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ABSTRACT

We present a novel method to stabilize the training of generative adversarial
networks. The training stability is often undermined by the limited and low-
dimensional support of the probability density function of the data samples. To
address this problem we propose to simultaneously train the generative adversar-
ial networks against different additive noise models, including the noise-free case.
The benefits of this approach are that: 1) The case with noise added to both real
and generated samples extends the support of the probability density function of
the data, while not compromising the exact matching of the original data distri-
bution, and 2) The noise-free case allows the exact matching of the original data
distribution. We demonstrate our approach with both fixed additive noise and
with learned noise models. We show that our approach results in a stable and
well-behaved training of even the original minimax GAN formulation. Moreover,
our technique can be incorporated in most modern GAN formulations and leads
to a consistent improvement on several common datasets.

1 INTRODUCTION

Since the seminal work of Goodfellow et al. (2014), generative adversarial networks (GAN) have
been widely used and analyzed due to the quality of the samples that they produce, in particular
when applied to the space of natural images. Unfortunately, GANs still prove difficult to train. In
fact, a vanilla implementation does not converge to a high-quality sample generator and heuristics
used to improve the generator often exhibit an unstable behavior. This has led to a substantial work
to better understand GANs (see, for instance, Sønderby et al. (2017); Roth et al. (2017); Arjovsky
& Bottou (2017)). In particular, Arjovsky & Bottou (2017) point out how the unstable training of
GANs is due to the (limited and low-dimensional) support of the data and model distributions. In the
original GAN formulation, the generator is trained against a discriminator in a minimax optimization
problem. The discriminator learns to distinguish real from fake samples, while the generator learns
to generate fake samples that can fool the discriminator. When the support of the data and model
distributions is disjoint or lies on a low-dimensional manifold, the generator stops improving as soon
as the discriminator achieves perfect classification, because this prevents the propagation of useful
information to the generator through gradient descent. To address this limitation, some research
focused on novel formulations, as, for example, in Gulrajani et al. (2017); Mao et al. (2017) and on
techniques to improve the training, such as, for example Miyato et al. (2018); Arjovsky et al. (2017).
However, a recent large-scale evaluation by Lucic et al. (2017) shows that obtaining improvements
over the seminal work of Goodfellow et al. (2014) is extremely challenging.

The recent work by Arjovsky & Bottou (2017) proposes to extend the support of the distributions
by adding noise to both generated and real images before they are fed as input to the discriminator.
This procedure results in a smoothing of both data and model probability distributions, which indeed
increases their support extent and dimensionality. In fact, samples x̃ = x + ε, obtained by adding
noise ε ∼ pε to the data samples x ∼ pd, are also instances of the probability density function
pd,ε = pε ∗ pd, where ∗ denotes the convolution operator. The support of pd,ε is the Minkowski
sum of the supports of pε and pd and thus larger than the support of pd. Similarly, adding noise
to the samples from the generator probability density pg leads to the smoothed probability density
pg,ε = pε ∗ pg . Adding noise is a quite well-known technique that has been used in maximum
likelihood methods, but is considered undesirable as it yields approximate generative models that
produce low-quality blurry samples. Indeed, most formulations with additive noise boil down to
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Figure 1: Illustration of uses of additive noise as a regularizer for generative models. Adding noise
to samples from a probability density pd results in a smoothing of pd. (a) Shows that matching
smooth distributions results in a low-quality probability density estimate pg . (b) Shows that match-
ing smooth probability densities for two noise instances results already in a much higher quality
estimate pg .

finding the model distribution pg that best solves pd,ε = pg,ε. As shown in Figure 1 (a), this results
in a low quality estimate pg because pd ∗ pε has lost the high frequency content of pd. Therefore,
Arjovsky and Bottou propose a form of noise annealing, where the noise variance is initially high
and is then reduced gradually during the iterations so that the original distributions, rather than the
smooth ones, are eventually matched. This results in an improved training, but as the noise variance
approaches zero, the optimization problem converges to the original formulation and the algorithm
may be subject to the usual unstable behavior.

