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ABSTRACT

In health, machine learning is increasingly common, yet neural network embed-
ding (representation) learning is arguably under-utilized for physiological signals.
This inadequacy stands out in stark contrast to more traditional computer science
domains, such as computer vision (CV), and natural language processing (NLP).
For physiological signals, learning feature embeddings is a natural solution to
data insufficiency caused by patient privacy concerns – rather than share data, re-
searchers may share informative embedding models (i.e., representation models),
which map patient data to an output embedding. Here, we present the PHASE
(PHysiologicAl Signal Embeddings) framework, which consists of three compo-
nents: i) learning neural network embeddings of physiological signals, ii) predict-
ing outcomes based on the learned embedding, and iii) interpreting the prediction
results by estimating feature attributions in the “stacked” models (i.e., feature em-
bedding model followed by prediction model). PHASE is novel in three ways: 1)
To our knowledge, PHASE is the first instance of transferal of neural networks
to create physiological signal embeddings. 2) We present a tractable method to
obtain feature attributions through stacked models. We prove that our stacked
model attributions can approximate Shapley values – attributions known to have
desirable properties – for arbitrary sets of models. 3) PHASE was extensively
tested in a cross-hospital setting including publicly available data. In our experi-
ments, we show that PHASE significantly outperforms alternative embeddings –
such as raw, exponential moving average/variance, and autoencoder – currently
in use. Furthermore, we provide evidence that transferring neural network em-
bedding/representation learners between distinct hospitals can yield performant
embeddings and offer recommendations when transference is ineffective.

1 INTRODUCTION

Representation learning (i.e., learning embeddings) (Bengio et al., 2013) has been applied to med-
ical images and clinical text (Tajbakhsh et al., 2016; Ravishankar et al., 2016; Lv et al., 2014) but
has been under-explored for time series physiological signals in electronic health records. This pa-
per introduces the PHASE (PHysiologicAl Signal Embeddings) framework to learn embeddings of
physiological signals (Figure 1a), which can be used for various prediction tasks (Figure 1b), and
has been extensively tested in terms of its transferability using data from multiple hospitals (Figure
1d). In addition, this paper introduces an interpretability method to compute per-sample feature at-
tributions of the original features (i.e., not embeddings) for a prediction result in a tricky “stacked”
model situation (i.e., embedding model followed by prediction model) (Figure 1c).

Based on computer vision (CV) and natural language processing (NLP), exemplars of representation
learning, physiological signals are well suited to embeddings. In particular, CV and NLP share two
notable traits with physiological signals. The first is consistency. For CV, the domain has consistent
features: edges, colors, and other visual attributes. For NLP, the domain is a particular language
with semantic relationships consistent across bodies of text. For sequential signals, physiological
patterns are arguably consistent across individuals. The second attribute is complexity. Across
these three domains, each particular domain is sufficiently complex such that learning embeddings
is non-trivial. Together, consistency and complexity suggest that for a particular domain, every
research group independently spends a significant time to learn embeddings that may ultimately be
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Figure 1: The PHASE framework, which consists of embedding learning, prediction, interpretation,
and transference. The checkered patterns denote that a model is being trained in the corresponding
stage, whereas solid colors denote fixed weights/models. The red side of the LSTM denotes the
hidden layer we will use to generate embeddings. In (c), the size of the black circles on the left
represent the feature attributions being assigned to the original input features. The signals and
the outputs of the LSTMs are vectors. Multiple connections into a single XGB model are simply
concatenated. More details on the experimental setup can be found in Sections 4.1 and 6.1.

quite similar. In order to avoid this negative externality, NLP and CV have made great progress on
standardizing their embeddings; in health, physiological signals are a natural next step.

Furthermore, physiological signals have unique properties that make them arguably better suited to
representation learning than traditional CV and NLP applications. First, physiological signals are
typically generated in the health domain, which is constrained by patient privacy concerns. These
concerns make sharing data between hospitals next to impossible; however, sharing models between
hospitals is intuitively safer and generally accepted. Second, a key component to successful transfer
learning is a community of researchers that work on related problems. According to Faust et al.
(2018), there were at least fifty-three research publications using deep learning methods for physio-
logical signals in the past ten years. Additionally, we discuss particular examples of neural networks
for physiological signals in Section 2.2. These varied applications of neural networks imply that
there is a large community of machine learning research scientists working on physiological signals,
a community that could one day work collaboratively to help patients by sharing models.

Although embedding learning has many aforementioned advantages, it makes interpretation more
difficult. Naive applications of existing interpretation methods (Shrikumar et al., 2016; Sundararajan
et al., 2017; Lundberg & Lee, 2017; Lundberg et al., 2018) do not work for models trained using
learned embeddings, because they will assign attributions to the embeddings. Feature attributions
assigned to embeddings will be meaningless, because the embeddings do not map to any partic-
ular input feature. Instead, each embedding is a complicated, potentially non-linear combination
of the original raw physiological signals. In a health domain, inability to meaningfully interpret
your model is unsatisfactory. Healthcare providers and patients alike generally want to know the
reasoning behind predictions/diagnoses. Interpretability can enhance both scientific discovery as
well as provide credibility to predictive models. In order to provide a principled methodology for
mapping embedding attributions back into physiological signal attributions, we provide a proof that
justifies PHASE’s Shapley value framework in Section 3.3. This framework generalizes across arbi-
trary stacked models and currently encompasses neural network models (e.g., linear models, neural
networks) and tree-based models (e.g., gradient boosting machines and random forests).

