
Under review as a conference paper at ICLR 2019

GRAPH CLASSIFICATION WITH
GEOMETRIC SCATTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the most notable contributions of deep learning is the application of con-
volutional neural networks (ConvNets) to structured signal classification, and in
particular image classification. Beyond their impressive performances in super-
vised learning, the structure of such networks inspired the development of deep
filter banks referred to as scattering transforms. These transforms apply a cascade
of wavelet transforms and complex modulus operators to extract features that are
invariant to group operations and stable to deformations. Furthermore, ConvNets
inspired recent advances in geometric deep learning, which aim to generalize these
networks to graph data by applying notions from graph signal processing to learn
deep graph filter cascades. We further advance these lines of research by propos-
ing a geometric scattering transform using graph wavelets defined in terms of ran-
dom walks on the graph. We demonstrate the utility of features extracted with this
designed deep filter bank in graph classification of biochemistry and social net-
work data (incl. state of the art results in the latter case), and in data exploration,
where they enable inference of EC exchange preferences in enzyme evolution.

1 INTRODUCTION

Over the past decade, numerous examples have established that deep neural networks (i.e., cascades
of linear operations and simple nonlinearities) typically outperform traditional “shallow” models in
various modern machine learning applications, especially given the increasing Big Data availability
nowadays. Perhaps the most well known example of the advantages of deep networks is in computer
vision, where the utilization of 2D convolutions enable network designs that learn cascades of con-
volutional filters, which have several advantages over fully connected network architectures, both
computationally and conceptually. Indeed, in terms of supervised learning, convolutional neural
networks (ConvNets) hold the current state of the art in image classification, and have become the
standard machine learning approach towards processing big structured-signal data, including audio
and video processing. See, e.g., Goodfellow et al. (2016, Chapter 9) for a detailed discussion.

Beyond their performances when applied to specific tasks, pretrained ConvNet layers have been ex-
plored as image feature extractors by freezing the first few pretrained convolutional layers and then
retraining only the last few layers for specific datasets or applications (e.g., Yosinski et al., 2014;
Oquab et al., 2014). Such transfer learning approaches provide evidence that suitably constructed
deep filter banks should be able to extract task-agnostic semantic information from structured data,
and in some sense mimic the operation of human visual and auditory cortices, thus supporting the
neural terminology in deep learning. An alternative approach towards such universal feature extrac-
tion was presented in Mallat (2012), where a deep filter bank, known as the scattering transform, is
designed, rather than trained, based on predetermined families of distruptive patterns that should be
eliminated to extract informative representations. The scattering transform is constructed as a cas-
cade of linear wavelet transforms and nonlinear complex modulus operations that provides features
with guaranteed invariance to a predetermined Lie group of operations such as rotations, translations,
or scaling. Further, it also provides Lipschitz stability to small diffeomorphisms of the inputted sig-
nal. Scattering features have been shown to be effective in several audio (e.g., Bruna & Mallat,
2013a; Andén & Mallat, 2014; Lostanlen & Mallat, 2015) and image (e.g., Bruna & Mallat, 2013b;
Sifre & Mallat, 2014; Oyallon & Mallat, 2015) processing applications, and their advantages over
learned features are especially relevant in applications with relatively low data availability, such as
quantum chemistry (e.g., Hirn et al., 2017; Eickenberg et al., 2017; 2018).

1

Under review as a conference paper at ICLR 2019

Following the recent interest in geometric deep learning approaches for processing graph-structured
data (see, for example, Bronstein et al. (2017) and references therein), we present here a generaliza-
tion of the scattering transform from Euclidean domains to graphs. Similar to the Euclidean case,
our construction is based on a cascade of bandpass filters, defined in this case using graph signal
processing (Shuman et al., 2013) notions, and complex moduli, which in this case take the form of
absolute values (see Sec. 3). While several choices of filter banks could generally be used with the
proposed cascade, we focus here on graph wavelet filters defined by lazy random walks (see Sec. 2).
These wavelet filters are also closely related to diffusion geometry and related notions of geometric
harmonic analysis, e.g. the diffusion maps algorithm of Coifman & Lafon (2006) and the associ-
ated diffusion wavelets of Coifman & Maggioni (2006). Therefore, we call the constructed cascade
geometric scattering, which also follows the same terminology from geometric deep learning.

We note that similar attempts at generalizing the scattering transform to graphs have been presented
in Chen et al. (2014) as well as Zou & Lerman (2018) and Gama et al. (2018). The latter two works
are most closely related to the present paper. In them, the authors focus on theoretical properties
of the proposed graph scattering transforms, and show that such transforms are invariant to graph
isomorphism. The geometric scattering transform that we define here also possesses the same in-
variance property, and we expect similar stability properties to hold for the proposed construction
as well. However, in this paper we focus mainly on the practical applicability of geometric scat-
tering transforms for graph-structured data analysis, with particular emphasis on the task of graph
classification, which has received much attention recently in geometric deep learning (see Sec. 4)

In supervised graph classification problems one is given a training database of graph/label pairs
{(Gi, yi)}Ni=1 ⊂ G × Y sampled from a set of potential graphs G and potential labels Y . The goal
is to use the training data to learn a model f : G → Y that associates to any graph G ∈ G a la-
bel y = f(G) ∈ Y . These types of databases arise in biochemistry, in which the graphs may be
molecules and the labels some property of the molecule (e.g., its toxicity), as well as in various
types of social network databases. Until recently, most approaches were kernel based methods, in
which the model f was selected from the reproducing kernel Hilbert space generated by a kernel that
measures the similarity between two graphs; one of the most successful examples of this approach
is the Weisfeiler-Lehman graph kernel of Shervashidze et al. (2011). Numerous feed forward deep
learning algorithms, though, have appeared over the last few years. In many of these algorithms,
task based (i.e., dependent upon the labels Y) graph filters are learned from the training data as part
of the larger network architecture. These filters act on a characteristic signal xG that is defined on
the vertices of any graph G, e.g., xG may be a vector of degrees of each vertex (we remark there
are also edge based algorithms, such as Gilmer et al. (2017) and references within, but these have
largely been developed for and tested on databases not considered in Sec. 4). Here, we propose
an alternative to these methods in the form of a geometric scattering classifier (GSC) that lever-
ages graph-dependent (but not label dependent) scattering transforms to map each graph G to the
scattering features extracted from xG. Furthermore, inspired by transfer learning approaches such
as Oquab et al. (2014), we consider treatment of our scattering cascade as frozen layers on xG, ei-
ther followed by fully connected classification layers (see Fig. 2), or fed into other classifiers such
as SVM or logistic regression. We note that while the formulation in Sec. 3 is phrased for a single
signal xG, it naturally extends to multiple signals by concatenating their scattering features.

In Sec. 4.1 we evaluate the quality of the scattering features and resulting classification by comparing
it to numerous graph kernel and deep learning methods over 13 datasets (7 biochemistry ones and
6 social network ones) commonly studied in related literature. In terms of classification accuracy
on individual datasets, we show that the proposed approach obtains state of the art results on two
datasets and performs competitively on the rest, despite only learning a classifier that come after the
geometric scattering transform. Furthermore, while other methods may excel on specific datasets,
when considering average accuracy: within social network data, our proposed GSC outperforms all
other methods; in biochemistry or over all datasets, it outperforms nearly all feed forward neural
network approaches, and is competitive with state of the art results of graph kernels (Kriege et al.,
2016) and graph recurrent neural networks (Taheri et al., 2018). We regard this result as crucial in
establishing the universality of graph features extracted by geometric scattering, as they provide an
effective task-independent representation of analyzed graphs. Finally, to establish their unsupervised
qualities, in Sec. 4.2 we use geometric scattering features extracted from enzyme data (Borgwardt
et al., 2005a) to infer emergent patterns of enzyme commission (EC) exchange preferences in en-
zyme evolution, validated with established knowledge from Cuesta et al. (2015).

2

Under review as a conference paper at ICLR 2019

2 GRAPH RANDOM WALKS AND GRAPH WAVELETS

We define graph wavelets as the difference between lazy random walks that have propagated at dif-
ferent time scales, which mimics classical wavelet constructions found in Meyer (1993) as well as
more recent constructions found in Coifman & Maggioni (2006). The underpinnings for this con-
struction arise out of graph signal processing, and in particular the properties of the graph Laplacian.