In this work, we build on the findings of Arjovsky et al. (2017) to design a novel noise-based proce-
dure that yields stable and accurate training. Our method is based on the following two observations:
1) If we add noise to the real and fake samples in a GAN training, we achieve pd,ε = pg,ε, i.e.,
pε ∗ (pd−pg) = 0, which is a necessary (but not sufficient) condition for pd = pg; 2) pd,ε = pg,ε is a
sufficient condition for pd = pg , if it holds for any pε. Based on the first observation, we propose not
to anneal noise, but rather sustain it, as it does not prevent the desired solution. Based on the second
observation, we propose to vary the noise probability density. In fact, as shown in Figure 1 (b) if
we train a GAN on data with additive noise from two Gaussian noise instances pε1 = N (0, σ1Id)
and pε2 = N (0, σ2Id), the matching of both pd,ε1 = pg,ε1 and pd,ε2 = pg,ε2 yields a much more
accurate approximate probability density pg . Both noise instances help the estimation of pg: the
low-noise instance preserves high-frequency content of pd, while the high-noise instance extends
the support of pd, which then helps the training of the generator. Therefore, we suggest to obtain a
generative model G by solving a multi-objective optimization

min
G

max
D

Eε∼pε
[
Ex∼pd [logD(x+ ε)] + Ez∼N (0,Id)[log(1−D(G(z) + ε))]

]
, ∀pε ∈ S (1)

where we introduced a space S of probability density functions, and D denotes the discriminator.
In fact, if we solve the innermost optimization problem, then we obtain the optimal discriminator
D(x) = pd,ε(x)/(pd,ε(x)+pg,ε(x)), where we have defined pg(x) ,

∫
δ(x − G(z))p(z)dz, with δ the

Dirac delta and p(z) = N (z; 0, Id). If we substitute this in the problem above we have

min
G

2 JSD(pd,ε, pg,ε)− 2 log 2, ∀pε ∈ S (2)

where JSD is the Jensen-Shannon divergence. Under suitable assumptions on the space S and the
dimensionality of z, the optimal solution of equation 2 is unique and pg = pd regardless of the
support of pd. Thus, our formulation enjoys the following properties

• It defines a fitting of probability densities that is not affected by their support

• It promotes, rather than prevents, the exact matching of the data probability density function

• It can be easily applied to other GAN formulations.

In the next sections we introduce our analysis more in detail and then devise a computationally fea-
sible approximation of the problem formulation equation 1. Our method is evaluated quantitatively
on CIFAR-10 (Krizhevsky (2009)), STL-10 (Coates et al. (2011)), and CelebA (Liu et al. (2015)),
and qualitatively on ImageNet (Russakovsky et al. (2015)) and LSUN bedrooms (Yu et al. (2015)).
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2 NOISE-TEMPERED ADVERSARIAL TRAINING

2.1 MATCHING PROBABILITY DENSITY FUNCTIONS THROUGH NOISE

We are interested in finding a formulation that yields as optimal generator G a sampler of the data
probability density function (pdf) pd. The main difficulty in dealing with pd is that its support often
does not extend to the whole space where the data lives (see, for instance, Arjovsky et al. (2017)).
This allows adversarial training to converge to degenerate solutions, where the model pdf pg only
partially overlaps with pd (a scenario called mode collapse). It has been noticed that introducing
additive noise on both real and fake data samples during training helps reduce this issue. In fact,
additive noise ε ∼ pε corresponds to blurring the original pdfs to pd ∗ pε and pg ∗ pε, an operation
that is known to increase the support of both original pdfs and thus their likelihood to overlap.

