ).

Proof. If j =1, then P (X1 + Xo > j) =1 =P (Y1 + Y5 > j).
Ifpr=ps=1,thenP (X, + Xo > ) =0 =P (Y1 +Ys > j) forj > 2.

Letj > 2,and ¢ £ p1 + p2 < 2 be a given constant.

We prove that f(p;) = P (X; + Xz > j) is a decreasing function.

Employing equation , for p1 < ¢/2, we have

(c—=p1)1—p1)! —p1(1+p1—c)

fm) = P ’
and
F(pr) = —(1—p1)? —jle—p1)(1 —Pl)jcl_—Qéll +p1—c) —jpri(1+p1—c)i!
(c—=p)(1—p1)! —pi(1+p1—c)
. 1 (cl— 2p1)12 :
(e = 1) — e = p)(e = 20l = pry ™ — [e(1 + py — ) + dpa(c — 2p0l(L +pr — )
(c—2p1)? .

Hence f'(p1) < 0 is equivalent to

c(I—p1) —jlc—p1)(c—2p1) (1 +p1—0>j_1
. < .
c(1+p1 —c) +jpi(c—2p1) 1—p

A7)

Note that
c(1=p1) —jlc—p1)(c—2p1)
c(1+p1 —c)+ jpi(c—2p1)
3 (j — (e —2p1)
c(1+p1—c) +jpi(c—2p1)
ji—1

14+p1—c -p1
c—2p1 + J c

=1-

Denotemzlj_pigp:c. Ifc<1,thenp; > 0and z > 12” > 0. Andifc > 1,thenp; > ¢c— 1 and
l+c—1—c _
vz == =0

Rewrite inequality (T7) as

. j—1
1 7 ,1 << z ) .
x+ jp1/c z+1

Recall inequality (T6), we have

Jj—1 . .
—1 —1
. >1-d 1o .
x+1 x+j/2 x4+ jp1/c
Consequently, f'(p1) < 0 hosts for p; < ¢/2 and j > 2.
With the fact that lim,,, /5 f(p1) = f(c/2) according to equation (15, we have
P(X1+Xo>5)>P (Y1 +Yy> 7).
for any positive integer j and 0 < p; < py < 1. O

16
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Corollary D4. Let X1 ~ Geo(p1), X2 ~ Geo(pz2), Y1, Y2 ~ Geo (%) be independent random
variables with 0 < p1 < po < 1. Suppose Z is a random variable that takes nonnegative integer
values, and Z is independent with X1, Xo, Y1, Ya. Then for any positive integer j, we have

P(Z+X1+Xo>7)>P(Z+Y1+Ys> 7).

Proof. With applying Lemma|[D.3] we have

j—1

P(Z+X1+Xo>)) =Y P(Z=D)P(Xi+X2>1—j)+P(Z>j—1)

>N P(Z=)PMi+Ya>1—j)+P(Z>j—1)
=P(Z+Y1+Y2>).

O

Corollary D.5. Let { X, }1<i<m be independent variables, and X; follow a geometric distribution
with success probability p;. For any positive integer j, we have

P(iXi2j> ZIP<ZM:Y2 2j>,
=1 =1

where {Y; }1<i<m are i.i.d. random variables, Y; ~ Geo(} .~ p;/m), and Y; is independent with
X (1 <id <m).

Proof. Let

f(p17p27"' 7pm) ép <ZX1 >J> .
=1

Our goal is to minimize f(py,p2,- - ,pm) suchthat y ;" p; =S < 1.
By Corollary [D.4] we know that

f(p17p27"'7pi7"'apjv"'7pm)2f(p17p27"'a 12 ja"'a 12 ja""pm)'

This fact implies that (py, p2, - -+ , Pm) such that p; = ps = - -+ = p,, = S/m is a minimizer of the
function f.

O

Lemma D.6. Let {X;}1<;<m be i.i.d. random variables, and X; follows a geometric distribution
with success probability p. We have

i m 16
P(in>4p>21—9m (18)
i=1

Proof. Denote Y. | X; by 7. We know that

m(1—p)

m
Er = —, Var(r) =
» (7) e

17
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Hence, we have

1 3
P (T > 4ET> =P (T—ET > —4ET>

:1—P<T—ET§—iET)

>1—P<|T—ET|>2]ET)

o1 16Var(T)
- 9(ET)?
16m(1 — p) 16
S S 2R
9m? - 9m

O

Corollary D.7. Let {X;}i1<i<m be independent random variables, and X; follows a geometric
distribution with success probability p;. Then

Ui m? 16
(Z > Ty m) o

=14
E PROOF OF THEOREM [4.2]

Proposition E.1. For anyn > 2, m > 2, fsc; and Fsc in Definition[d.1|satisfy:
1. fsc,i is L-smooth and i-strongly convex.