Let G = (V,E,W) be a weighted graph, consisting of n vertices V = {v1, . . . , vn}, edges
E ⊆ {(v`, vm) : 1 ≤ `,m ≤ n}, and weights W = {w(v`, vm) > 0 : (v`, vm) ∈ E}. Note that un-
weighted graphs are considered as a special case, by setting w(v`, vm) = 1 for each (v`, vm) ∈ E.
Define the n × n (weighted) adjacency matrix AG = A of G by A(v`, vm) = w(v`, vm) if
(v`, vm) ∈ E and zero otherwise, where we use the notation A(v`, vm) to denote the (`,m) en-
try of the matrix A so as to emphasize the correspondence with the vertices in the graph and
to reserve sub-indices for enumerating objects. Define the (weighted) degree of vertex v` as
deg(v`) =

∑
m A(v`, vm) and the corresponding diagonal n × n degree matrix D given by

D(v`, v`) = deg(v`), D(v`, vm) = 0, ` 6= m. Finally, the n × n graph Laplacian matrix LG = L
on G is defined as L = D−A.

The graph Laplacian is a symmetric, real valued positive semi-definite matrix, and thus has n non-
negative eigenvalues. Furthermore, if we set 0 = (0, . . . , 0)T to to be the n× 1 vector of all zeroes,
and 1 = (1, . . . , 1)T to be the analogous vector of all ones, then it is easy to see that L1 = 0.
Therefore 0 is an eigenvalue of L and we write the n eigenvalues of L as 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1
with corresponding n × 1 orthonormal eigenvectors 1/

√
n = ϕ0,ϕ1, . . . ,ϕn−1. If the graph G is

connected, then λ1 > 0. In order to simplify the following discussion we assume that this is the
case, although the discussion below can be amended to include disconnected graphs as well.

Since ϕ0 is constant and every other eigenvector is orthogonal to ϕ0, it is natural to view the eigen-
vectors ϕk as the Fourier modes of the graph G, with a frequency magnitude

√
λk. Let x : V → R

be a signal defined on the vertices of the graph G, which we will consider as an n × 1 vector with
entries x(v`). It follows that the Fourier transform of x can be defined as x̂(k) = x · ϕk, where
x · y is the standard dot product. This analogy is one of the foundations of graph signal process-
ing and indeed we could use this correspondence to define wavelet operators on the graph G, as in
Hammond et al. (2011). Rather than follow this path, though, we instead take a related path similar
to Coifman & Maggioni (2006); Gama et al. (2018) by defining the graph wavelet operators in terms
of random walks defined on G, which will avoid diagonalizing L and will allow us to control the
“spatial” graph support of the filters directly.

Define the n×n transition matrix of a lazy random random walk as P = 1
2

(
D−1A + I

)
. Note that

the row sums of P are all one and thus the entry P(v`, vm) corresponds to the transition probability
of walking from vertex v` to vm in one step. Powers of P run the random walk forward, so that in
particular Pt(v`, vm) is the transition probability of walking from v` to vm in exactly t steps. We
will use P as a left multiplier, in which case P acts a diffusion operator. To understand this idea
more precisely, first note that a simple calculation shows that P1 = 1 and furthermore if the graph
G is connected, every other eigenvalue of P is contained in [0, 1). Note in particular that L and
P share the eigenvector 1. It follows that Ptx responds most significantly to the zero frequency
x̂(0) of x while depressing the non-zero frequencies of x (where the frequency modes are defined
in terms of the graph Laplacian L, as described above). On the spatial side, the value Ptx(v`) is the
weighted average of x(v`) with all values x(vm) such that vm is within t steps of v` in the graph G.

High frequency responses of x can be recovered in multiple different fashions, but we utilize multi-
scale wavelet transforms that group the non-zero frequencies of G into approximately dyadic bands.
As shown in Mallat (2012, Lemma 2.12), wavelet transforms are provably stable operators in the
Euclidean domain, and the proof of Zou & Lerman (2018, Theorem 5.1) indicates that similar results
on graphs may be possible. Furthermore, the multiscale nature of wavelet transforms will allow the
resulting geometric scattering transform (Sec. 3) to traverse the entire graph G in one layer, which
is valuable for obtaining global descriptions of G. Following Coifman & Maggioni (2006), define
the n× n diffusion wavelet matrix at the scale 2j as

Ψj = P2j−1

−P2j = P2j−1

(I−P2j−1

) (1)

Since Pt1 = 1 for every t, we see that Ψj1 = 0 for each j ≥ 1. Thus each Ψjx partially recovers
x̂(k) for k ≥ 1. The value Ψjx(v`) aggregates the signal information x(vm) from the vertices vm

3

Under review as a conference paper at ICLR 2019

j

(a) Sample graph of the bunny manifold

j

(b) Minnesota road network graph

Figure 1: Diffusion wavelets Ψj for increasing scale j left to right, applied to diracs centered at two
different locations (marked by red circles) in two different graphs. Vertex colors indicate wavelet
values (corresponding to colorbars for each plot), ranging from yellow/green indicating positive
values to blue indicating negative values. Both graphs are freely available from PyGSP (2018).

that are within 2j steps of v`, but does not average the information like the operator P2j . Instead,
it responds to sharp transitions or oscillations of the signal x within the neighborhood of v` with
radius 2j (in terms of the graph path distance). Generally, the smaller j the higher the frequencies
Ψjx recovers in x. These high frequency wavelet coefficients up to the scale 2J are denoted by:

Ψ(J)x(v`) = [Ψjx(v`) : 1 ≤ j ≤ J] , ` = 1, . . . , n . (2)

Since 2J controls the maximum scale of the wavelet, in the experiments of Sec. 4 we select J such
that 2J ∼ diam(G). Figure 1 plots the diffusion wavelets at different scales on two different graphs.

3 GEOMETRIC SCATTERING ON GRAPHS

A geometric wavelet scattering transform follows a similar construction as the (Euclidean) wavelet
scattering transform of Mallat (2012), but leverages a graph wavelet transform. In this paper we
utilize the wavelet transform defined in (2) of the previous section, but remark that in principle any
graph wavelet transform could be used (see, e.g., Zou & Lerman, 2018). In Sec. 3.1 we define the
graph scattering transform, in Sec. 3.2 we discuss its relation to other recently proposed graph scat-
tering constructions (Gama et al., 2018; Zou & Lerman, 2018), and in Sec. 3.3 we describe several
of its desirable properties as compared to other geometric deep learning algorithms on graphs.

3.1 GEOMETRIC SCATTERING DEFINITIONS

Machine learning algorithms that compare and classify graphs must be invariant to graph isomor-
phism, i.e., re-indexations of the vertices and corresponding edges. A common way to obtain invari-
ant graph features is via summation operators, which act on a signal x = xG that can be defined on
any graph G, e.g., x(v`) = deg(v`) for each vertex v` in G. The geometric scattering transform,
which is described in the remainder of this section, follows such an approach.

The simplest of such summation operators computes the sum of the responses of the signal x. As
described in Verma & Zhang (2018), this invariant can be complemented by higher order summary
statistics of x, the collection of which form statistical moments, and which are also referred to as
“capsules” in that work. For example, the unnormalized qth moments of x yield the following “zero”
order geometric scattering moments:

Sx(q) =

n∑
`=1

x(v`)
q, 1 ≤ q ≤ Q (3)

We can also replace (3) with normalized (i.e., standardized) moments of x, in which case we store its
mean (q = 1), variance (q = 2), skew (q = 3), kurtosis (q = 4), and so on. In the numerical experi-
ments described in Sec. 4 we take Q = 2, 3, 4 depending upon the database, where Q is chosen via
cross validation to optimize classification performance. Higher order moments are not considered
as they become increasingly unstable, and we report results for both normalized and unnormalized
moments. In what follows we discuss the unnormalized moments, since their presentation is simpler
and we use them in conjunction with fully connected layers (FCL) for classification purposes, but

4

Under review as a conference paper at ICLR 2019

the same principles also apply to normalized moments (e.g., used with SVM and logistic regression
in our classification results). The invariants Sx(q) do not capture the full variability of x and hence
the graph G upon which the signal x is defined. We thus complement these moments with summary
statistics derived from the wavelet coefficients of x, which in turn will lead naturally to the graph
ConvNet structure of the geometric scattering transform.