However, even if the optimization of equation 2 yielded a generator G such that pg ∗ pε = pd ∗ pε,
there would be no guarantee that pg = pd. As a consequence, prior work such as Arjovsky et al.
(2017) starts the training of G with a large additive noise and then decreases it with iteration time.
Unfortunately, as the noise variance is reduced, the model converges to the original formulation and
may exhibit an unstable behavior. In this work, we notice that pg ∗ pε = pd ∗ pε includes pg = pd as
a solution for any additive noise ε ∼ pε. This means that the additive noise does not compromise our
ability to still match pg to the original pd. Thus, rather than reducing the noise variance, we use the
principle that matching convolutions of probability density distributions for all possible additive
noise distributions is equivalent to matching directly the probability density distributions without
additive noise. If we consider the range of image intensities Ω to be finite, then the support of the
pdf pd is bounded and contained in Ω. Then, we can prove the following:1

Lemma 1 If for any ω ∈ Ω and any bounded and continuous function pε

(pd ∗ pε)(ω) =

∫
Ω

pd(x)pε(ω − x)dx =

∫
Ω

pg(x)pε(ω − x)dx = (pg ∗ pε)(ω), (3)

then we have pd(ω) = pg(ω) for all ω ∈ Ω.

Now recall the problem formulation in equation 2, which looks for the pdf pg that minimizes the
expectation of JSD(pd,ε, pg,ε) over pε ∈ S. The minimum value of the Jensen-Shannon divergence
is 0 and it is achieved when pd,ε(ω) = pg,ε(ω) for all ω ∈ Ω. The global minimum is then achieved
when JSD(pd,ε, pg,ε) = 0 for all pε. Thus, by exploiting the above lemma, the optimal solution of
equation 2 is still pd(ω) = pg(ω) for all ω ∈ Ω, as in the original GAN formulation.

2.2 FORMULATION

There are two practical issues with the proposed formulation equation 1. One is that the multi-
objective optimization requires, in principle, testing infinite pdfs. Another is that the use of con-
strained models (such as neural networks) for both the discriminator and the generator may prevent
the optimal solution from reaching the global minimum. If we scalarize the multi-objective with
some fixed weights then the optimization will only find a tradeoff across all noise distributions pε.
This means that the case with no or little noise may have a small relevance compared to all other
cases and this could lower the accuracy of the estimated pg . Moreover, the case with no noise should
be given the highest priority as it is the only one that ensures the exact matching between the data
and model distributions. Our proposed solution is to define S with only two terms, the Dirac delta
distribution (no noise) and a pdf with a large variance, and to scalarize the multi-objective with a
random variable µ ∼ U(0, 1), where U(0, 1) is the uniform distribution between 0 and 1, which we
sample at every iteration during training. This is then equivalent to

min
G

max
D

Eε∼µδ+(1−µ)pε

[
Ex∼pd [logD(x+ ε)] + Ez∼N (0,Id)[log(1−D(G(z) + ε))]

]
. (4)

We then consider two configurations:
1We rely on the same principle as in Calculus of Variations (Gelfand & Fomin (1964)), whereby the nec-

essary condition for an extremum initially written in its weak form, as the integral of the functional derivative
against an arbitrary function, is then transformed into its strong form by the Fundamental Lemma of the Calcu-
lus of Variations.

3



Under review as a conference paper at ICLR 2019

Algorithm 1: Noise-Tempered GAN (NTGAN)
Input: Training set D ∼ pd, number of discriminator updates ndisc, number of training iterations

N , batch-size m, learning rate α, noise penalty λ
Output: Generator parameters θ
Initialize generator parameters θ, discriminator parameters φ and noise-generator parameters ω ;
for 1 . . . N do

for 1 . . . ndisc do
Sample mini-batches {x1, . . . , xm} ∼ pd and fake examples {x̃1, . . . , x̃m} ∼ pg ;
Sample noise {ε1, . . . , εm} ∼ pε and µ ∼ U(0, 1) ;
LrD(φ, ω) =

∑m
i=1 µ ln(D(xi)) + (1− µ) ln(D(xi + εi));

LfD(φ, ω) =
∑m
i=1 µ ln(1−D(x̃i)) + (1− µ) ln(1−D(x̃i + εi));

Lε(ω) =
∑m
i=1 |εi|2;

φ← φ+ α∇φ(LrD(φ, ω) + LfD(φ, ω));
ω ← ω − α∇ω

(
LrD(φ, ω) + LfD(φ, ω) + λLε(ω)