2. The minimizer of the function Fsc is

) 2An(a + 1)2 1 T
" = argmin Fye(z) = | ——————= (", ¢"" ", ,q)
mgeRm SC( ) (L—,LL)(O(— 1) (q q q)
where g = % Moreover, Fsc(x*) = —A.

3. For1 <k <m —1, we have

min Fyc(x) — Fsc(x*) > Ag®*, (19)
xEF

Proof.
1. Just recall Proposition [2.5]
2. Denote £ = %.

Let VFsc(x) = 0, that is

L—pu 2  L—up
( 2n A(Va+1>+uI>mn(a+l)€em’

or
2 2n
w?+ 1+ ﬁ —; 0
ny
-1 24 22 ] 0
. z=| : (20)
_ 2np _ 0
1 2+ T—h ;w a
—1 1 —+ m a+1

18



Under review as a conference paper at ICLR 2020

Note that ¢ = g—jr} is a root of the equation

and 5 L
2 npy
1 = -
w” + +L— L
2 9 2nu
= — = — 1 .
a+1 1 ¢ +L—u)q

Hence, it is easily to check that the solution to Equation (20) is

x* = f(qmaqm_lv e ’q)T7

and I
* — M 2
F = = —A.
3. Ifxe F,1<k<m,thenzy =29 =+ = 2y_r = 0.

Lety = zym—k+1:m € R* and A}, be last k rows and columns of the matrix in Equation
(21). Then we can rewrite F'(x) as

L— L—
Fily) £ Fc(@) = =1 Fy T Ay — o Fsélemsv).

Let VFy(y) = 0, that is

24 2me -1 0
2
-1 2+ -l 0
.. y=| : |. (21)
-1 24 ] 205
-1 1+ f’_“; at1
By some calculation, the solution to above equation is
gt -1 2 9 kT
14‘(]7%“((] —q.q¢ =" =) .
Thus
. . L — 1 5 1— q2k: 1— q2k
F = F = — —
Ioin sc(x) SCRr k(Y) 2n(a+1)€ CE eI 14 @htt
and

1 _qQk
Jin Fye(x) — Fse(2®) = A (1 - qukﬂ)

1+g¢q
— 2k~ V4 2k
=Aq 1+ g2h+1 > Ag™.

Proof of Theorem Let M = LMJ , then we have

2log q

argmin Fsc(x) — Fsc(x™) > Ag*M > 9¢,
xEF N

where the first inequality is according to the third property of Proposition

19
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Following from Lemma[2.9] for M > 1 and N = (M + 1)n/4, we have
in [E Fx — I ) > e.
min sc(xt) — Fsc(x™) > ¢
Therefore, in order to find & € R™ such that EFgc(&) — Fsc(x*) < ¢, A needs at least N queries
U)hpk.

We estimate — log(¢) and N in two cases.

1. If L/u > n/2 + 1, then « = \/2% +1 > /2. Observe that function h(3) =

w — g is increasing when 3 > 1. Thus, we have

B—1

1 1
_10g( ) log (i)

:%1/27”’”; ! + 1+ h(V2)

ﬁ( 2L/“n_1+1> + h(V2)

>

+h(V2)

Y

eVttt
and
N =(M+1)n/4= % ng?(ligg/j)J >
¢ (i) ()
i S

— «
L/p—1
V2REL 1 <10g<1+(\/§—1)n>
= 1

=log [ 1+ T/p—1 L=
< log (W) < log (Wi/;lm) , 22)

where the first inequality and second inequality follow from L/pu — 1 < n/2 and the last
inequality is according to % < 2forz > 2.