Observe, analogously to the Euclidean setting, that in computing Sx(1), which is the summation of
x(v`) over V , we have captured the zero frequency of x since

∑n
`=1 x(v`) = x · 1 =

√
n x̂(0).

Higher order moments of x can incorporate the full range of frequencies in x, e.g. Sx(2) =∑n
`=1 x(v`)

2 =
∑n

k=1 x̂(k)2, but they are mixed into one invariant coefficient. We can separate
and recapture the high frequencies of x by computing its wavelet coefficients Ψ(J)x, which were
defined in (2). However, Ψ(J)x is not invariant to permutations of the vertex indices; in fact, it is
covariant (or equivariant). Before summing the individual wavelet coefficient vectors Ψjx, though,
we must first apply a pointwise nonlinearity. Indeed, define the n× 1 vector d(v`) = deg(v`), and
note that Ψjx · d = 0 since one can show that d is a left eigenvector of P with eigenvalue 1. If G
is a regular graph then d = c1 from which it follows that Ψjx · 1 = 0. For more general graphs
d(v`) ≥ 0 for v` ∈ V , which implies that for many graphs 1 ·d will be the dominating coefficient in
an expansion of 1 in an orthogonal basis containing d; it follows that in these cases |Ψjx · 1| � 1.

We thus apply the absolute value nonlinearity, to obtain nonlinear covariant coefficients |Ψ(J)x| =
{|Ψjx| : 1 ≤ j ≤ J}. We use absolute value because it is covariant to vertex permutations, non-
expansive, and when combined with traditional wavelet transforms on Euclidean domains, yields
a provably stable scattering transform for q = 1. Furthermore, initial theoretical results in Zou &
Lerman (2018); Gama et al. (2018) indicate that similar graph based scattering transforms possess
certain types of stability properties as well. As in (3), we extract invariant coefficients from |Ψjx|
by computing its moments, which define the first order geometric scattering moments:

Sx(j, q) =

n∑
`=1

|Ψjx(v`)|q, 1 ≤ j ≤ J, 1 ≤ q ≤ Q (4)

These first order scattering moments aggregate complimentary multiscale geometric descriptions of
G into a collection of invariant multiscale statistics. These invariants give a finer partition of the
frequency responses of x. For example, whereas Sx(2) mixed all frequencies of x, we see that
Sx(j, 2) only mixes the frequencies of x captured by the graph wavelet Ψj .

First order geometric scattering moments can be augmented with second order geometric scattering
moments by iterating the graph wavelet and absolute value transforms, which leads naturally to the
structure of a graph ConvNet. These moments are defined as:

Sx(j, j′, q) =
n∑

i=1

|Ψj′ |Ψjx(vi)||q, 1 ≤ j < j′ ≤ J, 1 ≤ q ≤ Q (5)

which consists of reapplying the wavelet transform operator Ψ(J) to each |Ψjx| and computing
the summary statistics of the magnitudes of the resulting coefficients. The intermediate covariant
coefficients |Ψj′ |Ψjx|| and resulting invariant statistics Sx(j, j′, q) couple two scales 2j and 2j

′

within the graph G, thus creating features that bind patterns of smaller subgraphs within G with
patterns of larger subgraphs (e.g., circles of friends of individual people with larger community
structures in social network graphs). The transform can be iterated additional times, leading to third
order features and beyond, and thus has the general structure of a graph ConvNet.

The collection of graph scattering moments Sx = {Sx(q), Sx(j, q), Sx(j, j′, q)} (illustrated in
Fig. 2(a)) provides a rich set of multiscale invariants of the graphG. These can be used in supervised
settings as input to graph classification or regression models, or in unsupervised settings to embed
graphs into a Euclidean feature space for further exploration, as demonstrated in Sec. 4.

3.2 STABILITY AND CAPACITY OF GEOMETRIC SCATTERING

In order to assess the utility of scattering features for representing graphs, two properties have to
be considered: stability and capacity. First, the stability property aims to essentially provide an
upper bound on distances between similar graphs that only differ by types of deformations that can

5

Under review as a conference paper at ICLR 2019

be treated as noise. This property has been the focus of both Zou & Lerman (2018) and Gama
et al. (2018), and in particular the latter shows that a diffusion scattering transform yields features
that are stable to graph structure deformations whose size can be computed via the diffusion frame-
work (Coifman & Maggioni, 2006) that forms the basis for their construction. While there are some
technical differences between the geometric scattering here and the diffusion scattering in Gama
et al. (2018), these constructions are sufficiently similar that we can expect both of them to have
analogous stability properties. Therefore, we mainly focus here on the complementary property of
the scattering transform capacity to provide a rich feature space for representing graph data without
eliminating informative variance in them.

We note that even in the classical Euclidean case, while the stability of scattering transforms to de-
formations can be established analytically (Mallat, 2012), their capacity is typically examined by
empirical evidence when applied to machine learning tasks (e.g., Bruna & Mallat, 2011; Sifre &
Mallat, 2012; Andén & Mallat, 2014). Similarly, in the graph processing settings, we examine the
capacity of our proposed geometric scattering features via their discriminaive power in graph data
analysis tasks. In Sec. 4.1, we describe extensive numerical experiments for graph classification
problems in which our scattering coefficients are utilized in conjunction with several classifiers,
namely, fully connected layers (FCL, illustrated in Fig. 2(b)), support vector machine (SVM), and
logistic regression. We note that SVM classification over scattering features leads to state of the
art results on social network data, as well as outperforming all feed-forward neural network meth-
ods in general. Furthermore, for biochemistry data (where graphs represent molecule structures),
FCL classification over scattering features outperforms all other feed-forward neural networks, even
though we only train the fully connected layers. Finally, to assess the scattering feature space for
data representation and exploration, in Sec. 4.2 we examine its qualities when analyzing biochem-
istry data, with emphasis on enzyme graphs. We show that geometric scattering enables graph
embedding in a relatively low dimensional Euclidean space, while preserving insightful properties
in the data. Beyond establishing the capacity of our specific construction, these results also indicate
the viability of graph scattering transforms in general, as universal feature extractors on graph data,
and complement the stability results established in Zou & Lerman (2018) and Gama et al. (2018).

x

‖ . . . ‖qq

P2j−1
I−P2j−1 | . . . | ‖ . . . ‖qq

P2j−1
I−P2j−1 | . . . | P2j

′−1
I −P2j

′−1 | . . . | ‖ . . . ‖qq

Sx

︸ ︷︷ ︸
Ψj

︸ ︷︷ ︸
Ψj′

︸ ︷︷ ︸
1≤q≤Q

(a) Representative zeroth-, first-, and second-order cascades of the geometric scattering transform for an input
graph signal x. The presented cascades, indexed by j, j′, q, are collected together to form the set of scattering
coefficients Sx defined in eqs. (3-5).

G = (V,E,W)
x : V → R

Adjacency matrix
:

A
(vi

, vj
)

Signal vector:
x(vi)

Diffusion wavelets:

Ψj = P2j−1
− P2j

P = 1
2
(D−1A + I)

Ψj

Scattering
(a)

x 7→ Sx

Fully connected layers:

−→ Cx(G)

(b) Graph scattering classifier (GSC) architecture yielding class Cx(G) from graph G and signal x. The
fully connected layers (FCL) can also be replaced by other classifiers (e.g., SVM or logistic regression) over
scattering features, as demonstrated in Section 4.

Figure 2: Illustration of (a) the proposed scattering feature extraction (see eqs. 3, 4, and 5), and (b)
its application for graph classification.