)
;

end
Sample fake examples {x̃1, . . . , x̃m} ∼ pg;
Sample noise {ε1, . . . , εm} ∼ pε and µ ∼ U(0, 1) ;
LfG(θ) =

∑m
i=1 µ ln(D(x̃i)) + (1− µ) ln(D(x̃i + εi));

θ ← θ + α∇θLfG(θ);
end

1. Gaussian noise with a fixed/learned standard deviation σ: S = {δ(ε),N (ε; 0, σId)};
2. A learned noise generator: S =

{
δ(ε),

∫
δ(ε−N(w))p(w)dw

}
, withN a noise generator

network (to be jointly trained) and p(w) = N (w; 0, Id).

The proposed approximations result in the following problem formulations
Gaussian noise

min
G

min
σ

max
D

Eε∼µδ+(1−µ)N (0,σ)

[
Ex logD(x+ ε) + Ez log(1−D(G(z) + ε))

]
+ λσ2 (5)

Noise generator

min
G

min
N

max
D

Eε∼µδ+(1−µ)N

[
Ex logD(x+ ε) + Ez log(1−D(G(z) + ε)) + λ|ε|2

]
. (6)

In both formulations we may learn some optimal parameters of the noise distribution. We do so by
minimizing the cost function after the maximization with respect to the discriminator. The mini-
mization would encourage an infinite noise since this would make pd,ε(ω) more similar to pg,ε(ω)
regardless of pd and pg . Such term however would not be very useful to the training. Therefore,
to limit the noise magnitude we introduce as a regularization term the noise variance σ2 or the
Euclidean norm of the noise N output image, and multiply it by a positive scalar λ, which we tune.

2.3 IMPLEMENTATION

Implementing our algorithm only requires a few minor modifications of the standard GAN frame-
work. We perform the update for the noise-generator and the discriminator in the same iteration.
Mini-batches for the discriminator are formed by collecting all the fake and real samples in two
separate batches, i.e., {x1, . . . , xm, x1 + ε1, . . . , xm + εm} is the batch with real examples and
{x̃1, . . . , x̃m, x̃1 + ε1, . . . , x̃m + εm} the fake examples batch. The complete procedure is outlined
in Algorithm 1. The noise-generator architecture is typically the same as the generator but with
a reduced number of convolutional filters. Since the inputs to the discriminator are doubled when
compared to the standard GAN framework, the NTGAN framework can be 1.5 to 2 times slower.
Similar and more severe performance drops are present in existing variants (e.g., WGAN-GP). Note
that by constructing the batches as {x1, . . . , xm/2, xm/2+1 + ε1, . . . , xm + εm} the training time is
as in the standard framework, but it is much more stable and yields an accurate generator.

4



Under review as a conference paper at ICLR 2019

Table 1: Network architectures used for experiments on CIFAR-10 and STL-10. Images are assumed
to be of size 32 × 32 for CIFAR-10 and 64 × 64 for STL-10. We set M = 512 for CIFAR-10 and
M = 1024 for STL-10. Layers in parentheses are only included for STL-10. The noise-generator
network follows the generator architecture with the number of channels reduced by a factor of 8.

Generator CIFAR-10/(STL-10)

z ∈ R128 ∼ N (0, I)
fully-connected BN ReLU 4× 4×M
(deconv 4× 4 stride=2 BN ReLU 512)
deconv 4× 4 stride=2 BN ReLU 256
deconv 4× 4 stride=2 BN ReLU 128
deconv 4× 4 stride=2 BN ReLU 64

deconv 3× 3 stride=1 tanh 3

Discriminator CIFAR-10/(STL-10)

conv 3× 3 stride=1 lReLU 64
conv 4× 4 stride=2 BN lReLU 64

conv 4× 4 stride=2 BN lReLU 128
conv 4× 4 stride=2 BN lReLU 256
conv 4× 4 stride=2 BN lReLU 512

(conv 4× 4 stride=2 BN lReLU 1024)
fully-connected sigmoid 1

3 EXPERIMENTS

We compare and evaluate our model using two common GAN metrics: the Inception score IS (Sal-
imans et al. (2016)) and the Fréchet Inception distance FID (Heusel et al. (2017)). Throughout this
Section we use 10K generated and real samples to compute IS and FID. In order to get a measure of
the stability of the training we report the mean and standard deviation of the last five checkpoints for
both metrics (obtained in the last 10% of training). More reconstructions, experiments and details
are provided in the appendix.