In the following sections, we discuss previous related work (Section 2) and describe the PHASE
framework (Section 3). In Section 4, we first evaluate how well our neural network embeddings
make accurate predictions (Section 4.2.1). Second, we evaluate whether transferring these embed-
ding learners still enables accurate predictions across three different hospitals separated by location
and across hospital departments (Section 4.2.2). Lastly, we present a visualization of our methodol-
ogy for providing Shapley value feature attributions through stacked models in Section 4.2.3.
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2 RELATED WORK

2.1 REPRESENTATION LEARNING IN THE HEALTH DOMAIN

Representation learning (embedding learning) in health is growing more popular. One particularly
natural subdomain is medical image analysis, e.g., mammography analysis, kidney detection in ul-
trasound images, optical coherence tomography image analysis, diagnosing pneumonia using chest
X-ray images, lung pattern analysis, otitis media image analysis, and more (Arevalo et al., 2016;
Ravishankar et al., 2016; Kermany et al., 2018; Liao et al., 2013; Christodoulidis et al., 2016; Shie
et al., 2015). Outside of image analysis, additional examples of transfer learning in the medical
domain include Lv et al. (2014), Wiens et al. (2014), Brisimi et al. (2018), Choi et al. (2017), Choi
et al. (2016), and Che et al. (2016). Even within physiological signals, some examples of embed-
ding learning are beginning to sprout up, including Wu et al. (2013), who utilize kNNs to perform
transfer learning for brain-computer interaction. Comparatively, PHASE transfers neural networks
as embedding functions learned in an partially supervised manner, where the embeddings provide
a basis for training a model on any prediction task (as opposed to being tied to the prediction they
were trained on). We denote partially supervised networks to be networks trained with prediction
tasks related to the final downstream prediction.

2.2 NEURAL NETWORKS FOR PHYSIOLOGICAL SIGNALS

To our knowledge, our work is the first to transfer deep neural networks for embedding sequential
physiological signals, embeddings which are not tied to a particular prediction problem. One caveat
is that supervised deep learning can be said to inherently learn embeddings. In physiological signals,
there are several examples of particular supervised learning tasks with neural networks. Srinivasan
et al. (2007) and Guo et al. (2010) both detect epilepsy from signals, Wilson & Russell (2003) utilize
psycho-physiological measurements to assess mental workload, Wagner et al. (2005) and Chanel
et al. (2006) utilize physiological signals to classify emotions, Koike & Kawato (1995) reconstruct
human arm movement from EMG signals, Sullivan et al. (2010) reconstruct missing physiological
signals, and Yang & Hsieh (2016) use acoustic signals to detect anomalies in heart sound. Based
on this substantive community of research scientists working on physiological signals, there is a
clear opportunity to unify independent research by appropriately using partially supervised feature
embedding learning.

In the vein of embedding learning, Martinez et al. (2013) applied autoencoders to blood volume
pulse and skin conductance measured from 36 people playing a video game and used the encodings
to predict affective state. In their paper, the sample size is fairly small and reflects that their primary
objective was to perform feature extraction and feature selection. In contrast, PHASE evaluates
transferring embedding learners (i.e., feature extractors) across multiple hospitals (Table 1).

2.3 FORECASTING FOR OPERATING ROOM DATA

Lundberg et al. (2017) proposed an approach, namely Prescience, which achieved state-of-the-art
hypoxemia predictions using operating room data, the same data we used to evaluate PHASE. Pre-
science utilizes gradient boosting machines (GBM) applied to features extracted by using traditional
time series feature extraction methods – exponential moving average/variance embeddings. Pre-
science compares prediction models including gradient boosting machines, linear lasso, linear SVM,
and a parzen window with the objective of forecasting low blood oxygen in the future. Ultimately,
Lundberg et al. (2017) find the highest performing method to be GBM trees. With samples drawn
from the same data set, PHASE seeks to substitute the feature extraction used in Prescience with a
deep learning approach, which resulted in a better average precision compared to Prescience without
the clinical text features (4 is Prescience and 12 is PHASE in Figure 2).

2.4 FEATURE ATTRIBUTIONS FOR INTERPRETABILITY

Interpretability of models via local feature attributions has been addressed in numerous independent
pieces of work (Shrikumar et al., 2016; Sundararajan et al., 2017; Lundberg & Lee, 2017; Lundberg
et al., 2018). For our evaluation of interpretability, we choose to focus on Shapley values introduced
by Lloyd Shapley, originally in the context of game theory (Shapley, 1953). Lundberg & Lee (2017)

3



Under review as a conference paper at ICLR 2019

identify Shapley values as the only additive feature attribution method that satisfies the properties
of local accuracy, missingness, and consistency. For PHASE, our pipeline includes multiple models
– GBM trees and LSTM networks. Methods exist for obtaining Shapley values for GBM trees
(Tree SHAP) and for neural networks (Deep LIFT/Deep SHAP) (Lundberg et al., 2018; Shrikumar
et al., 2016; Lundberg, 2018). However, the default version of these methodologies do not beget a
theoretically justified approach for propagating attributions through multiple models. In fact, to the
authors’ knowledge, a tractable method for obtaining local feature attributions for mixes of neural
networks and trees does not exist. In this paper, we utilize versions of Tree SHAP and Deep LIFT
that create single reference attributions that can be composed to address stacked models. At the
end of obtaining many attributions, the average of these attributions approximates the Shapley value
attributions (more details in Section 3.3).

3 OUR APPROACH: PHYSIOLOGICAL SIGNAL EMBEDDINGS (PHASE)

Taking inspiration from sinusoidal waveforms, we name our methodology PHASE. In the PHASE
framework, the first step is to learn neural network embeddings for physiological signals (Figure
1a). The second step is to predict outcomes based on the learned feature embedding (as in Figure
1b), potentially across multiple hospitals (as in Figure 1d). Finally, the last step is to interpret the
prediction results by estimating feature attributions through the models trained in the first two steps
(as in Figure 1c).

3.1 LEARNING EMBEDDINGS - LONG SHORT TERM MEMORY (LSTM) NETWORKS

PHASE uses LSTM networks to learn feature embeddings from time series physiological data.
LSTMs are a popular variant on recurrent neural networks introduced by Hochreiter & Schmidhu-
ber (1997). They have the capacity to model long term dependencies, while avoiding the vanishing
gradient problem (Pascanu et al., 2012). Details on the model architecture may be found in Section
6.2.

For PHASE, we first train a univariate LSTM on each physiological signal P , predicting the mini-
mum of P in the future five minutes (Figure 1a). Note that we choose the minimum of the next five
minutes because we care about forecasting adverse outcomes. Then, we obtain hidden embeddings
of the original physiological signals by passing them through to the hidden layer (the red layer in
Figure 1a). These embeddings are unsupervised in the sense that training them simply requires the
same feature (albeit at different time steps). Yet, they are supervised in that we specify our interest
to be forecasting adverse outcomes constituted by low signal values. We choose to focus on the
minimum, because adverse outcomes in physiological signals are often tied to too-low signals. We
find that the completely unsupervised alternative of an LSTM autoencoder is significantly less per-
formant than the LSTM trained to predict the minimum of the next five minutes (8 is autoencoder
and 12 is PHASE in Figure 2).