Note that n > 2, thus ;5 < 2 < ;= and hence n > L/u,ie. log(nu/L) >

Nm 4 D> ( ) (%)
=Q<<1+1ogr(bnu/L))1 <9A>>

20

Therefore,




Under review as a conference paper at ICLR 2020

Recalling that we assume that 9¢/A < q2, thus we have

- g (_bgl(tJ)) s <9A€) - % (_logl(q)> (~2o8(a)) = G-

Therefore, N = (n + (m) log (%))

At last, we must to ensure that 1 < M < m, that is

1< log(9e/A) -m

2
2logq 23)

Note that limg_, 1 o h(8) = 0, so —1/log(q) < a/2. Thus the above conditions are satisfied when

mW+l§i<\/m>log<i)+l(9(\/51%(?))7

and

F LOWER BOUND FOR ANOTHER FORM OF SUBOPTIMAL SOLUTION

Defazio| (2016) showed that the PIFO algorithm Point SAGA has the convergence result
E |z — :c*||§ < (¢)"||l@o — x*||,, where ¢’ satisfies —1/log(¢") = O (n + \/nL/M) To match
this form of upper bound, we point out that a similar result holds for { fsc i} ;.

Theorem F.1. Suppose that

2
L _n 1 (vV2-1 1 L/p—1 1
Z> 4l e< — | F—= dm= -1/ 25—+ 1]log | — | +1.
u2+,518<\/§+1>,anm 2( ” + og 13 +

In order to find & € R™ such that E |& — x* ||§ <ellxo —x* 3 PIFO algorithm A needs at least

Q ((” + \/%) log (%)) queries to hpy.
Procs: Denote € = BB ina og = [ttt |

For1< M <m/2, N =n(M+1)/4andt < N, we have

E |z, - 2" > E [nwt e

N < TM+1:| P(N < Th1)

>E [ min | — w*Hg
ceF M

N < TM+1:| P (N < TM+1)

where Ty is defined in (7), the second inequality follows from Corollary (f N < Tary1,
then «y € Fy for t < N), and the last inequality is established because of our Corollary (More
detailed explanation refer to our proof of Lemma[2.9).

By Proposition we know that * = £(¢™,¢™ 1, ,q)", and
L% — 2m+)

2 )2
xo — x5 = ||lz¥||5 =&
oo — 27} = 12”3 = £ T34

21
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Note thatif x € Fps,thenz; =290 = -+ = 2, = 0, thus
m 2(M+1) _ 2(m+1)
: _ 2 42 2(m—1+1) _ 24 q
min ||z —x*||; = =
min Jz—a' =& > q el ——1
l=m—M

Thus, for ¢t < N and M < m/2, we have

E o — 2|3 142 = ¢

|z —2*ll; 9 1—‘12’"
> — 1 = Llcégl(c}:s)J > €,
- 18 18 -
where the second inequality is due to
q2M _ q2m B q2M _ q2M _ 2q2m +q2(m+M)
I—gm 2 21— )

M Seme ) )

=1  (1-2 m— + m
M )

> ———(1—-2¢"+q™) > 0.

2 _qu)( q" +qm)

* (12
Therefore, in order to find £ € R such that < g, A needs at least N queries to hpy..
2

As we have showed in proof of Theorem for L / p>n/2+ 1, we have
L/u—1 1 L/n—1
2/“7+12— > \/LJA ;
n log(q) n

n log(18¢)
~ 4 2logg

> (nt /alLfu 1)) log(lé >

ol 2))

At last, we have to ensure that 1 < M < m/2, that is

and

N = (M+1)

< log(18¢) m/2.
2logq
The above conditions are satisfied when
log(1/(18 1 L/p—1 1 L 1
:qugf 2/M7+1 log|l — | +1=0 —log | — ,
—logq 2 n 18¢ nu €
and
< 22
© =11
Observe that when L/p < n/2 4+ 1, we have a > V2 and ¢ = Tﬁ > \‘?H Hence, we just need

1(v2=1)" o
e< & <ﬁ+1) ~ 0.00164.
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G PROOF OF THEOREM

Proposition G.1. For any n > 2, m > 2, following properties hold:

1. fc, is L-smooth and convex.

2. The minimizer of the function F¢ is

2
x* = argmin Fe(x) = x (1,2,--- ,m)—r ,
xER™ L
2
where £ = @ﬁ Moreover, Fe(x*) = —% and ||z — :c*Hg < B2
3. For1 <k < m, we have
: o &
F, — F, ==>=(m—k). 24
min Fe(e) - Fe(@”) = = (m — k) @)
Proof.
1. Just recall Proposition [2.5]
2. Denote { = ?ﬁ Let VFc(x) = 0, that is
L
%A(l)a: = £em,
or
2 -1 0
-1 2 -1 0
c=|1]. 25)
-1 2 -1 0
-1 1 2¢

Hence, it is easily to check that the solution to Equation (23)) is

2
w* = 5(1727 7m)T7
and )
. m
FC(ZB ): _%.