Ablations. To verify our model we perform ablation experiments on two common image datasets:
CIFAR-10 (Krizhevsky (2009)) and STL-10 (Coates et al. (2011)). For CIFAR-10 we train on the
50K 32 × 32 RGB training images and for STL-10 we resize the 100K 96 × 96 training images to
64× 64. The network architectures resemble the DCGAN architectures of Radford et al. (2015) and
are detailed in Table 1. All the models are trained for 100K generator iterations using a mini-batch
size of 64. We use the ADAM optimizer (Kingma & Ba (2014)) with a learning rate of 10−4 and
β1 = 0.5. The results of the following ablations are reported in Table 2:

(a)-(c) Only noisy samples: In this set of experiments we only feed noisy examples to the discrim-
inator. In experiment (a) we add Gaussian noise and in (b) we add learned noise. In both
cases the noise level is not annealed. While this leads to stable training, the resulting sam-
ples are of poor quality which is reflected by high FID and low IS. The generator will tend
to also produce noisy samples since there is no incentive to remove the noise. Annealing
the added noise during training as proposed by Arjovsky & Bottou (2017) and Sønderby
et al. (2017) leads to an improvement over the standard GAN. This is demonstrated in ex-
periment (c). The added Gaussian noise is linearly annealed during the 100K iterations in
this case;

(d)-(i) Both noisy and clean samples: The second set of experiments consists of variants of our
proposed model. Experiments (d) and (e) use a simple Gaussian noise model; in (e) the
standard deviation of the noise σ is learned. We observe a drastic improvement in the qual-
ity of the generated examples even with this simple modification. The other experiments
show results of our full model with a separate noise-generator network. We vary the weight
λ of the L2 norm of the noise in experiments (f)-(h). Ablation (i) uses the alternative mini-
batch construction with faster runtime as described in Section 2.3;

Application to Different GAN Models. We investigate the possibility of applying our proposed
algorithm to several standard GAN models. The network architectures are the same as proposed in
the original works with only the necessary adjustments to the given image-resolutions of the datasets
(i.e., truncation of the network architectures). Note that for the GAN with minimax loss (MMGAN)
and WGAN-GP we use the architecture of DCGAN. Hyper-parameters are kept at their default
values for each model. The models are evaluated on two common GAN benchmarks: CIFAR-10
(Krizhevsky (2009)) and CelebA (Liu et al. (2015)). The image resolution is 32× 32 for CIFAR-10
and 64 × 64 for CelebA. All models are trained for 100K generator iterations. For the alternative
objective function of LSGAN we set the loss of the noise generator to be the negative of the discrim-
inator loss, as is the case in our standard model. The results are shown in Table 3. We can observe
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Table 2: We perform ablation experiments on CIFAR-10 and STL-10 to demonstrate the effective-
ness of our proposed algorithm. Experiments (a)-(c) show results where only noisy examples are fed
to the discriminator. Experiment (c) corresponds to previously proposed noise-annealing and results
in an improvement over the standard GAN training. Our approach of feeding both noisy and clean
samples to the discriminator shows a clear improvement over the baseline.