One reason behind having univariate neural networks is for transference. By using univariate net-
works, the input to the final prediction model may be any set of physiological signals with existing
embedding learners. This is especially useful because hospital departments have substantial varia-
tion in the signals they may choose to collect for features. Another reason for univariate networks
is that data in a single hospital is often collected at different points in time, or new measurement
devices may be introduced to data collection systems. For traditional pipelines, it may be necessary
to re-train entire machine learning pipelines when new features are introduced. With univariate net-
works, the flexibility would mean pre-existing embedding learners would not necessarily need to be
re-trained.

3.2 PREDICTION - GRADIENT BOOSTING MACHINES (GBM)

PHASE can use any prediction model. In this paper, we focus on gradient boosting machine trees
because the Prescience method found that they outperform several other models in the operating
room data (Lundberg et al., 2017). Gradient boosting machines were introduced by Friedman
(2001). This technique creates an ensemble of weak prediction models in order to perform clas-
sification/regression tasks in an iterative fashion. In particular, we utilize XGBoost, a popular im-
plementation of gradient boosting machines that uses additive regression trees (Chen & Guestrin,
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2016). XGBoost often dominates in Kaggle, a platform for predictive modeling competitions. In
particular, seventeen out of twenty nine challenge winning solutions used XGBoost in 2015 (Chen &
Guestrin, 2016). For PHASE, we postulate that utilizing embeddings of time series signals provides
stronger features for the ultimate prediction with XGB (as visualized in Figure 1b). Details on the
model architecture may be found in Section 6.2.

3.3 INTERPRETATION - SHAPLEY VALUES THROUGH STACKED MODELS

PHASE addresses an inherent challenge in the interpretation of an embedding model (or feature
representation model). Estimating feature attributions is a common way to make a prediction result
interpretable. At a high level, the goal is to explain how much each feature matters for a model’s
prediction. However, this goal is only meaningful if the model being explained uses features with
a natural human interpretation. For example, if we interpret PHASE’s GBM model, which takes
the embeddings as input and outputs a prediction, our feature attributions will be assigned to the
embeddings, which are not meaningful to doctors or patients.

The answer is to extend the prediction model (here, a GBM) by combining the feature embedding
model (here, a LSTM network), which makes a “stacked” model (Figure 1c). Since the original
features in the embedding stage are meaningful, one solution is to utilize a model agnostic feature
attribution method over the “stacked” model. For our attributions, we aim to provide Shapley val-
ues, for which the exact model agnostic computation has an exponential computational complexity
(O(N2M ), where N is the sample size and M is the number of features) (Shapley, 1953). In re-
sponse, one might want to use a model-specific method of computing approximate Shapley values
to gain speed by knowing the model. However, to the authors’ knowledge, there was previously no
model-specific method to estimate Shapley values for a stack comprised of LSTMs and a GBM (or
even local feature attributions for that matter).

Single reference Shapley values: Our new method for estimating Shapley values for the afore-
mentioned stacked model (i.e., LSTMs and GBM), requires adaptations on two existing feature
attributions methods. First is Deep SHAP, a variant on Deep LIFT – a feature attribution method for
neural networks (Lundberg, 2018; Shrikumar et al., 2016). Deep SHAP differs from Deep LIFT in
that it can find attributions for single references. Both methods can be written as modifications to a
traditional backward pass through a neural network (Ancona et al., 2018). Since the computational
complexity of a backward pass is the same as a forward pass through the network, we can consider
this cost “low”. The second method we utilize is “Independent Tree SHAP”. This method is a vari-
ation on normal Tree SHAP (Lundberg et al., 2018), but it can be computed for single references.
Independent Tree SHAP has a computational complexity of O(MLT ), where L is the maximum
number of leaves in any given tree and T is the number of trees in the GBM.

“Stacked” model Shapley values: Combining these two methods amounts to treating the “stacked”
model (Figure 1c) as a larger neural network and applying Deep SHAP to pass back attributions as
gradients at each layer (Ancona et al., 2018). However, at the GBM layer we obtain the appropriate
gradients by dividing the Independent Tree SHAP Shapley values by the difference between the
sample and the references. According to Theorem 1, we can then average over these single reference
attributions for an approximation to the Shapley values.

Generalizability: Note that Theorem 1 also implies that for any arbitrary set of models in a stack,
if single reference Shapley values are obtainable for each model, the Shapley values for the entire
stack can be obtained. Because the single reference Shapley value methods are known for neural
networks and for trees, any “stacked” model composed of these two methods can be explained.
Worth noting is that many embedding/prediction models can be represented as neural networks,
making our framework to attribute “stacked” models fairly general.

Theorem 1. Computing the average over single reference Shapley values approaches the true Shap-
ley values.
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Proof. Starting with the definition of Shapley values:

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
(
fS∪{i}(x)− fS(x)

)
=

∑
S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
(
ED[f(x)|xS∪{i}]− ED[f(x)|xS ]

)
where D is the data distribution, F is the set of all features, and f is our model. Rewriting the sum
over all permutations of F , rather than over all combinations, the weighting term becomes one:

φi =
∑

Sp⊆F\{i}

ED[f(x)|xSp∪{i}]− ED[f(x)|xSp
]

= EF [ED[f(x)|xSp∪{i}]− ED[f(x)|xSp
]]

= ED[EF [f(x)|xSp∪{i}]− ENp
[f(x)|xSp

]]

where the last step depends on independence between the permutations, independence between the
conditional and non-conditional sets, and the data generating mechanism.

4 EXPERIMENTS

We first describe our data sets, evaluation metric, model architectures, and the results of comparisons
between PHASE and alternative approaches in various testing scenarios (Section 4.2). More details
on the model architecture and the models used for each experiment can be found in the Appendix.

4.1 EXPERIMENTAL SETUP

Data Description Hospital 0/1 data was collected via the Anesthesia Information Management Sys-
tem (AIMS), which records all data measured in the operating room during surgery. Both medical
centers are within the same city (within 10 miles of each other). Hospital P is a sub-sampled version
of the publicly available MIMIC data set from PhysioNet, which contains data obtained from an
intensive care unit in Boston, Massachusetts (Johnson et al., 2016). Hospital P data was collected
several thousands of miles from the medical centers associated with hospital 0/1 data. Some details
about these hospitals are in Table 1, with more in Appendix: Section 6.1.