6

Under review as a conference paper at ICLR 2019

3.3 GEOMETRIC SCATTERING COMPARED TO OTHER FEED FORWARD GRAPH CONVNETS

We give a brief comparison of geometric scattering with other graph ConvNets, with particular
interest in isolating the key principles for building accurate graph ConvNet classifiers. We begin by
remarking that like several other successful graph neural networks, the graph scattering transform is
covariant or equivariant to vertex permutations (i.e., commutes with them) until the final features are
extracted. This idea has been discussed in depth in various articles, including Kondor et al. (2018b),
so we limit the discussion to observing that the geometric scattering transform thus propagates nearly
all of the information in x through the multiple wavelet and absolute value layers, since only the
absolute value operation removes information on x. As in Verma & Zhang (2018), we aggregate
covariant responses via multiple summary statistics (i.e., moments), which are referred to there as
a capsule. In the scattering context, at least, this idea is in fact not new and has been previously
used in the Euclidean setting for the regression of quantum mechanical energies in Eickenberg et al.
(2018; 2017) and texture synthesis in Bruna & Mallat (2018). We also point out that, unlike many
deep learning classifiers (graph included), a graph scattering transform extracts invariant statistics at
each layer/order. These intermediate layer statistics, while necessarily losing some information in
x (and hence G), provide important coarse geometric invariants that eliminate needless complexity
in subsequent classification or regression. Furthermore, such layer by layer statistics have proven
useful in characterizing signals of other types (e.g., texture synthesis in Gatys et al., 2015).

A graph wavelet transform Ψ(J)x decomposes the geometry of G through the lens of x, along
different scales. Graph ConvNet algorithms also obtain multiscale representations of G, but several
works, including Atwood & Towsley (2016) and Zhang et al. (2018), propagate information via
a random walk. While random walk operators like Pt act at different scales on the graph G, per
the analysis in Sec. 2 we see that Pt for any t will be dominated by the low frequency responses
of x. While subsequent nonlinearities may be able to recover this high frequency information, the
resulting transform will most likely be unstable due to the suppression and then attempted recovery
of the high frequency content of x. Alternatively, features derived from Ptx may lose the high
frequency responses of x, which are useful in distinguishing similar graphs. The graph wavelet
coefficients Ψ(J)x, on the other hand, respond most strongly within bands of nearly non-overlapping
frequencies, each with a center frequency kj that depends on Ψj .

Finally, graph labels are often complex functions of both local and global subgraph structure within
G. While graph ConvNets are adept at learning local structure within G, as detailed in Verma &
Zhang (2018) they require many layers to obtain features that aggregate macroscopic patterns in the
graph. This is due in large part to the use of fixed size filters, which often only incorporate infor-
mation from the neighbors of any individual vertex. The training of such networks is difficult due
to the limited size of many graph classification databases (see Table 4 in Appendix D). Geometric
scattering transforms have two advantages in this regard: (a) the wavelet filters are designed; and (b)
they are multiscale, thus incorporating macroscopic graph patterns in every layer/order.

4 APPLICATION & RESULTS

4.1 GRAPH CLASSIFICATION

To evaluate the proposed geometric scattering features, we test their effectiveness for graph clas-
sification on thirteen datasets commonly used for this task. Out of these, seven datasets contain
biochemistry graphs that describe molecular structures of chemical compounds, as described in the
following works that introduced them: NCI1 and NCI109, Wale et al. (2008); MUTAG, Debnath
et al. (1991); PTC, Toivonen et al. (2003); PROTEINS and ENZYMES, Borgwardt et al. (2005b);
and D&D, Dobson & Doig (2003). In these cases, each graph has several associated vertex features
x that represent chemical properties of atoms in the molecule, and the classification is aimed to
characterize compound properties (e.g., protein types). The other six datasets, which are introduced
in Yanardag & Vishwanathan (2015), contain social network data extracted from scientific collab-
orations (COLLAB), movie collaborations (IMDB-B & IMDB-M), and Reddit discussion threads
(REDDIT-B, REDDIT-5K, REDDIT-12K). In these cases there are no inherent graph signals in the
data, and therefore we compute general node characteristics (e.g., degree, eccentricity, and cluster-
ing coefficient) over them, as is considered standard practice in relevant literature (see, for example,

7

Under review as a conference paper at ICLR 2019

Verma & Zhang, 2018). A detailed description of each of these datasets appear in their respective
references, and are briefly summarized in Appendix D for completeness.

Biochem. Social Overall
WL 75.96 69.68 73.17 G

raph
kernelm

ethods
︷

︸︸
︷

PK 73.99 N/A N/A
Graphlet 72.56 63.96 65.22

GK 69.87 64.27 67.38
DGK 75.32 64.84 70.63

WL-OA 77.96 N/A1 79.97
S2S-N2N-PP 78.68 73.58 76.13

}
RNN

DGCNN 74.75 64.16 70.78

Feed-forw
ard

netw
orks

︷
︸︸

︷

graph2vec 72.46 N/A N/A
2D CNN N/A 70.77 N/A

PSCN(k=10) 75.77 69.75 73.09
DCNN 57.72 N/A1 55.68

GCAPS-CNN 75.69 71.78 73.73
GSC (FCL-unnorm.) 76.93 71.43 74.49

GSC (SVM-norm.) 75.29 73.79 74.62
GSC (logistic-norm.) 70.49 66.34 68.64

(a) Average accuracy within biochemistry data,
social graphs, and both together (overall). Yellow
is the top result in each class, while green indicates
the best among feed forward architectures.

NCI1 NCI109 MUTAG PTC

• CCN • GSC

−4.13

76.27

+4.13

−3.36

75.54

+3.36

−7.24

91.64

+7.24

−7.04

70.62

+7.04
−1.90
80.37
+1.90

−2.32

77.80
+2.32

−8.49

85.09

+8.49

−7.16

65.68

+7.16

(b) Accuracy ± standard deviation for CCN
and GSC (FCL-unnorm.) on four biochemistry
datasets with reported CCN accuracy. We note
than no other datasets were reported for CCN.

Figure 3: Classification accuracy (by percent correct) of the proposed method (GSC) and 14 other
methods. The aggregated results in (a) are based on five biochemistry datasets and four social graph
datasets. CCN is omitted from this table, as its accuracy is only reported for a handful of datasets;
instead, a detailed comparison of GSC (FCL-unnorm.) with CCN is shown in (b).

In all cases, we iterate over all graphs in the database and for each one we associate graph-wide
features by (1) computing the scattering features of each of the available graph signals (provided or
computed), and (2) concatenating the features of all such signals. Then, the full scattering feature
vectors of these graphs are passed to a classifier, which is trained from input labels, in order to
infer the class for each graph. We consider three classifiers here: neural network with two/three
fully connected hidden layers (FCL), SVM with RBF kernel, or logistic regression. We note that the
scattering features (computed as described in Sec. 3) are based on either normalized or unnormalized
moments over the entire graph. Here we used unnormalized moments for FCL, and normalized ones
for other classifiers, but the difference is subtle and similar results can be achieved for the other
combinations. Finally, we also note that all technical design choices for configuring our geometric
scattering or the classifiers were done as part of the cross validation described in Appendix E.

We evaluate the classification results of our three geometric scattering classification (GSC) settings
using ten-fold cross validation (as explained in Appendix E) and compare them to 14 prominent
methods for graph classification. Out of these, six are graph kernel methods, namely: Weisfeiler-
Lehman graph kernels (WL, Shervashidze et al., 2011), propagation kernel (PK, Neumann et al.,
2012), Graphlet kernels (Shervashidze et al., 2009), Random walks (RW, Gärtner et al., 2003), deep
graph kernels (DGK, Yanardag & Vishwanathan, 2015), and Weisfeiler-Lehman optimal assignment
kernels (WL-OA, Kriege et al., 2016). Seven other methods are recent geometric feed forward
deep learning algorithms, namely: deep graph convolutional neural network (DGCNN, Zhang et al.,
2018), Graph2vec (Narayanan et al., 2017), 2D convolutional neural networks (2DCNN, Tixier
et al., 2017), covariant compositional networks (CCN, Kondor et al., 2018a), Patchy-san (PSCN,
Niepert et al., 2016, with k = 10), diffusion convolutional neural networks (DCNN, Atwood &
Towsley, 2016), and graph capsule convolutional neural networks (GCAPS-CNN, Verma & Zhang,
2018). Finally, one method is the recently introduced recurrent neural network autoencoder for
graphs (S2S-N2N-PP, Taheri et al., 2018). Following the standard format of reported classification
performances for these methods (per their respective references, see also Appendix A), our results
are reported in the form of average accuracy± standard deviation (in percentages) over the ten cross-
validation folds. We remark here that many of them are not reported for all datasets, and hence, we

1Accuracy for these methods was reported for less than 3/4 of considered social graph datasets, but with
biochemistry data they reach 7/9 of all considered datasets.