Experiment CIFAR-10 STL-10
FID IS FID IS

Standard GAN 46.1± 0.7 6.12± .09 78.4± 6.7 8.22± .37

(a) Noise only: ε ∼ N (0, I) 94.9± 4.9 4.68± .12 107.9± 2.3 6.48± .19
(b) Noise only: ε learned 69.0± 3.4 5.05± .14 107.2± 3.4 6.39± .22
(c) Noise only: ε ∼ N (0, σI), σ → 0 44.5± 3.2 6.85± .20 75.9± 1.9 8.49± .19

(d) Clean + noise: ε ∼ N (0, I) 29.7± 0.6 7.16± .05 66.5± 2.3 8.64± .17
(e) Clean + noise: ε ∼ N (0, σI) with learnt σ 28.8± 0.7 7.23± .14 71.3± 1.7 8.30± .12
(f) NTGAN (λ = 0.1) 27.7± 0.8 7.31± .06 63.9± 1.7 8.81± .07
(g) NTGAN (λ = 1) 26.5± 0.6 7.49± .04 64.0± 1.4 8.52± .16
(h) NTGAN (λ = 10) 29.8± 0.4 6.55± .08 66.9± 3.2 8.38± .20

(i) NTGAN alt. mini-batch (λ = 1) 28.7± 0.6 7.3± .05 67.8± 3.2 8.30± .11

Table 3: We apply our proposed method to various previous GAN models trained on CIFAR-10 and
CelebA. The same network architectures and hyperparameters as in the original works are used. We
can observe that using our approach increases performance in most cases even with the suggested
hyperparameter settings. Note that our algorithm also allows successful training with the original
minimax GAN loss as opposed to the commonly used heuristic (e.g., in DCGAN).

Model CIFAR-10 CelebA
FID IS FID IS

MMGAN (Goodfellow et al. (2014)) > 450 ∼ 1 > 350 ∼ 1
DCGAN (Radford et al. (2015)) 33.4± 0.5 6.73± .07 25.4± 2.6 2.42± .06
WGAN-GP (Gulrajani et al. (2017)) 37.7± 0.4 6.55± .08 15.5± 0.2 2.57± .02
LSGAN (Mao et al. (2017)) 38.7± 1.8 6.73± .12 21.4± 1.1 2.55± .06
SNGAN (Miyato et al. (2018)) 29.1± 0.4 7.26± .06 13.2± 0.3 2.31± .02

MMGAN +NT (λ = 0.1) 33.1± 0.7 6.91± .05 16.6± 1.9 2.44± .02
DCGAN + NT (λ = 10) 31.2± 0.3 6.95± .11 14.7± 1.0 2.57± .05
LSGAN + NT (λ = 10) 36.7± 1.2 6.63± .17 19.9± 0.4 2.60± .06
SNGAN + NT (λ = 1) 28.0± 1.6 7.39± .06 11.0± 0.4 2.39± .03

NTGAN (same generator as SNGAN) 26.5± 0.6 7.49± .04 11.5± 0.9 2.54± .04

that applying our method improves performance in most cases and even enables the training with
the original saturation-prone minimax GAN objective, which is very unstable otherwise. We show
random CelebA reconstructions from models trained with and without NT in Figure 2.

Robustness to Hyperparameters. We test the robustness of NTGANs with respect to various
hyperparamters by training on CIFAR-10 with the settings listed in Table 4. The network is the
same as specified in Table 1. The noise penalty term is set to λ = 0.1. We compare to a model
without stabilization (Standard), a model with the gradient penalty regularization proposed by Roth
et al. (2017) (GAN+GP) and a model with spectral normalization (SNGAN). To the best of our
knowledge, these methods are the current state-of-the-art in terms of GAN stabilization. Figure 3
shows that our NTGAN is stable and accurate across all settings.

Qualitative Results. We trained NTGANs on 128×128 images from two large-scale datasets: Ima-
geNet (Russakovsky et al. (2015)) and LSUN bedrooms (Yu et al. (2015)). The network architecture
is similar to the one in Table 1 with one additional layer in both networks. We trained the models
for 100K iterations on LSUN and 300K iterations on ImageNet. Random samples of the models are
shown in Figure 4.
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(a) Original GAN without NT (b) Original GAN with NT

(c) DCGAN without NT (d) DCGAN with NT

Figure 2: Left column: Random reconstructions from models trained on CelebA without noise-
tempering (NT). Right column: Random reconstructions with our proposed method.