Model Department # Procedures # Hypoxemia Samples Base Rate
Hospital 0 OR 29,035 3,528,507 1.09%
Hospital 1 OR 28,136 3,751,163 2.18%
Hospital P ICU 1,669 5,080,864 3.93%

Table 1: Statistics of the different data sources. Hospital P is a public data set (PhysioNet). Addi-
tional details about hospital 0/1 data in Figures 5, 6, and 7 in Appendix: Section 6.1

The hospital 0/1 data includes static information (height, weight, age, sex, procedure codes), as
well as real-time measurements of thirty-five physiological signals (e.g., SaO2, FiO2, ETCO2, etc.)
sampled minute by minute. Although the hospital P data contains several physiological signals
sampled at a high frequency, we solely use a minute by minute SaO2 signal for our experiments.
Any missing values in the data are imputed by the mean and each feature is standardized to have
unit mean and variance. One important note is that although hospitals 0 and 1 are spatially close,
one is an academic medical center and one is a trauma center. More details on the patients from
these hospitals can be found in Section 6.1.

Evaluation Methodology PHASE and alternative approaches are evaluated based on real-time pre-
diction tasks, for example, whether a certain condition will occur in the next 5 minutes (details in
Sections 4.2 and 6.1). Our evaluation metric for prediction performance in binary classification is
area under the precision-recall curve, otherwise known as average precision (AP). Rather than ROC
curves, PR curves often better highlight imbalanced labels. Precision is defined as tp

tp+fp and recall
is tp

tp+fn , where tp is true positives, fp false positives, and fn false negatives. The area under the
curve provides a summary statistic that balances both precision and recall.
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4.2 RESULTS

In this section, we compare different embeddings of physiological signals as discussed in Table 2
(where Minh represents PHASE). Based on these comparisons, we see the overall performance of
predicting three adverse clinical events in Section 4.2.1 as well as a discussion of how well the
embedding learners transfer between hospitals in Section 4.2.2. Lastly, in Section 4.2.3, we depict
the attributions from our new model stacking method for obtaining Shapley values. In the operat-
ing room, there are a few physiological signals that stand out as indicators of adverse outcomes.
Three of these signals include SaO2 (blood oxygen), ETCO2 (end tidal CO2), and NIBPM (non-
invasive blood pressure measurement), which are linked to our three adverse outcomes: hypoxemia,
hypocapnia, and hypotension, respectively. Forecasting these outcomes is particularly important
because deviations from the norm could spell disaster (Lundberg et al., 2017; Curley et al., 2010;
Barak et al., 2015). More details on labels in Section 6.1.

Table 2: Notation for different embeddings. Special notation includes: Minh1→h2 and Hypoxh1→h2

means that the best model trained on hospital h1 data is trained on h2 data until convergence.

Raw Sixty minutes of raw signal.
EMA

(Prescience)
Exponential moving averages as well as variances of each signal. Computed
where weights decay with a half-life of 6 seconds, 1 minute, or 5 minutes.

Minh

(PHASE)
Hidden layer embedding from an LSTM trained to predict the minimum of
the current signal five minutes into the future on hospital h’s data.

Autoh Hidden layer embedding from an LSTM trained to predict an output signal
identical to the input signal on hospital h’s data.

Hypoxh Hidden layer embedding from an LSTM trained to predict hypoxemia on
hospital h’s data.

4.2.1 PREDICTION PERFORMANCE

In this section, we aim to investigate the performance gains PHASE embeddings offer over other
embeddings. Figure 2 shows the performance of XGB with different representations of the same
signals across three prediction tasks. In terms of pre-training for this experiment, there is none for
the Raw and EMA embeddings. However for Minh and Autoh, we have trained fifteen univariate
LSTM networks for both objectives across both hospitals (a total of sixty networks, not including
fine-tuned networks). We fix these same LSTM networks to generate hidden embeddings of the
original signals across the three final prediction tasks of hypoxemia, hypocapnia, and hypotension.

In terms of performance, the average precision points with all signals (in blue) are almost always
significantly above their associated average precision points using only a single signal (in red). This
suggests the outcomes derived from forecasting a single signal are complex and benefit from having
access to more signals. Most importantly, with the exception of the fine tuned model (14), the Minh

(PHASE) models (10 and 12) consistently outperform all other models in Figure 2 by a significant
margin. The fact that LSTM autoencoders fail to grasp meaningful representations of the data in
comparison to partially supervised LSTMs offers an insight; on our data set, the key to performant
embeddings is to have closeness between the LSTM’s prediction task and the downstream prediction
task. In this case, effective embeddings for forecasting adverse outcomes related to too-low signals,
required that the embeddings themselves were related to low signals in the future.

4.2.2 TRANSFERENCE BETWEEN HOSPITALS

In this section, we have two aims: the first aim is to evaluate how well our embedding models
transfer. The second aim is to explore methods to repurpose them when there is a large amount of
domain shift between hospitals. First, we can look back to Figure 2. The feature embeddings learned
in a source hospital that differs to the target hospital (12) performs significantly better than the EMA
(Prescience - Lundberg et al. (2017)) and Raw embeddings (2 and 4) and generally on par with a
matching source and target hospital (10). This is promising, because it suggests that the domain
shift between hospitals 0 and 1 does not prevent physiological signal embeddings from transferring
well. Although these hospitals do have similar patient distributions, this transference is better than
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Figure 2: GBMs with different embeddings of physiological signals. Gray lines signify insignificant
differences (all others pairs are significant at a p-value of 0.01) based on one hundred bootstraps
of the test set with adjusted pairwise comparisons via ANOVA with Tukey’s HSD test. For all,
we utilize the 15 features above the line in both hospitals (Figure 5). Notation described in Table
2, where Minh represents PHASE. Note that ∗[SaO2] denotes that we have a Raw, EMA, or Min
embedding of SaO2 and ∗[All Signals]+Static denotes a Raw, EMA, or Min embedding of all the
signals plus static variables. More details about the setup for this experiment in Section 6.3, with
p-values of models 10, 12, and 14 reported in Tables 7 and 8.
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Figure 3: GBMs with different embeddings of physiological signals. Gray lines signify insignificant
differences (all others are significant at a p-value of 0.01) based on one hundred bootstraps of the
test set with adjusted pairwise comparisons via ANOVA with Tukey’s HSD test. Notation described
in Table 2. The PhysioNet embeddings borrow signals from the target hospital’s embeddings so
∗[SaO2] + MinT[Non SaO2] + Static denotes that we have a MinP embedding of SaO2, a MinT

embedding of the remaining 14 variables, where T is the target hospital, and static variables. More
details about the setup for this experiment in Section 6.4, with p-values reported in Tables 9 and 10.