Moreover, we have

482 m(m +1)(2m 4 1)
L2 6

4€? 3 _ 2
3?( +1)° =B~

2
2o — 5'3*”2 =

IN

3. By similar calculation to above proof, we have

2
arg min Fe(x) = —5(172, k)T
xEFy, L
and
k’§2
in F{ = ——.
mnen}% c(@) nlL
Thus
52
in Fo(z) — Fo(z*) = > (m — k).
Inin c(@) = Fe(@") = ~(m — k)
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Proof of Theorem[{.3] Since ¢ < 2L we have m > 3. Let = ¥3_BL

384 ’ 2 (m41)3/2"

For M = |2-1] > 1, we have m — M > (m +1)/2, and

, o & 3B2L m — M
F — F =2 (m=M) =
2EFas c(@) = Fe(@) nL (m ) dn (m+1)3
3B2L 1 > 0e
8n (m+1)2 "7

where the first equation is according to the 3rd property in Proposition [G.I] and the last inequality
follows from m + 1 < B+/L/(24ne).
Similar to the proof of Theorem4.2] by Lemma[2.9] we have

?Slij{/lEFc(a:t) — Fe(x¥) > e

In other words, in order to find & € R™ such that EF¢ (&) — Fe(*) < €, A needs at least N queries
to hp.

At last, observe that

N =(M+1)nja=" {m; 1J
, nlm =1

n B2L
> — -2
-8 24ne
Q<n+Bq/nL>,
€

where we have recalled ¢ < 3 4 in last equation.

O
H PROOF OF LEMMA [4.3] LEMMA [4.6] AND LEMMA [4.10]
Proof of Lemmad.6] Consider the following functions {g; }1<i<n. ¢i : R = R, where
L
g1(z) = 5:02 —nLBuz,
L
gi(z) 5952
Zg, = —x — LBx
First observe that
z* =argmin G(z) = B,
zE€R
LB?
G0 - ay ="
and |zg — 2*| = B
For i > 1, we have dgl(x lz=0 = 0 and prox] (0) = 0. Thus z; = 0 will host till our first-order

method A draws the component f1. Thatis, fort < T = argmin{¢ : iy = 1}, we have z; = 0.
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Hence, for t < 2—11)1, we have

EG(x¢) — F(z*) > E [G(sct) — G(z")

1 1
L T] P ( < T)
2p1 2p
LB? 1
= Pl—<T].
2 2p
Note that T" follows a geometric distribution with success probability p; < 1/n, and

(=) (o [&]) ol

1 1
> (1=p) = (1= 1/n)" 2 5,

_ log(1—2)

where the second inequality follows from h(z) 5

is a decreasing function.

Thus, for ¢t < %, we have
P1

LB?
EG(z:) — F(z*) > I >e

Thus, in order to find & € R such that EF(£) — F'(z*) < ¢, A needs at least ﬁ >n/2=Q(n)
queries to hg.

O

Proof of Lemma Note that {g; }?"_; defined in proof of Lemmais also L-average smooth,
so Lemma[4.10]hosts for the same reason. O

Proof of Lemma[d.3] Let B = \/2A/L. Then ¢/A < 1/2 is equivalent to ¢ < LB?/4. Note
that {g;}" , defined in proof of Lemma is also p-strongly convex for any p < L, and satisfy
|G(0) — G(z*)| = A. Therefore Lemma4.3|hosts for the same reason.

O
Remark H.1. Suppose that

e _1(a-1 2 N
A7 o\awt) TNV T
1. Ifk >n/2+ 1, then we have o > /2 and

(n+ V) log (i—) <2 (n+ vam) log (0‘“)

a—1
<4(n+\/%):(9()+ 4\/kn

=T a1 YA V2)2)a
4 R

where the second inequality follows from log(1+x) < x and the last inequality is according

to o > /2 /n. That is
(n) Q((mm) log(A)>.