8

Under review as a conference paper at ICLR 2019

mark N/A when appropriate. For brevity, the comparison is reported here in Fig. 3 in summarized
form, as explained below, and in full in Appendix A.

Since the scattering transform is independent of training labels, it provides universal graph features
that might not be specifically optimal in each individual dataset, but overall provide stable clas-
sification results. Further, careful examination of the results of previous methods (feed forward
algorithms in particular) shows that while some may excel in specific cases, none of them achieves
the best results in all reported datasets. Therefore, to compare the overall classification quality of
our GSC methods with related methods, we consider average accuracy aggregated over all datasets,
and within each field (i.e., biochemistry and social networks) in the following way. First, out of the
thirteen datasets, classification results on four datasets (NCI109, ENZYMES, IMDB-M, REDDIT-
12K) are reported significantly less frequently than the others, and therefore we discard them and
use the remaining nine for the aggregation. Next, to address reported values versus N/A ones, we
set an inclusion criterion of 75% reported datasets for each method. This translates into at most
one N/A in each individual field, and at most two N/A overall. For each method that qualifies for
this inclusion criterion, we compute its average accuracy over reported values (ignoring N/A ones)
within each field and over all datasets; this results in up to three reported values for each method.

The aggregated results of our GSC and 13 of the compared methods appears in Fig. 3(a). These
results show that GSC (with SVM) outperforms all other methods on social network data, and in fact
as shown Appendinx B, it achieves state of the art results on two datasets of this type. Additionally,
the aggregated results shows that our GSC approach (with FCL or SVM) outperforms all other feed
forward methods both on biochemsitry data and overall in terms of universal average accuracy2.
The CCN method is omitted from these aggregated results, as its results in Kondor et al. (2018a) are
only reported on four biochemistry datasets. For completeness, detailed comparison of GSC with
this method, which appears in Fig. 3(b), shows that our method outperforms it on two datasets while
CCN outperforms GSC on the other two.

4.2 SCATTERING FEATURE SPACE FOR DATA EXPLORATION

Geometric scattering essentially provides a task independent representation of graphs in a Euclidean
feature space. Therefore, it is not limited to supervised learning applications, and can be also utilized
for exploratory graph-data analysis, as we demonstrate in this section. We focus our discussion on
biochemistry data, and in particular on the ENZYMES dataset. Here, geometric scattering features
can be considered as providing “signature” vectors for individual enzymes, which can be used to
explore interactions between the six top level enzyme classes, labelled by their Enzyme Commission
(EC) numbers (Borgwardt et al., 2005a). In order to emphasize the properties of scattering-based
feature extraction, rather than downstream processing, we mostly limit our analysis of the scattering
feature space to linear operations such as principal component analysis (PCA).

We start by considering the viability of scattering-based embedding for dimensionality reduction of
graph data. To this end, we applied PCA to our scattering coefficients (computed from unnormalized
moments), while choosing the number of principal components to capture 90% explained variance.
In the ENZYMES case, this yields a 16 dimensional subspace of the full scattering features space.
While the Euclidean notion of dimensionality is not naturally available in the original dataset, we
note that graphs in it have, on average, 124.2 edges, 29.8 vertices, and 3 features per vertex, and
therefore the effective embedding of the data into R16 indeed provides a significant dimensionality
reduction. Next, to verify the resulting PCA subspace still captures sufficient discriminative in-
formation with respect to classes in the data, we compare SVM classification on the resulting low
dimensional vectors to the the full feature space; indeed, projection on the PCA subspace results
in only a small drop in accuracy from 56.85 ± 4.97 (full) to 49.83 ± 5.40 (PCA). Finally, we also
consider the dimensionality of each individual class (with PCA and > 90% exp. variance) in the
scattering feature space, as we expect scattering to reduce the variability in each class w.r.t. the
full feature space. In the ENZYMES case, individual classes have PCA dimensionality ranging
between 6 and 10, which is indeed significantly lower than the 16 dimensions of the entire PCA
space. Appendix C summarizes these findings, and repeats the described procedure for two addi-

2It should be noted, though, that if NCI109 and ENZYMES were included, the GCAPS-CNN would out-
perform the GSC. However, many other methods would not be comparable then.

9

Under review as a conference paper at ICLR 2019

(a) Observed (b) Inferred

Compute pref(EC-i,EC-j) :=

wj ·
[
min

{
D(i, j)

D(i, i)
,
D(j, i)

D(j, j)

}]−1

wj = portion of enzymes in EC-j
that choose another EC as their near-
est subspace; D(i, j)=mean dist.
of enzymes in EC-i from PCA (90%
exp. var.) subspace of EC-j .

(c) Exchange preference computation

Figure 4: Comparison of EC exchange preferences in enzyme evolution: (a) observed in Cuesta
et al. (2015), and (b) inferred from scattering features via (c). Our inference (b) mainly recovers (a).

tional biochemistry datasets (from Wale et al., 2008) to verify that these are not unique to the specific
ENZYMES dataset, but rather indicate a more general trend for geometric scattering feature spaces.

To further explore the scattering feature space, we now use it to infer relations between EC classes.
First, for each enzyme e, with scattering feature vector ve (i.e., with Sx for all vertex features x),
we compute its distance from class EC-j, with PCA subspace Cj , as the projection distance:
dist(e,EC-j) = ‖ve−projSjve‖. Then, for each enzyme class EC-i, we compute the mean distance
of enzymes in it from the subspace of each EC-j class asD(i, j) = mean{dist(e,EC-j) : e ∈ EC-i}.
Appendix C summarizes these distances, as well as the proportion of points from each class that have
their true EC as their nearest (or second nearest) subspace in the scattering feature space. In gen-
eral, 48% of enzymes select their true EC as the nearest subspace (with additional 19% as second
nearest), but these proportions vary between individual EC classes. Finally, we use these scattering-
based distances to infer EC exchange preferences during enzyme evolution, which are presented in
Fig. 4 and validated with respect to established preferences observed and reported in Cuesta et al.
(2015). We note that the result there is observed independently from the ENZYMES dataset. In
particular, the portion of enzymes considered from each EC is different between these data, since
Borgwardt et al. (2005b) took special care to ensure each EC class in ENZYMES has exactly 100
enzymes in it. However, we notice that in fact the portion of enzymes (in each EC) that choose the
wrong EC as their nearest subspace, which can be considered as EC “incoherence” in the scattering
feature space, correlates well with the proportion of evolutionary exchanges generally observed for
each EC in Cuesta et al. (2015), and therefore we use these as EC weights in Fig. 4(c). Our re-
sults in Fig. 4 demonstrate that scattering features are sufficiently rich to capture relations between
enzyme classes, and indicate that geometric scattering has the capacity to uncover descriptive and
exploratory insights in graph data analysis, beyond the supervised graph classification from Sec 4.1.

5 CONCLUSION

We presented the geometric scattering transform as a deep filter bank for feature extraction on
graphs. This transform generalizes the scattering transform, and augments the theoretical foun-
dations of geometric deep learning. Further, our evaluation results on graph classification and data
exploration show the potential of the produced scattering features to serve as universal represen-
tations of graphs. Indeed, classification with these features with relatively simple classifier models
reaches high accuracy results on most commonly used graph classification datasets, and outperforms
both traditional and recent deep learning feed forward methods in terms of average classification ac-
curacy over multiple datasets. We note that this might be partially due to the scarcity of labeled big
data in this field, compared to more traditional ones (e.g., image or audio classification). However,
this trend also correlates with empirical results for the classic scattering transform, which excels
in cases with low data availability. Finally, the geometric scattering features provide a new way
for computing and considering global graph representations, independent of specific learning tasks.
Therefore, they raise the possibility of embedding entire graphs in Euclidean space and comput-
ing meaningful distances between graphs with them, which can be used for both supervised and
unsupervised learning, as well as exploratory analysis of graph-structured data.