might be expected, given that one hospital is an academic medical center and the other is a trauma
center. As further evidence of their differences, we report the top ten diagnoses from each hospital in
Appendix: Section 6.1 and find no overlap apart from CALCULUS OF KIDNEY between hospitals
0 and 1.
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Next, in Figure 3, we can see that the MinP embeddings created from the publicly available Phys-
ioNet data (2p) are worse representations of SaO2 in comparison to the embeddings trained with the
target hospital’s data (6). This result implies that the domain shift between hospital P and the OR
hospitals is too large – resulting in learned Min embeddings (2P) that are not as useful for prediction.
Next, the improvement of the fine tuned models (4P) over MinP embeddings, suggests the following
insight: that fine tuning serves to recover the performance lost due to transference across distri-
butionally disparate hospitals. Then, observing the improvement of HypoxP embeddings (6P) over
MinP embeddings, conveys a natural insight: that closeness between LSTM prediction tasks and
the downstream prediction task is beneficial in the face of transference. This naturally extends the
observation from Section 4.2.1: that closeness between LSTM prediction tasks and the downstream
prediction task is beneficial in the face of performance. These two observations suggest two ap-
proaches to transferring across substantially different hospital data sets: 1.) train LSTMs with very
specific prediction tasks that match the downstream prediction and 2.) fine tune LSTM networks.

4.2.3 QUANTITATIVE VALIDATION OF INTERPRETATION FOR STACKED MODELS

In this section, our aim is to evaluate the efficacy of our interpretability method for stacked mod-
els. To do so, we separate interpretability evaluation approaches into two categories: qualitative
and quantitative. Qualitative evaluations are important to ensure human insight into interpretabil-
ity methods. However, our primary goal is to ensure that our novel method to obtain local feature
attributions for stacked models is correct in the sense that the attributions estimate Shapley val-
ues. One qualitative evaluation of feature attributions is Lundberg et al. (2017) who demonstrate
that local feature attributions improve the performance of practicing anesthesiologists in forecasting
hypoxemia.

Our quantitative validation is a standard ablation/perturbation test, in a similar fashion to other in-
terpretability evaluations: Arras et al. (2017), Hooker et al. (2018), Ancona et al. (2018), and Samek
et al. (2017). The test consists of the following. For a single sample, we sort the input features
according to their attributions, and iteratively impute each feature by the mean of the last two min-
utes. In order to ensure our interpretations generalize, we evaluate on the test set. Additionally, we
use the top 1000 positive samples sorted by the predicted probability of hypoxemia (true positives).
Then we evaluate the mean predicted probability across all samples, which will start high (for true
positives) and monotonically decrease as we impute features, leading to an overall decrease in the
average probability. Good interpretability methods should result in an initial steepness because the
most ”important” hypoxemic pathology is imputed first.
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Figure 4: Ablation test on the top 1000 positive labels, sorted by the probability prediction of the
final model. We ”remove” the features (by imputing the mean of the last two minutes) according to
Shapley values or a random ordering and then predict the probability of hypoxemia on the entirety of
our test set. We obtain Shapley values for both models with a fixed background set of 100 samples.
The model stack used for the interpretability evaluation (right) is (9) in Figure 2a. More details
about the setup for this experiment in Section 6.5

Deep SHAP was originally proposed for traditional deep learning models, we extend it to support a
mixture of model types in PHASE. As such, our primary aim is to evaluate against the pre-existing
Deep SHAP methodology. We compare LSTM embeddings fed into XGB (PHASE) against LSTM
embeddings fed into an MLP, because original Deep SHAP supports only traditional neural network
architecture (see Figure 11 in the Appendix for more details on the model setups). In Figure 4, we
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verify that ordering feature imputation by our interpretability method which combines Deep SHAP
with Independent Tree SHAP (LSTM→XGB) does lead to initial steepness of the predicted prob-
ability of hypoxemia in a similar fashion to Deep SHAP alone (LSTM→MLP), with both methods
outperforming a random ordering. In fact, it appears that for the Figure 4 (right), imputing our at-
tributions for LSTM→XGB has a potentially more destructive effect on performance in the early
number of imputed features. Lastly, in Appendix Section 6.5.1, we show attributions from both
methods in a informal visual evaluation to confirm concordance.

5 CONCLUSION

This paper presents PHASE, a new approach to machine learning with physiological signals based
on transferring embedding learners. PHASE has potentially far-reaching impacts, because neural
networks inherently create an embedding before the final output layer. As discussed in Section 2.2,
there is a large body of research independently working on neural networks for physiological sig-
nals. PHASE offers a potential method of collaboration by analyzing partially supervised univariate
networks as semi-private ways to share meaningful signals without sharing data sets.

In the results section we offer several insights into transference of univariate LSTM embedding
functions. First, closeness of upstream (LSTM) and downstream prediction tasks is indeed important
for both predictive performance and transference. For performance, we found that predicting the
minimum of the future five minutes was sufficient for the LSTMs to generate good embeddings.
For transference, predicting the minimum of the next five minutes was sufficient to transfer across
similar domains (operating room data from an academic medical center and a trauma center) when
predicting hypoxemia. However when attempting to utilize a representation from Hospital P, we
found that the difference between operating rooms and intensive care units was likely too large
to provide good predictions. Two solutions to this include fine tuning the Min LSTM models as
well as acknowledging the large amount of domain shift and training specific LSTM embedding
models with a particular downstream prediction in mind. Last but not least, this paper introduced
a way to obtain feature attributions for stacked models of neural networks and trees. By showing
that Shapley values may be computed as the mean over single reference Shapley values, this model
stacking framework generalizes to all models for which single reference Shapley values can be
obtained, which was quantitatively verified in Section 4.2.3.