9¢

2. If2<L/u<n/2+ 1, then we have

(g e (52) = () (s (529))

n 2v2—-1n\\ "
§<1+10g<w/m)<210g< /i ))‘O( ’

25



Under review as a conference paper at ICLR 2020

where the second inequality follows from ([22)). That is

90 = (g ) o (&) )

I DETAILED PROOF FOR SECTION [£.3]

Proof of Proposition

1. Ttis easily to check that Fsc () is u-strongly convex. Following from Proposition then
{fsc,i:}7—; is L-average smooth, where

. 16 | (L+p\> [(L—p\>
L=,—||—— _— 2
n ( 4 ) T\ tu
(L2 2
= \/(w) + ,U,2 — L’_
n
2. Clearly, L = /2022 2 < /o),
Furthermore, according to % > \/; 5 + 1), we have
n n
L2 _ 7L/2 — L/2 2 L/2
3 ( —u?

5 (5 + 1)% 4

and, L/p > \/gL’/,u >n/2+ 1.

O

Proof of Theorem By 2nd property of Proposition we know that L/ > n/2 + 1. More-
over,
2L A
\/7 +1 | log () +1
n W 9e
L/p—1 A
( 2/“+1>log( >+1
n 9e

Then, by Theorem E], in order to find & € R™ such that EFsc(2) — Fsc(x*) < &, A needs at
least N queries to hp,., where

o) (9)
HEEESEO
(3 ))

3By the proof of Theorem a larger dimension m does not affect the conclusion of the theorem.

3
1
A~

>

| =
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Proof of Theorem Note that
V2B BL
~ 768 /n  384n’

V1 | L’ B2
m = —SBn_1/4 — | —-1= — 1.
12 € 24ne

By Theorem in order to find € R™ such that EFc(z) — Fe(x*) < €, A needs at least N

queries to hr,., where
L
N=0 <n+ B,/”)
€
—alnin [ny/n/2L
€
=0 <n+Bn3/4\/Lgl> .

~

J NON-CONVEX CASE

In non-convex case, our goal is to find an e-approximate stationary point & of our objective function
f, which satisfies

V(@) <e. (26)

J.1 PRELIMINARIES

We first introduce a general concept about smoothness.

Definition J.1. For any differentiable function f : R™t1 — R, we say f is (I, L)-smooth, if for any
x,y € R™ we have

l L
eyl < 5@) — 1)~ (V) x ) < eyl
where L > 0,1 € R.

Especially, if f is L-smooth, then it can be checked that f is (—L, L)-smooth.

If f is (—o, L)-smooth, in order to make the operator prox'} valid, we set % > o to ensure the
function

N 1 )
flu) = fu) + % [z — ull;

is a convex function.

Next, we introduce a class of function which is original proposed in (Carmon et al., [2017). Let
GNC :R™T1 5 Rbe

1 2 m
Gne(z; a,m) = 3 |B(m + 1, Va)z|, — V(e z) + aZF(xi),
i=1
where the non-convex functionI' : R — R is

I(z) 2 120/”2(’5_1)

dt. 27
s 27)

We need following properties about Gnc (x; o, m).
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Proposition J.2 (Lemmas 3,4, Carmon et al. (2017)). For any 0 < o < 1, it holds that

1. T(z) is (—45(v/3 — 1),180)-smooth and Gyc(x; a,m) is (—45(v/3 — 1)a, 4 + 180a)-
smooth.

2. Gne(0; 0, m) — mingepm+1 Guel(x; a,m) < a/2 + 10am.
3. For x which satisfies that T,, = ;41 = 0, we have

|VGne(z; o, m)]|, > a3/4/4.

J.2 OUR RESULT

Theorem J.3. For any PIFO algorithm A and any L, o, n, A, € such that €? < Sﬁigﬂ, there exist a

dimension d = { ALva J + 1 and n (—o, L)-smooth nonconvex functions { f; : R¢ — R}™_, such

40824ne?
that f(xo) — f(x*) < A. In order to find & € R? such that E ||V f(2)||, < e, A needs at least

Q (AL\F) queries to hy, where we set o = min {1, %, 1%}.

Remark J.4. For n > 180, wehave

AL« A V341 vnL A

Thus, our result is comparable to the one of Zhou and Gu's result (their result only related to
IFO algorithms so our result is more strong), but our construction only requires the dimension

be O (1 += S min{L/n, \/UL/TL}) which is much smaller than O ( min{L, vV'n }) in (Zhou
and Gu, |2019).