10

Under review as a conference paper at ICLR 2019

REFERENCES

Joakim Andén and Stéphane Mallat. Deep scattering spectrum. IEEE Transactions on Signal Pro-
cessing, 62(16):4114–4128, August 2014.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems 29, pp. 1993–2001, 2016.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005a.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005b.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Joan Bruna and Stéphane Mallat. Classification with scattering operators. In 2011 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1561–1566, 2011.

Joan Bruna and Stéphane Mallat. Audio texture synthesis with scattering moments.
arXiv:1311.0407, 2013a.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8):1872–1886, August 2013b.

Joan Bruna and Stéphane Mallat. Multiscale sparse microcanonical models. arXiv:1801.02013,
2018.

X. Chen, X. Cheng, and S. Mallat. Unsupervised deep Haar scattering on graphs. In Conference on
Neural Information Processing Systems (NIPS), Montreal, Quebec, Canada, 2014.

Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic
Analysis, 21:5–30, 2006.

Ronald R. Coifman and Mauro Maggioni. Diffusion wavelets. Applied and Computational Har-
monic Analysis, 21(1):53–94, 2006.

Sergio Martı́nez Cuesta, Syed Asad Rahman, Nicholas Furnham, and Janet M. Thornton. The
classification and evolution of enzyme function. Biophysical Journal, 109(6):1082–1086, 2015.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, and Stéphane Mallat. Solid harmonic
wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3D elec-
tronic densities. In Advances in Neural Information Processing Systems 30 (NIPS 2017), pp.
6540–6549, 2017.

Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, Stéphane Mallat, and Louis Thiry. Solid
harmonic wavelet scattering for predictions of molecule properties. Journal of Chemical Physics,
148:241732, 2018.

Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Diffusion scattering transforms on graphs.
arXiv:1806.08829, 2018.

11

Under review as a conference paper at ICLR 2019

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pp. 129–143. Springer, 2003.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convolutional neural
networks. In Advances in Neural Information Processing Systems 28, pp. 262–270, 2015.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, Sydney, Australia, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30:129–150, 2011.

Matthew Hirn, Stéphane Mallat, and Nicolas Poilvert. Wavelet scattering regression of
quantum chemical energies. Multiscale Modeling and Simulation, 15(2):827–863, 2017.
arXiv:1605.04654.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant
compositional networks for learning graphs. arXiv preprint, pp. arXiv:1801.02144, 2018a.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant
compositional networks for learning graphs. arXiv:1801.02144, 2018b.

Nils M. Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels
and applications to graph classification. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 1623–1631.
Curran Associates, Inc., 2016.

Vincent Lostanlen and Stéphane Mallat. Wavelet scattering on the pitch spiral. In Proceedings of
the 18th International Conference on Digital Audio Effects, pp. 429–432, 2015.

Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics,
65(10):1331–1398, October 2012.

Yves Meyer. Wavelets and Operators, volume 1. Cambridge University Press, 1993.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint,
pp. arXiv:1707.05005, 2017.

Marion Neumann, Novi Patricia, Roman Garnett, and Kristian Kersting. Efficient graph kernels by
randomization. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 378–393. Springer, 2012.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014–2023, 2016.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level im-
age representations using convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1717–1724, 2014.

Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering for object classification. In
Proceedings in IEEE CVPR 2015 conference, 2015. arXiv:1412.8659.

PyGSP. Graph signal processing in python (https://pygsp.readthedocs.io/en/
stable/index.html), Accessed in September 2018.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In David van Dyk and Max Welling (eds.),
Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, vol-
ume 5 of Proceedings of Machine Learning Research, pp. 488–495, Hilton Clearwater Beach
Resort, Clearwater Beach, Florida USA, 2009. PMLR.

12

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://pygsp.readthedocs.io/en/stable/index.html
https://pygsp.readthedocs.io/en/stable/index.html

Under review as a conference paper at ICLR 2019

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12(Sep):2539–
2561, 2011.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and other
irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.

Laurent Sifre and Stéphane Mallat. Combined scattering for rotation invariant texture analysis. In
Proceedings of the ESANN 2012 conference, 2012.

Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for texture classification.
arXiv:1403.1687, 2014.

Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. Learning graph representations with recurrent
neural network autoencoders. In KDD Deep Learning Day, 2018.

Antoine Jean-Pierre Tixier, Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgian-
nis. Classifying graphs as images with convolutional neural networks. arXiv preprint, pp.
arXiv:1708.02218, 2017.

Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma. Statistical
evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):1183–1193,
2003.

Saurabh Verma and Zhi-Li Zhang. Graph capsule convolutional neural networks. arXiv preprint,
pp. arXiv:1805.08090, 2018.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems 27, pp. 3320–3328,
2014.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI Conference on Artificial Intelligence, pp. 4438–
4445, 2018.

Dongmian Zou and Gilad Lerman. Graph convolutional neural networks via scattering.
arXiv:1804:00099, 2018.

13

Under review as a conference paper at ICLR 2019

APPENDIX A FULL COMPARISON TABLE

Table 1: Comparison of the proposed graph scattering classifier (GSC) with graph kernel methods
and deep learning methods on biochemistry & social graph datasets.

N
C

I1
N

C
I1

09
D

&
D

PR
O

T
E

IN
S

M
U

TA
G

PT
C

E
N

Z
Y

M
E

S
W

L
84
.4

6
±

0.
4
5

8
5.

1
2
±

0.
29

78
.3

4
±

0
.6

2
7
2
.9

2
±

0
.5

6
8
4
.1

1
±

1
.9

1
5
9
.9

7
±

1
.6

0
5
5.

22
±

1.
26

Graph kernel methods︷ ︸︸ ︷
PK

82
.5

4
±

0.
4
7

N
/A

78
.2

5
±

0
.5

1
7
3
.6

8
±

0
.6

8
7
6
.0

0
±

2
.6

9
5
9
.5

0
±

2
.4

4
N

/A
G

ra
ph

le
t

70
.5
±

0.
2

69
.3
±

0.
2

7
9
.7
±

0
.7

7
2.

7
±

0.
6

85
.2
±

0
.9

5
4.

7
±

2
.0

30
.6
±

1.
2

W
L

-O
A

86
.1
±

0.
2

86
.3
±

0.
2

7
9
.2
±

0
.4

7
6.

4
±

0.
4

84
.5
±

1
.7

6
3.

6
±

1
.5

59
.9
±

1.
1

G
K

62
.2

8
±

0.
2
9

6
2.

6
0
±

0.
19

78
.4

5
±

0
.2

6
7
1
.6

7
±

0
.5

5
8
1
.3

9
±

1
.7

4
5
7
.2

6
±

1
.4

1
2
6.

61
±

0.
99

D
G

K
80
.3
±

0.
4

80
.3
±

0.
3

73
.0

9
±

0
.2

5
7
5
.7
±

0.
50

87
.4
±

2
.7

6
0.

1
±

2
.5

53
.4
±

0.
9

S2
S-

P2
P-

N
N

83
.7

2
±

0
.4

83
.6

4
±

0.
3

N
/A

7
6
.6

1
±

0
.5

89
.8

6
±

1.
1

64
.5

4
±

1.
1

63
.9

6
±

0
.6

RNN︷︸︸︷

D
G

C
N

N
74
.4

4
±

0.
4
7

N
/A

79
.3

7
±

0
.9

4
7
5
.5

4
±

0
.9

4
8
5
.8

3
±

1
.6

6
5
8
.5

9
±

2
.4

7
5
1.

00
±

7.
29

Feed-forward networks︷ ︸︸ ︷

gr
ap

h2
ve

c
73
.2

2
±

1.
8
1

7
4.

2
6
±

1.
47

N
/A

7
3
.3

0
±

2
.0

5
8
3
.1

5
±

9
.2

5
6
0
.1

7
±

6
.8

6
N

/A
2D

C
N

N
N

/A
N

/A
N

/A
7
7
.1

2
±

2
.7

9
N

/A
N

/A
N

/A
C

C
N

76
.2

7
±

4.
1
3

7
5.

5
4
±

3.
36

N
/A

N
/A

9
1
.6

4
±

7
.2

4
7
0
.6

2
±

7
.0

4
N

/A
PS

C
N

(k
=

1
0)

76
.3

4
±

1.
6
8

N
/A

76
.2

7
±

2
.1

5
7
5
.0

0
±

2
.5

1
8
8
.9

5
±

4
.3

7
6
2
.2

9
±

5
.6

8
N

/A
D

C
N

N
56
.6

1
±

1.
0
4

5
7.