We intend to release code pertinent to training the LSTM models, obtaining embeddings, predicting
with XGB models, and model stacking feature attributions – submitted as a pull request to the
SHAP github (https://github.com/slundberg/shap). Additionally, we intend to release our embedding
models, which we primarily recommend for use in forecasting ”hypo” predictions.

In the direction of future work, it is important to carefully consider representation learning in health
– particularly in light of model inversion attacks as discussed in Fredrikson et al. (2015). To this end,
future work in making precise statements about the privacy of models deserves attention, for which
one potential avenue may be differential privacy (Dwork, 2008). Other important areas to explore
include extending these results to higher sampling frequencies. Our data was sampled once per
minute, but higher resolution data may beget different neural network architectures. Lastly, further
work may include quantifying the relationship between domain shifts in hospitals and PHASE and
determining other relevant prediction tasks for which embeddings can be applied (e.g., ”hyper”
predictions, doctor action prediction, etc.).
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6 APPENDIX

6.1 EXPERIMENTAL SETUP
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Figure 5: Counts of each feature across both AIMS hospitals. Fifteen features have more than 1.5
million counts for both hospitals (ECGRATE, ETCO2, ETSEV, ETSEVO, FIO2, NIBPD, NIBPM,
NIBPS, PEAK, PEEP, PIP, RESPRATE, SAO2, TEMP1, TV).
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Figure 6: Differences between hospitals 0/1’s distributions. One of the biggest difference is in sex.
Hospital 0’s data had≈ 58% female patients and hospital 1’s data had≈ 39% female patients. Also,
hospital 1 serves more young patients and only hospital 1 deals with ASA codes of VI.
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Top ten diagnoses (Hospital 0):

CATARACT NOS, SUBARACHNOID HEMORRHAGE, CALCULUS OF KIDNEY, OTHER
COMPLICATIONS DUE TO OTHER INTERNAL ORTHOPEDIC DEVICE IMPLANT
AND GRAFT, SENILE CATARACT NOS, SENILE CATARACT UNSPECIFIED,
NECROTIZING FASCIITIS, CATARACT, CARPAL TUNNEL SYNDROME, CMP NEC
D/T ORTH DEV NEC

Top ten diagnoses (Hospital 1):

MALIGNANT NEOPLASM OF BREAST (FEMALE) UNSPECIFIED, MALIGN NEOPL
BREAST NOS, ATRIAL FIBRILLATION, MORBID OBESITY, CALCULUS OF
KIDNEY, ESOPHAGEAL REFLUX, MALIGNANT NEOPLASM OF PROSTATE,
MALIGNANT NEOPLASM OF BLADDER PART UNSPECIFIED, PREV C-SECT
NOS-DELIVER, END STAGE RENAL DISEASE

Top ten diagnoses (Hospital P):

NEWBORN, PNEUMONIA, TELEMETRY, SEPSIS, CONGESTIVE HEART FAILURE,
CORONARY ARTERY DISEASE, CHEST PAIN, GASTROINTESTINAL BLEED,
ALTERED MENTAL STATUS, INTRACRANIAL HEMORRHAGE

Labels For hypoxemia, a particular time point t is labelled to be one if the minimum of the next five
minutes is hypoxemic (min(SaOt+1:t+6

2 ) ≤ 92). All points where the current time step is currently
hypoxemic are ignored (SaOt

2 ≤ 92). Additionally we ignore time points where the past ten minutes
were all missing or the future five minutes were all missing. Hypocapnia and hypotension are only
labelled for hospitals 0 and 1. Additionally, we have stricter label conditions. We labeled the current
time point t to be one if (min(St−10:t) > T ) and the minimum of the next five minutes is ”hypo”
(min(St+1:t+5) ≤ T ). We labeled the current time point t to be zero if (min(St−10:t) > T ) and the
minimum of the next ten minutes is not ”hypo” (min(St+1:t+10) > T ). All other time points were
not considered. For hypocapnia, the threshold T = 34 and the signal S is ETCO2. For hypotension
the threshold is T = 59 and the signal S is NIBPM. Additionally we ignore time points where the
past ten minutes were all missing or the future five minutes were all missing. As a result, we have
different sample sizes for different prediction tasks (reported in Table 4). For Min predictions, the
label is the value of min(St+1:t+5), points without signal for in the future five minutes are ignored.
For Auto predictions, the label is all the time points: St−59:t. The sample sizes for Min and Auto
are the same and are reported in Table 3.

Table 3: Sample sizes for the Min and Auto predictions for training the LSTM autoencoders. For the
autoencoders we utilize the same data, without looking at the labels. We only utilize the 15 features
above the line in both hospitals (Figure 5) for training our models.

Hospital 0 Hospital 1
Prediction Task Train Val Test Train Val Test

ECGRATE 3.50e6 3.89e5 4.88e5 3.81e6 4.23e5 5.68e5
ETCO2 3.60e6 4.00e5 5.01e5 3.59e6 3.99e5 5.37e5
ETSEV 2.32e6 2.57e5 3.27e5 1.73e6 1.93e5 2.61e5

ETSEVO 2.32e6 2.57e5 3.27e5 1.73e6 1.93e5 2.61e5
FIO2 3.59e6 3.99e5 4.99e5 3.77e6 4.18e5 5.61e5

NIBPD 2.37e6 2.63e5 3.34e5 2.49e6 2.77e5 3.80e5
NIBPM 2.41e6 2.68e5 3.40e5 2.49e6 2.77e5 3.79e5
NIBPS 2.37e6 2.63e5 3.34e5 2.49e6 2.77e5 3.80e5
PEAK 3.20e6 3.56e5 4.47e5 1.77e6 1.96e5 2.63e5
PEEP 3.17e6 3.53e5 4.42e5 3.19e6 3.54e5 4.76e5
PIP 3.20e6 3.56e5 4.47e5 1.77e6 1.96e5 2.63e5

RESPRATE 3.06e6 3.40e5 4.27e5 3.65e6 4.05e5 5.44e5
SAO2 3.55e6 3.94e5 4.96e5 3.79e6 4.21e5 5.65e5

TEMP1 1.58e6 1.76e5 2.16e5 2.41e6 2.68e5 3.62e5
TV 3.21e6 3.57e5 4.47e5 1.90e6 2.11e5 2.84e5

15



Under review as a conference paper at ICLR 2019

Table 4: Sample sizes for the final downstream predictions.