J.3 CONSTRUCTIONS

Consider

F(x;a,m, A, B) = AGne(x/B; a,m). (28)

Similar to our construction we introduced in Section[2] we denote the I-th row of the matrix B(m +
1, /) by b; and
L;i={l:1<I<mm+1—-1l=i(modn)},i=1,2,--- ,n. (29)

Let G, = span{ey, ea, -+ ,ei}, 1 <k <m, Gy = {0} and compose F(x;a, m, A, B) to
fu(@iasm, A B) = 3% ¥ [lbf 2ll, = 2% (er @) + da X T(wi/ )

fi(®sa,m X\, B) = 55 Z HbT:c|}2+/\aZF( i/ B), fori > 2.

(30)

Clearly, F(x; a,m, A, B) = % Yoiy fi(m; o, m, A, B). Moreover, by Proposition we have fol-
lowing properties about F'(x; o, m, A, 8) and { f;(z; o, m, \, B) 1,

Proposition J.5. Forany 0 < o < 1, it holds that

1. fi(z;a,m,\, ) is (_45(?2_1)0“\, (2n+g§m)’\>—smooth.

2. F(0;a,m, A\, B) — mingcpm+1 F(x;a,m, A, 8) < A(y/a/2 4+ 10am).
3. For x which satisfies that T,,, = 41 = 0, we have
s/
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Similar to Lemma 2.6} similar conclusion hosts for { f;(x; o, m, A, )} ;.

Lemma J.6. Forx € Fi, 0 < k <mand~ < ‘/(;a'lfa,wehave

V fi(x;a,m, A, B), prox; (z) € {

Gy, otherwise.

Proof. Let G(z) £ Y T'(x;) and T"(z) be the derivative of T'().

i=1

First note that I (0) = 0, so if € Gy, then
-
VG(x) = (F/(Z‘1),F/($2), e 7F'(a:m)) € G.

Moreover, for x € Fg (k > 1), we have
b/ =0forl <m—k,
b, egkforl>m—k:,
bim—k € Gry1.

Consequently, for I # m — k, bib] x = (b) )b, € Gy, and by, b} @ € Gy i1.

For k = 0, we have © = 0, and

Vii(z) =nva/B e € G,
Vii(x)=0(j>2).

For k > 1, we suppose that m — k € L;. Since

Vi Z b, by 42 VG(m/ﬂ) niei,
lel;

where 71 = Any/a/B,nm; = 0 for j > 2.
Hence, V f;(x) € Fiy1 and V f;(x) € Fi, (§ # 9).

Now, we turn to consider v = prox} (x).
i

We have
Viiv)+ %('v —x) =0,
that is
52 ZEZL b/ b + I v+ ?VG(’U/ﬂ) =nje; + :c.
Denote

An 8
A=2N"b/b+51, u
SUES

1
Yy =njer + -,
6 le[lj ’y

1
= —,
B
then we have

Au+ %O‘vc:(u) =

Next, if s satisfies

s >max{l,k} forj=1,
s>k forj > 1,

29

Gi+1, ifk =i — 1(mod n),

€2y

(32)

(33)
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then we know that the s-th element of y is 0.

If s satisfies and m — s € Lj, then the s-th and (s + 1)-th elements of Aw is

((§+ B/7)us — Eusyr) and (—§us + (§ + B/7)us41) respectively where £ = An/f3. So by Equa-
tion (32), we have

2
2 (us—1
%us + §(us — ugq1) + %ufilﬂ ) — 0.
2
120)a Yst1(Us+1—1)
%u5+1 + f(us+1 - us) + B < +11+u§+1 =0.

Following from Lemma for 12%)‘0‘ < (2+2,;/§)ﬁ, we have ug = ug1y = 0.
That is

1. if m — s € £; and s satisfies @) then ug = 0.
2. ifm—s+1¢€ L;and s — 1 satisfies @) then u, = 0.

For s which satisfies (33), if m — s ¢ £; and m — s + 1 ¢ L;, then the s-th element of Aw is
(B/7 us). Similarly, by Equation (32), we have

éus n 1200 u?(us — 1)
v B 14+u?

Following from Lemma for 12%)“" < (2+2,Y\/§)'8 , we have u, = 0.

=0.

Therefore, we can conclude that

1. if s — 1 satisfies (33), then u, = 0.
2. if s satisfies @) andm —s+1¢ L, thenus = 0.

Moreover, we have that

l.ifk=0andj=1thenm —1,m—2¢ L;,s0uz =0.