4
7
±

1.
22

58
.0

9
±

0
.5

3
6
1
.2

9
±

1
.6

0
5
6
.6

0
±

2
.8

9
5
63

4
2.

44
±

1.
76

G
C

A
PS

-C
N

N
82
.7

2
±

2.
3
8

8
1.

1
2
±

1.
28

77
.6

2
±

4
.9

9
7
6
.4

0
±

4
.1

7
N

/A
6
6
.0

1
±

5
.9

1
6
1.

83
±

5.
39

G
SC

(u
nn

or
m

.)
80
.3

7
±

1.
9
0

7
7.

8
0
±

2.
32

78
.8

6
±

3
.7

2
7
4
.6

7
±

2
.9

0
8
5
.0

9
±

8
.4

9
6
5
.6

8
±

7
.1

6
5
3.

33
±

4.
94

G
SC

(S
V

M
-n

or
m

.)
78
.5

6
±

2.
4
9

7
6.

9
8
±

1.
88

75
.0

4
±

3
.6

4
7
5
.0

3
±

5
.0

5
8
3
.5

7
±

6
.7

5
6
4
.2

4
±

3
.9

6
5
6.

83
±

4.
97

G
SC

(l
og

is
tic

-n
or

m
.)

69
.7

6
±

2.
6
5

6
8.

5
0
±

2.
45

75
.3

0
±

2
.6

0
7
2
.4

2
±

3
.2

3
72
.7

2
±

1
1.

7
3

6
2
.2

3
±

6
.6

5
3
8.

67
±

7.
77

C
O

L
L

A
B

IM
D

B
-B

IM
D

B
-M

R
E

D
D

IT
-B

R
E

D
D

IT
-5

K
R

E
D

D
IT

-1
2K

W
L

7
7
.8

2
±

1
.4

5
7
1
.6

0
±

5.
1
6

N
/A

78
.5

2
±

2
.0

1
50
.7

7
±

2.
0
2

34
.5

7
±

1
.3

2

Graph kernel︷ ︸︸ ︷

PK
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
G

ra
ph

le
t

7
3
.4

2
±

2
.4

3
65
.4
±

5.
9
5

N
/A

77
.2

6
±

2
.3

4
39
.7

5
±

1.
3
6

25
.9

8
±

1
.2

9
W

L
-O

A
8
0
.7
±

0
.1

N
/A

N
/A

89
.3
±

0
.3

N
/A

N
/A

G
K

7
2
.8

4
±

0
.2

8
6
5
.8

7
±

0.
9
8

4
3.

89
±

0.
3
8

77
.3

4
±

0
.1

8
41
.0

1
±

0.
1
7

N
/A

D
G

K
7
3
.0
±

0
.2

6
6.

9
±

0.
5

44
.5
±

0.
5

78
.0
±

0
.3

4
1.

2
±

0.
1

32
.2
±

0
.1

S2
S-

P2
P-

N
N

8
1.

75
±

0.
8

7
3.

8
±

0.
7

51
.1

9
±

0.
5

8
6.

50
±

0.
8

5
2
.2

8
±

0
.5

4
2.

47
±

0.
1

RNN︷︸︸︷

D
G

C
N

N
7
3
.7

6
±

0
.4

9
7
0
.0

3
±

0.
8
6

4
7.

83
±

0.
8
5

N
/A

48
.7

0
±

4.
5
4

N
/A

Feed-forward networks︷ ︸︸ ︷

gr
ap

h2
ve

c
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
2D

C
N

N
7
1
.3

3
±

1
.9

6
7
0
.4

0
±

3.
8
5

N
/A

8
9.

12
±

1.
7

52
.2

1
±

2.
4
4

48
.1

3
±

1
.4

7
C

C
N

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

PS
C

N
(k

=
10

)
7
2
.6

0
±

2
.1

5
7
1
.0

0
±

2.
2
9

4
5.

23
±

2.
8
4

86
.3

0
±

1
.5

8
4
9
.1

0
±

0
.7

41
.3

2
±

0
.4

2
D

C
N

N
5
2
.1

1
±

0
.7

1
4
9
.0

6
±

1.
3
7

3
3.

49
±

1.
4
2

N
/A

N
/A

N
/A

G
C

A
PS

-C
N

N
7
7
.7

1
±

2
.5

1
7
1
.6

9
±

3.
4
0

48
.5

0
±

4.
1

87
.6

1
±

2
.5

1
50
.1

0
±

1.
7
2

N
/A

G
SC

(u
nn

or
m

.)
7
6
.5

0
±

1
.2

0
7
1
.3

0
±

2.
8
7

4
7.

73
±

4.
4
2

86
.3

0
±

2
.5

6
51
.6

3
±

2.
0
8

38
.3

9
±

1
.1

9
G

SC
(S

V
M

-n
or

m
.)

8
0
.0

2
±

1
.6

3
7
1
.9

0
±

3.
4
5

4
8.

27
±

4.
1
9

89
.6

5
±

1
.9

4
53
.5

7
±

2.
4
2

45
.2

3
±

1
.2

5
G

SC
(l

og
is

tic
-n

or
m

.)
7
2
.6

4
±

2
.2

7
6
3
.7

0
±

3.
6
9

4
1.

53
±

3.
5
0

80
.6

0
±

2
.2

2
48
.4

1
±

3.
4
1

N
/A

All results come from the respective papers that introduced the methods, with the exception of:
(1) social network results of WL, from Tixier et al. (2017); (2) biochemistry and social results of
DCNN, from Verma & Zhang (2018); (3) biochemistry, except for D&D, and social result of GK,

3DCNN using different training/test split

14

Under review as a conference paper at ICLR 2019

from Yanardag & Vishwanathan (2015); (4) D&D of GK is from Niepert et al. (2016); and (5) for
Graphlets, biochemistry results from Kriege et al. (2016), social results from Tixier et al. (2017).

APPENDIX B STATE OF THE ART RESULTS ON REDDIT DATASETS

GSC
W

L
W

L-OA

S2S-N2N-PP

2D
CNN

PSCN
GCAPS

−1.94

89.65

+1.94

−2.01

78.52

+2.01

−1.70

89.12

+1.70

−1.58

86.30

+1.58

−2.51

87.61

+2.51

−0.30

89.30
+0.30

−0.80

86.50

+0.80

(a) REDDIT-B

GSC
W

L
S2S-N2N-PP

DGCNN

2D
CNN

PSCN
GCAPS

−2.42

53.57

+2.42

−2.02

50.77

+2.02

−4.54

48.70

+4.54

−2.44

52.21

+2.44

−0.70

49.10

+0.70

−1.72

50.10

+1.72

−0.50

52.28

+0.50

(b) REDDIT-5K

Figure 5: Accuracy ± standard deviation for GSC (SVM-norm.) and top six other methods on two
REDDIT datasets. GSC achieves state of the art accuracy on these datasets.

APPENDIX C DETAILED TABLES FOR SCATTERING FEATURE SPACE
ANALYSIS FROM SECTION 4.2

Table 2: Dimensionality reduction with PCA over scattering features (unnorm. moments)

Dataset SVM accuracy PCA dimensions (> 90% variance)
PCA Full All classes Per class

ENZYMES 49.83± 5.40 56.83± 4.97 16 9 8 8 9 10 6
NCI1 73.84± 2.58 79.12± 2.21 39 29 26

NCI109 72.04± 2.28 77.83± 1.61 39 32 27

15

Under review as a conference paper at ICLR 2019

Table 3: EC subspace analysis in scattering feature space of ENZYMES (Borgwardt et al., 2005a)

Enzyme
Class:

Mean distance to subspace of class True class as
EC-1 EC-2 EC-3 EC-4 EC-5 EC-6 1st 2nd 3rd-6th

measured via PCA projection/reconstruction distance nearest subspace
EC-1 18.15 98.44 75.47 62.87 53.07 84.86 45% 28% 27%
EC-2 22.65 9.43 30.14 22.66 18.45 22.75 53% 24% 23%
EC-3 107.23 252.31 30.4 144.08 117.24 168.56 32% 7% 61%
EC-4 117.68 127.27 122.3 29.59 94.3 49.14 24% 12% 64%
EC-5 45.46 66.57 60 50.07 15.09 58.22 67% 21% 12%
EC-6 62.38 58.88 73.96 51.94 59.23 13.56 67% 21% 12%

APPENDIX D DETAILED DATASET DESCRIPTIONS

The details of the datasets used in this work are as follows (see the main text in Sec. 3 for references):

NCI1 contains 4,110 chemical compounds as graphs, with 37 node features. Each compound is
labeled according to is activity against non-small cell lung cancer and ovarian cancer cell
lines, and these labels serve as classification goal on this data.