Hospital 0 Hospital 1
Prediction Task Train Val Test Train Val Test

Hypoxemia 3.53e6 3.92e5 4.93e5 3.75e6 4.17e5 5.60e5
Hypocapnia 1.13e6 1.26e5 1.58e5 1.58e6 1.75e5 2.32e5
Hypotension 1.65e6 1.83e5 2.35e5 2.10e6 2.33e5 3.20e5

Table 5: Base rates of different predictions in the test sets.

Prediction Task Hospital 0 Hospital 1
Hypoxemia 1.06% 2.32%
Hypocapnia 9.91% 7.94%
Hypotension 7.41% 3.52%

Table 6: Sample sizes for hospital P. We don’t use hospital P for a test set, so we only have training
and validation sets. The base rate of hypoxemia on the validation set is 1.95%.

Prediction Task Train Val
Hypoxemia/min5 4.57e6 5.08e5

6.2 MODEL ARCHITECTURE AND TRAINING

LSTM Architecture and Training: We utilize LSTMs with forget gates, introduced by Gers et al.
(2000), implemented in the Keras library with a Tensorflow back-end. We train our networks with
either regression (Auto and Min embeddings) or classification (Hypox) objectives. For regression,
we optimize using Adam with an MSE loss function. For classification we optimize using RMSProp
with a binary cross-entropy loss function (additionally, we upsample to maintain balanced batches
during training). Our model architectures consist of two hidden layers, each with 200 LSTM cells
with dense connections between all layers. We found that important steps in training LSTM net-
works for our data are to impute missing values by the training mean, standardize data, and to
randomize sample ordering prior to training (allowing us to sample data points in order without re-
placement). To prevent overfitting, we utilized dropouts between layers as well as recurrent dropouts
for the LSTM nodes. Using a learning rate of 0.001 gave us the best final results. The LSTM mod-
els were run to convergence (until their validation accuracy did not improve for five rounds of batch
stochastic gradient descent). In order to train these models, we utilize three GPUs (GeForce GTX
1080 Ti graphics cards).

GBM Architecture and Training: We train GBM trees in Python using XGBoost, an open source
library for gradient boosting trees. XGBoost works well in practice in part due to it’s ease of use and
flexibility. Imputing and standardizing are unnecessary because GBM trees are based on splits in the
training data, implying that scale does not matter and missing data is informative as is. We found
that a learning rate of 0.02 for hypoxemia (0.1 for hypotension and hypocapnia), a max tree depth of
6, subsampling rate of 0.5, and a logistic objective gave us good performance. All XGB models were
run until their validation accuracy was non-improving for five rounds of adding estimators (trees).
In order to train these models, we utilize 72 CPUs (Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz)
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6.3 PREDICTION PERFORMANCE

Figure 8: Model setup for Figure 2. Showcasing most multivariate models in Figure 2, apart from
the fine tuned LSTMs (14), which were trained identically but were initialized with the non-target
hospital’s corresponding LSTM. This figure is for hypoxemia, but hypocapnia and hypotension par-
allel this setup. Not counting fine tuned LSTMs, there are a total of 60 LSTMs: 30 Auto models
for hospitals 0/1 and 30 Min models for hospitals 0/1. LSTM/XGB architecture and hyperparam-
eters are consistent across models and can be found in Section 6.2. The signals and the outputs
of the LSTMs are vectors. Multiple connections into a single model are simply concatenated. For
all LSTMs, they consist of two layers each with 200 LSTM cells, trained in identical manners, as
described in Section 6.2. For XGB, the training is detailed in Section 6.2 as well. The univariate
predictions made in Figure 2 are similarly obtained, but only utilize the single feature used to obtain
the final prediction. Here, ”Hypoxemia” means: ”Is min(SaO2(t+1,··· ,t+5)) ≤ 92?”.
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Table 7: Hospital 0 p-values for Figure 2. Reporting adjusted p-values based on one hundred boot-
straps of the test set with adjusted pairwise comparisons via ANOVA with Tukey’s HSD test. 0.0
denotes a p-value less than 1e−14. Since we are most concerned with models 10, 12, and 14 we
only report pairs that include these models for the sake of brevity.

Fig 2a Fig 2c Fig 2e
10 12 14 10 12 14 10 12 14

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0 3.32e−05 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 7.9e−5 0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 2.21e−9 0.0 0.0 0.91 1.0 0.90
12 0.0 0.0 0.90

Table 8: Hospital 1 p-values for Figure 2. Reporting adjusted p-values based on one hundred boot-
straps of the test set with adjusted pairwise comparisons via ANOVA with Tukey’s HSD test. 0.0
denotes a p-value less than 1e−14. Since we are most concerned with models 10, 12, and 14 we
only report pairs that include these models for the sake of brevity.

Fig 2b Fig 2d Fig 2f
10 12 14 10 12 14 10 12 14

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.99 0.94 0.16 7.2e−8 8.9e−6 0.0
12 0.80 0.0 5.0e−3
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Leave One Signal Out Test: In Figure 9, we create a simulated setting – when predicting each
event, we excluded the corresponding physiological signal from our features. For example, we
assumed that SaO2 is not recorded when predicting hypoxemia. Under this setting, we must rely on
the remaining signals to predict hypoxemia. This setting is a more unsupervised evaluation in the
sense that our outcome is not derived from a signal we create an embedding for. As our results show
(Figure 9), PHASEs outperformance is consistent for hypocapnia and hypotension. For hypoxemia,
all representations perform poorly because predicting hypoxemia heavily relies on SaO2, leaving
little signal for the remaining features. This is likely due in part to the low base rates of hypoxemia:
1.06% in hospital 0 and 2.32% in hospital 1. Investigating further, we found that the log loss of the
Min embeddings was lower than other embeddings on the validation set, but not on the test set. This
overfitting further suggests that there was little signal to be captured, causing simpler embeddings
like EMA to be favored.
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Figure 9: GBMs with different embeddings of physiological signals. Gray lines signify insignificant
differences (all others pairs are significant at a p-value of 0.01) based on one hundred bootstraps
of the test set with adjusted pairwise comparisons via ANOVA with Tukey’s HSD test. For all, we
utilize the 15 features above the line in both hospitals (Figure 5). Notation described in Table 2,
where Minh represents PHASE. Note that ∗[All Signals]−∗[SaO2]+Static denotes a Raw, EMA, or
Min embedding of all the signals except for SaO2 plus static variables.
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6.4 TRANSFERENCE