Table 4: Hyperparameter settings used to evaluate the robustness of our proposed GAN stabilizer.

Exp. Learning Rate BatchNorm in G Optimizer Activation ndisc #Filters G #Samples

a) 2 · 10−4 FALSE ADAM ReLU / lReLU 1 [512, 256, 128, 64] 50K
b) 2 · 10−4 TRUE ADAM tanh 1 [512, 256, 128, 64] 50K
c) 1 · 10−3 TRUE ADAM ReLU / lReLU 1 [512, 256, 128, 64] 50K
d) 1 · 10−2 TRUE SGD ReLU / lReLU 1 [512, 256, 128, 64] 50K
e) 2 · 10−4 TRUE ADAM ReLU / lReLU 5 [512, 256, 128, 64] 50K
f) 2 · 10−4 TRUE ADAM ReLU / lReLU 1 [64, 64, 64, 64] 50K
g) 2 · 10−4 FALSE ADAM ReLU / lReLU 1 [512, 256, 128, 64] 5K

4 RELATED WORK

The inherent instability of GAN training was first addressed through a set of techniques and heuris-
tics (Salimans et al. (2016)) and careful architectural design choices and hyper-parameter tuning
(Radford et al. (2015)). Salimans et al. (2016) for example propose the use of one-sided label
smoothing and the injection of Gaussian noise into the layers of the discriminator. A theoretical
analysis of the unstable training and the vanishing gradients phenomena was introduced by Ar-
jovsky & Bottou (2017). They argue that the main source of instability stems from the fact that the
real and the generated distributions have disjoint supports or lie on low-dimensional manifolds. In
the case of an optimal discriminator this will result in zero gradients that then stop the training of the
generator. More importantly, they also provide a way to avoid such difficulties by introducing noise
and considering “softer” metrics such as the Wasserstein distance. Sønderby et al. (2017) made sim-
ilar observations and also proposed the use of “instance noise” as a way to overcome these issues.
Arjovsky et al. (2017) build on the work of Arjovsky & Bottou (2017) and introduce the Wasserstein
GAN (WGAN). The WGAN optimizes an integral probability metric that is the dual to the Wasser-
stein distance. This formulation requires the discriminator to be Lipschitz-continuous, which is re-
alized through weight-clipping. Gulrajani et al. (2017) present a better way to enforce the Lipschitz
constraint via a gradient penalty over interpolations between real and generated data (WGAN-GP).
Roth et al. (2017) introduced a stabilizing regularizer based on a gradient norm penalty similar to
that by Gulrajani et al. (2017). Their formulation however is in terms of f-divergences and is derived
via an analytic approximation of adversarial training with additive Gaussian noise on the datapoints.
Another recent GAN regularization technique that bounds the Lipschitz constant of the discrimi-
nator is the spectral normalization introduced by Miyato et al. (2018). This method demonstrated
state-of-the-art in terms of robustness in adversarial training. Several alternative loss functions and
GAN models have been proposed over the years, claiming superior stability and sample quality over
the original GAN (e.g., Mao et al. (2017), Zhao et al. (2016), Berthelot et al. (2017), Arjovsky et al.
(2017), Zhao et al. (2016), Kodali et al. (2017)).
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Figure 3: Results of the robustness experiments as specified in Table 4 and performed on CIFAR-
10. We compare the standard GAN (1st column), a GAN with gradient penalty (2nd column), a
GAN with spectral normalization (3rd column) and a GAN with our proposed method (4th column).
Results are reported in Fréchet Inception Distance FID (top) and Inception Score IS (bottom).

Figure 4: Reconstructions from NTGANs trained on 128 × 128 images from the LSUN bedrooms
dataset (top) and ImageNet (bottom).