NCI109 is similar to NCI1, but with 4,127 chemical compounds and 38 node features.

MUTAG consists of 188 mutagenic aromatic and heteroaromatic nitro compounds (as graphs) with
7 node features. The classification here is binary (i.e., two classes), based on whether or
not a compound has a mutagenic effect on bacterium.

PTC is a dataset of 344 chemical compounds (as graphs) with nineteen node features that are di-
vided into two classes depending on whether they are carcinogenic in rats.

PROTEINS dataset contains 1,113 proteins (as graphs) with three node features, where the goal of
the classification is to predict whether the protein is enzyme or not.

D&D dataset contains 1,178 protein structures (as graphs) that, similar to the previous one, are
classified as enzymes or non-enzymes.

ENZYMES is a dataset of 600 protein structures (as graphs) with three node features. These pro-
teins are divided into six classes of enzymes (labelled by enzyme commission numbers) for
classification.

COLLAB is a scientific collaboration dataset contains 5K graphs. The classification goal here is to
predict whether the graph belongs to a subfield of Physics.

IMDB-B is a movie collaboration dataset with contains 1K graphs. The graphs are generated on
two genres: Action and Romance, the classification goal is to predict the correct genre for
each graph.

IMDB-M is similar to IMDB-B, but with 1.5K graphs & 3 genres: Comedy, Romance, and Sci-Fi.

REDDIT-B is a dataset with 2K graphs, where each graph corresponds to an online discussion
thread. The classification goal is to predict whether the graph belongs to a Q&A-based
community or discussion-based community.

REDDIT-5K consists of 5K threads (as graphs) from five different subreddits. The classification
goal is to predict the corresponding subreddit for each thread.

REDDIT-12K is similar to REDDIT-5k, but with 11,929 graphs from 12 different subreddits.

Table 4 summarizes the size of available graph data (i.e., number of graphs, and both max & mean
number of vertices within graphs) in these datasets, as previously reported in the literature.

Graph signals for social network data: None of the social network datasets has ready-to-use
node features. Therefore, in the case of COLLAB, IMDB-B, and IMDB-M, we use the eccentricity,
degree, and clustering coefficients for each vertex as characteristic graph signals. In the case of
REDDIT-B, REDDIT-5K and REDDIT-12K, on the other hand, we only use degree and clustering
coefficient, due to presence of disconnected graphs in these datasets.

16

Under review as a conference paper at ICLR 2019

NCI1 NCI109 MUTAG D&D PTC PROTEINS

of graphs in data: 4110 4127 188 1178 344 1113
Max # of vertices: 111 111 28 5748 109 620
Mean # of vertices: 29.8 29.6 17.93 284.32 25.56 39.0
of features per vertex: 37 38 7 89 22 3
Mean # of edges: 64.6 62.2 39.50 1431.3 51.90 72.82
of classes: 2 2 2 2 2 2

ENZYMES COLLAB IMDB REDDIT
B M B 5K 12K

600 5000 1000 1500 2000 5000 11929
126 492 136 89 3783 3783 3782
32.6 74.49 19.77 13 429.61 508.5 391.4

3 3 3 3 2 2 2
124.2 2457.78 96.53 65.94 497.75 594.87 456.89

6 3 2 3 2 5 11

Table 4: Basic statistics of the graph classification databases

APPENDIX E TECHNICAL DETAILS

The computation of the scattering features described in Section 3 is based on several design choices,
akin to typical architecture choices in neural networks. Most importantly, it requires a choice of
1. which statistical moments to use (normalized or unnormalized), 2. the number of wavelet scales
to use (given by J), and 3. the number of moments to use (denoted by Q). The configuration used
for each dataset in this work is summarized in Table 5, together with specific settings used in the
downstream classification layers, as descibed below.

Once the scattering coefficients are generated through the above processes, they are either fed into
a standard classifier (SVM or logistic regression), or into two or three fully connected layers (see
Table 5 for specifics) and then a softmax layer that is used to compute the class probabilities. In
the latter case, cross entropy loss is minimized during the training process and ReLU is used as
the activation function between fully connected layers. Besides, we use mini batch training with
batch size 64 and ADAM optimization technique for training. Two learning rates 0.002 and 0.02
are tested during training. Optimal training epochs are decided through cross validation. Finally, L2

norm regularization is used to avoid overfittings.

Cross validation procedure: Classification evaluation was done with standard ten-fold cross val-
idation procedure. First, the entire dataset is randomly split into ten subsets. Then, in each iteration
(or “fold”), nine of them are used as training and validation, and the other one is used for testing
classification accuracy. In total, after ten iterations, each of the subsets has been used once for test-
ing, resulting in ten reported classification accuracy numbers for the examined dataset. Finally, the
mean and standard deviation of these ten accuracies are computed and reported.

It should be noted that when using fully connected layers, each iteration also performs automatic
tuning of the trained classifier, as follows. First, nine iterations are performed, each time using eight
subsets (i.e., folds) as training and the remaining one as validation set, which is used to determine the
optimal epoch for network training. Then, the classifier is retrained with all nine subsets. After nine
iterations, each of the training/validation subsets has been used once for validation, and we obtain
nine classification models, which in turn produce nine predictions (i.e., class probabilities) for each
data point in the test subset of the main cross validation. To obtain the final result of this cross
validation iteration, we sum up all these predictions and select the class with the highest probability
as our final classification result. These results are then compared to the true labels (in the test set)
on the test subset to obtain classification accuracy for this fold.

17

Under review as a conference paper at ICLR 2019

Scattering Fully connected

Database Moment J Q # Hidden units 1 # Hidden units 2 # Hidden units 3

NCI1 un-normalized 5 3 40 20 0
normalized 4 3 60 30 0

NCI109 un-normalized 5 4 60 30 15
normalized 5 3 60 30 15

D&D un-normalized 5 2 20 0 0
normalized 5 4 20 0 0

PROTEINS un-normalized 5 3 20 10 0
normalized 4 3 20 10 5

MUTAG un-normalized 4 4 40 20 0
normalized 5 4 60 0 0

PTC un-normalized 5 4 50 20 0
normalized 5 3 50 25 0

ENZYMES un-normalized 4 4 60 30 15
normalized 5 4 60 30 15

COLLAB un-normalized 4 3 60 30 0
normalized 5 4 50 20 0

IMDB-B un-normalized 4 4 50 20 10
normalized 4 3 50 20 10

IMDB-M un-normalized 4 4 50 20 0
normalized 5 3 60 30 0

REDDIT-B un-normalized 5 3 60 30 15
normalized 5 4 60 30 15

REDDIT-5K un-normalized 5 3 50 20 10
normalized 4 4 60 30 15

REDDIT-12K un-normalized 5 4 100 50 25
normalized 5 4 100 50 25

Table 5: Settings of the geometric scattering classifier

Software & hardware environment: Geometric scattering and related classification code were
implemented in Python with TensorFlow. All experiments were performed on HPC environment
using an intel16-k80 cluster, with a job requesting one node with four processors and two Nvidia
Tesla k80 GPUs.

18

	Introduction
	Graph Random Walks and Graph Wavelets
	Geometric Scattering on Graphs
	Geometric scattering definitions
	Stability and capacity of geometric scattering
	Geometric scattering compared to other feed forward graph ConvNets

	Application & Results
	Graph classification
	Scattering feature space for data exploration

	Conclusion
	Full Comparison Table
	State of the art results on REDDIT datasets
	Detailed tables for scattering feature space analysis from Section 4.2
	Detailed Dataset Descriptions
	Technical Details