Figure 10: Model setup for Figure 3. Showcasing what models are being used for the the transfer-
ence experiment in Figure 3. LSTM/XGB architecture and hyperparameters are consistent across
models and can be found in Section 6.2. The signals and the outputs of the LSTMs are vectors.
Multiple connections into a single XGB model are simply concatenated. All LSTMs consist of two
layers each with 200 LSTM cells, trained in identical manners, as described in Section 6.2. For
XGB, the training is detailed in Section 6.2 as well. The univariate predictions made in Figure 3
are similarly obtained, but only utilize the single feature used to obtain the final prediction. Here,
”Hypoxemia” means: ”Is min(SaO2(t+1,··· ,t+5)) ≤ 92?”.
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Table 9: Hospital 0 p-values for Figure 3. Reporting adjusted p-values based on one hundred boot-
straps of the test set with adjusted pairwise comparisons via ANOVA with Tukey’s HSD test.

1 3 5 1P 3P 5P 2 4 6 2P 4P
3 7e−13
5 9e−09 7e−13
1P 7e−13 7e−13 7e−13
3P 3e−10 7e−13 1.000 7e−13
5P 1e−07 7e−13 1.000 7e−13 0.998
2 0.736 7e−13 8e−13 7e−13 8e−13 1e−12
4 1e−12 7e−13 7e−13 7e−13 7e−13 7e−13 8e−08
6 7e−13 7e−13 7e−13 7e−13 8e−13 7e−13 7e−13 7e−13
2P 7e−13 7e−13 7e−13 4e−12 7e−13 7e−13 8e−13 0.002 7e−13
4P 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 0.979 7e−13
6P 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 0.333 7e−13 0.988
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Table 10: Hospital 1 p-values for Figure 3. Reporting adjusted p-values based on one hundred
bootstraps of the test set with adjusted pairwise comparisons via ANOVA with Tukey’s HSD test.

1 3 5 1P 3P 5P 2 4 6 2P 4P
3 7e−13
5 1e−10 8e−13
1P 7e−13 0.981 4e−11
3P 7e−06 7e−13 7e−13 7e−13
5P 0.229 7e−13 8e−13 7e−13 0.260
2 0.780 7e−13 8e−13 7e−13 0.027 1.000
4 9e−12 7e−13 7e−13 7e−13 0.574 1e−04 1e−06
6 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13
2P 0.603 7e−13 8e−13 7e−13 0.061 1.000 1.000 6e−06 7e−13
4P 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 1e−04 7e−13
6P 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 7e−13 4e−08 7e−13 0.953
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6.5 INTERPRETABILITY

Figure 11: Model setup for Figure 4. Showcasing what models are being used to evaluate in-
terpretability. LSTM/XGB architecture and hyperparameters are consistent across models and
can be found in Section 6.2. The signals and the outputs of the LSTMs are vectors. Multiple
connections into a single XGB model are simply concatenated. Here, ”Hypoxemia” means: ”Is
min(SaO2(t+1,··· ,t+5)) ≤ 92?”. Of special note, the MLP is trained identically to the Hypox mod-
els. The architecture is a single layer with 100 nodes with a relu activation connected densely into
a sigmoid output node. The MLP is trained until convergence by upsampling the number of posi-
tive samples to match the negative samples for each batch. The attributions for LSTM→MLP are
computed via Deep SHAP and the attributions for LSTM→XGB are computed via Deep SHAP
combined with Independent Tree SHAP (our novel method). Both methods use a fixed background
set of 100 randomly sampled points from the test set.
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6.5.1 QUALITATIVE EVALUTION OF INTERPRETATION FOR STACKED MODELS

In Figure 12, we present the local feature attributions for two different model stacks across a random
set of examples. We can see that the models generally appear to agree on their predictions, although
there are occasional disagreements - which are likely due to the fact that these attributions are for
two different models. Being able to observe these trends is useful to understanding models and
to achieving credibility. As our primary aim is to ensure that our model stacking local feature
attributions agree with feature attributions on neural networks, we also provide attributions for true
positives and true negatives in settings where the models agree.

In Figure 13, we present local feature attributions for two different model stacks across true positive
examples. Looking at these true positive examples we can see two consistent trends: high variability
and a low absolute value of blood oxygen. Looking at the attributions we can discover that the dips
in blood oxygen - minute to minute variability was important in both model stacks. Additionally,
the closer the time point is to the actual prediction, the more important it is. In Figure 14, we present
the local feature attributions for two different model stacks across true negative examples. Here
we can see that variability and dips make a much smaller relative impact in the model predictions.
Instead, the most important factor in determining hypoxemia is the high value of SaO2 closest to the
final prediction. Furthermore, the feature attributions reveal interesting trends in the attributions for
the MLP model, where there appears to be a consistent trend even though the samples look fairly
different.
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Figure 12: Randomly sampled feature attributions. Local feature attribution plots for two stacked
models: 1. LSTM→MLP and 2. LSTM→XGB. Here we present fifteen randomly sampled hypox-
emia examples.

23



Under review as a conference paper at ICLR 2019

Figure 13: True negative feature attributions. Local feature attribution plots for two stacked models:
1. LSTM→MLP and 2. LSTM→XGB. Here we present the nine ”least probable” positively labelled
hypoxemia examples. In order to obtain this set, we took the intersection of the top 1000 negatively
labelled examples from both models to get a set of 97 samples and randomly sample nine samples.

Figure 14: True positive feature attributions. Local feature attribution plots for two stacked models:
1. LSTM→MLP and 2. LSTM→XGB. Here we present the nine ”most probable” positively labelled
hypoxemia examples. In order to obtain this set, we took the intersection of the top 100 positively
labelled examples from both models to get a set of 40 samples and randomly sample nine samples.
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