2. ifk=0andj > 1,thenfors =1, wehavem —s+1¢ L;,sou; =0.

3. if k = 0, then for s > 2, we have s — 1 > 1 satisfies (33)), so us = 0.

4. if k > 0, then for s > k + 1, we have s — 1 > k satisfies (33), so us = 0.

5.ifk>0andm —k & L;, thenfors =%+ 1, wehavem —s+1¢ L;,50 up1 = 0.

In short,

1. ifk=0and j > 1, then u € G.
2. ifk=0and j =1, thenu € G;.
3.ifk>1andm —k &€ L;, thenu € Gy.

4. ifk>1landm —k € L;, thenu € Gp41.

Remark J.7. In order to make the operator prox}i valid, v need to satisfy

VB+15 V24142
920 I 60 Ao
So for any valid PIFO call, the condition about ~ in LemmalJ.6|must be satisfied.

v <
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Lemma J.8. Suppose that 0 < Xy < (2 + 2v/2)\y, then z = 0 is the only real solution to the

equation

2
-1
)\1Z+>\22 (Z )

—==0.
1+ 22

Proof. Since 0 < Ay < (24 2v/2)\1, we have
A3 — 4 (A1 + A2) <0,

and consequently, for any z, (A1 + A2)2% — Aoz + A > 0.
On the other hand, we can rewrite Equation as

Z((/\l + )\2)2’2 — Aoz + )\1) =

Clearly, z = 0 is the only real solution to Equation (34).

(34)

0.

O

Lemma J.9. Suppose that 0 < Ao < (2 + 2\/§)A1 and A3 > 0, then z1 = z9 = 0 is the only real

solution to the equation

23 (z1—-1)
1+zf
z5(z2—1)
1422

Az + Az(z1 — 22) + Ao
)\122 + )\3(22 — Zl) + )\2

=0.
(35
=0.

Proof. If z; = 0, then 2o = 0. So let assume that z7 25 # 0. Rewrite the first equation of Equation

(35) as
/\1+)\3 &zl(zl—l)_@
Ag )\3 1+ Z% o Z1
Note that
1-v2 _ 2(z—-1)
< .
2 T 1422

Thus, we have

)\1+>\3+&1—\/§<272

A3 A3 2 A1 .

Similarly, it also holds

)\1+)\3+Q1—\/§<271

A3 A3 2 T oz

By 0 < Ay < (2 + 2v/2)\1, we know that \; + #)\2 > 0. Thus

>\1+/\3+&1—ﬁ

1.
I N 2

Since z1 /22 > 1 and z2/2; > 1 can not hold at the same time, so we get a contradiction. O]

Following from Lemma[J.6] we know following Lemma which is similar to Lemma 2.9
Lemma J.10. If M > 1 satisfies mingcg,, |VF(x)|, > 9 and N = n(M + 1)/4, then we have

i > e
min B [|VE(2:)ll, = e
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Theorem J.11. Set
1
a:mm{l,ww n }

30L 180
\ 3888ne?
T Lad/2
B =+/3\n/L,
AL
m o | ALVa
L40824n52J
Suppose that €% < Sﬁig‘n. In order to find & € R™"! such that E |V F ()|, < &, PIFO algorithm
A needs at least Q) (Aég/a) queries to hp.

Proof. First, note that f; is (=1, l2)-smooth, where

45(v/3 — 1)aA _ 45(v/3 - 1)L - 45(v/3 = 1)L (V3 + 1)no _

h= 52 3n = 3n 30L o
(2n + 180a)A L
I = Tt = (20 4 1800) < L.

Thus each f; is (—o, L)-smooth.

Next, observe that

_ 1944n” | 38880nc”
 La Lya
1944 38880

< A+ A=A
40824 40824

F(zo) — F(z*) < AM(v/a/2 4+ 10am)

For M = m — 1, we know that
a4 ad/A) AL o3/4

= = = Qe.
48 4\/3\n/L 3n 4

in |VF >
Jé%ﬁ” (@), >

With recalling Lemma[J.10} in order to find & € R™"! such that E | VF(&)|, < e, PIFO algorithm
A needs at least N queries to h, where

N = n(M+1)/4 = nm/d = Q <AL\/5> .

22
2 AL«
At last, we need to ensure that m > 2. By ¢* < ST6asn> We have
AL/« S AL« >
40824ne? — 40824ne? —
and consequently m > 2. O
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