5 CONCLUSION

We have introduced a novel method to stabilize generative adversarial training that results in accurate
generative models. Our method is rather general and can be applied to other GAN formulations with
an average improvement in generated sample quality and variety, and training stability. Since GAN
training aims at matching probability density distributions, we exploit additive noise to extend the
support of the densities and thus facilitate the matching through gradient descent. More importantly,
we show that using multiple loss terms with different additive noise (including the no-noise case) is
necessary to achieve a highly accurate match of the original data distribution. We demonstrate the
proposed training method on several common datasets of real images.
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6 APPENDIX

6.1 EXPERIMENTS ON SYNTHETIC DATA

We performed experiments with a standard GAN and a NTGAN using Gaussian noise on synthetic
2-D data. The generator and discriminator architectures are both MLPs consisting of three fully-
connected layers with a hidden-layer size of 512. We use ReLU activations and batch-normalization
(Ioffe & Szegedy (2015)) in all but the first discriminator layer and the output layers. The Adam
optimzer (Kingma & Ba (2014)) was used with a learning rate of 10−4 and we trained for 20K
iterations. The results are shown in Figure 5. We can observe how the matching of both clean and
blurred distribution leads to a better fit in the case of NTGAN.

(a) Standard GAN

(b) NTGAN with Gaussian noise

Figure 5: We performed experiments on synthetic 2D data with a standard GAN (top) and a NTGAN
(bottom). The ground truth data is shown in red and the model generated data is shown in blue. For
NTGAN we also show samples from the blurred data distribution pd,ε in green and the blurred model
distribution pg,ε in purple.
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Figure 6: We show examples of the generated noise (top row) and corresponding noisy training
examples (rows 2 to 4). The different columns correspond to different iterations.

6.2 EXAMPLES OF THE NOISE GENERATOR

Examples of the noise generated by the noise generator of a NTGAN trained on CIFAR-10 are
illustrated in Figure 6. We can observe noise patterns that resemble some of the commonly observed
artifacts produced by a degenerate GAN generator. The noise patterns vary over time and therefore
encourage the fitting of the distributions under different blurs.

6.3 IMPLEMENTATION DETAILS

Noise Generator. The noise-generator architecture in all our experiments is equivalent to the gen-
erator architecture with the number of filters reduced by a factor of eight. The output of the noise-
generator has a tanh activation scaled by a factor of two to allow more noise if necessary. We also
experimented with a linear activation but didn’t find a significant difference in performance.

GAN+GP. For the comparisons to the GAN regularizer proposed by Roth et al. (2017) we used the
same settings as used in their work in experiments with DCGAN.

SNGAN+NT. We used the standard GAN loss (same as DCGAN) in all our experiments with models
using spectral normalization. When combining SNGAN with NT we achieved the best results when
batch-normalizing the inputs to the discriminator. For models with batch-normalization we found
no benefit by adding this input normalization.

6.4 QUALITATIVE RESULTS FOR EXPERIMENTS

We provide qualitative results for some of the ablation experiments in Figure 7 and for the robustness
experiments in Figure 8. As we can see in Figure 8, none of the tested settings led to degenerate
solutions in the case of NTGAN while the other methods would show failure cases in some settings.
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(a) Standard GAN

(b) Noise only: ε ∼ N (0, I)

(c) Noise only: ε ∼ N (0, σI), σ → 0

(d) Clean + noise: ε ∼ N (0, I) (CIFAR-10)

(e) NTGAN (λ = 1)

Figure 7: We show random reconstructions for some of the ablation experiments listed in Table 2.
The left column shows results on CIFAR-10 and the right column shows results on STL-10.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8: We show random reconstructions for the robustness experiments (see Table 4). We com-
pare a standard GAN (1st column), a GAN with gradient penalty by Roth et al. (2017) (2nd column),
a GAN with spectral normalization by Miyato et al. (2018) (3rd column) and a GAN with our pro-
posed method (4th column).

14


	Introduction
	Noise-Tempered Adversarial Training
	Matching Probability Density Functions through Noise
	Formulation
	Implementation

	Experiments
	Related Work
	Conclusion
	Appendix
	Experiments on synthetic data
	Examples of the Noise Generator
	Implementation Details
	Qualitative Results for Experiments


