
2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1–11

Automatically Trading off Time and Variance when Selecting
Gradient Estimators

Tomas Geffner tgeffner@cs.umass.edu and Justin Domke domke@cs.umass.edu

University of Massachusetts, Amherst

1. Introduction

In stochastic gradient variational inference (SGVI) there are multiple gradient estimators
with varying costs and variances. Estimators may be obtained using the reparameteriza-
tion trick (Kingma and Welling (2013); Rezende et al. (2014); Titsias and Lázaro-Gredilla
(2014)), the score function method (Williams (1992)), or other techniques (Titsias and
Lázaro-Gredilla (2015); Ruiz et al. (2016); Agakov and Barber (2004)). Also, many control
variates can be added to an estimator to reduce variance (Miller et al. (2017); Grathwohl
et al. (2018); Mnih and Gregor (2014); Paisley et al. (2012); Tucker et al. (2017); Geffner
and Domke (2018)).

The cost and variance of an estimator significantly affects optimization convergence
speed (Bottou et al. (2018)). The use of different estimators leads to different optimiza-
tion performances, and the estimator with optimal cost-variance tradeoff is often situation-
dependent (for an example see Fig. 1). In settings where multiple estimators with varying
costs and variances are available, selecting the optimal one is important. Rather than rely
on the user to manually select one, we propose that estimator selection could be done
adaptively. This paper investigates how, given a pool of gradient estimators, automatically
choose one to get the best convergence guarantee for stochastic optimization.

We study cost-variance tradeoffs by analyzing the convergence rates of several variants
of SGD. We express convergence rates in terms of time rather than iterations. This leads
to what we call the “G2T principle”: A simple rule that predicts, given a pool of gradient
estimators, which one results in the best convergence guarantees for optimization. We use
the principle to propose two gradient estimator selection algorithms: One for the case in
which a finite pool of estimators is available, and other when the pool contains an infinite
number of estimators, each indexed by control variate weights (i.e. control variate selection).

Notation: We use g(w, ξ), where ξ is a random variable, to denote an unbiased estima-
tor of target’s gradient, G2(g) to denote a bound on g’s expected squared norm, and T (g)
to denote the computational cost of computing estimator g(w, ξ), measured in seconds.

2. The G2T Principle and Gradient Estimator Selection

2.1. G2T principle

Given a set of gradient estimators with varying costs and variances, our goal is to find the
one that gives the best convergence guarantee for optimization algorithms. Convergence
guarantees for several variants of SGD are shown in Table 1.

c© T. Geffner & J. Domke.

Automatic Gradient Estimator Selection

Assumptions Needed
Algorithm Guarantee

Convex λ-strongly convex L-smooth

X X X SGD, ηk = 1/(λk) EF (wK)− F (w∗) ≤ 2L
λ2

G2

K

X X − SGD, ηk = 1/(λk) E ||wK − w∗||2 ≤ 4
λ2

G2

K

X − − SGD, ηk = Dw

G
√
K

EF (w̄)− F (w∗) ≤ Dw
G√
K

− − X SGD, ηk =
√

2Df

LKG2 E 1
K

∑K
i=1 ||∇F (wi)||2 ≤

√
LDf

G√
K

Table 1: ηk is the step size at iteration k. Constants in the results are Df = F (w0)− F (w∗)

and Dw = ||w0 −w∗|| . K is the number of optimization steps, and G2 is such that

Eξ ||g(w, ξ)||2 ≤ G2 ∀w . The learning rates shown are the optimal ones. Proofs in
(Rakhlin et al. (2012); Nemirovski et al. (2009); Bottou et al. (2018)).

The crucial observation we make is that the right hand side of all guarantees in Table

1 (the upper bound) can be written as α
(
G2

K

)p
, where α depends on the properties of the

target (convexity, smoothness) and initialization, but not on the gradient estimator used.
Given a total optimization time budget Topt, an estimator g with time cost T (g) can perform
K ≈ Topt/T (g) iterations. Using this value for K we get that all guarantees in Table 1 can be
expressed as α

Tp
opt

(G2(g)T (g))p . This expression depends on the gradient estimator used only

through the G2(g)T (g) factor. Lower G2T values result in better guarantees. In other words,
for algorithms in Table 1, estimators with lower G2T lead to better convergence guarantees.
We call this the “G2T principle”.1

2.2. G2T for Gradient Estimator Selection

Given a pool of estimators with known G2 and T , the one with minimum G2T should be
used. In practice, however, G2 and T are typically not known. We propose to use estimates.

Assuming that the cost of an estimator g(w, ξ) is independent of w, an estimate T̂ (g)
of T (g) can be obtained for each g ∈ G through a single initial profiling phase.

Dealing withG2(g) is more involved. Convergence guarantees assume that E ||g(w, ξ)||2 ≤
G2(g) for all w. Often (e.g. when w is unbounded) this is not true for any finite G. We
propose an approach that is justified under two assumptions: (i) Optimization starting
from a point w0 will only visit a restricted part of parameter space. It is sufficient to bound

E ||g(w, ξ)||2 for the set of w that may actually be encountered. (ii) E ‖g(w, ξ)‖2 tends to
decrease slowly over time. When these are true, it makes sense to also form an estimate
Ĝ2(g) through an initial profiling phase, and to update these estimates a small number of
times as optimization proceeds. The approach is summarized in Alg. 1.

2.3. G2T for Control Variates Selection

It is possible to use multiple control variates to reduce a gradient estimator’s variance.
However, some control variates might be computationally expensive but only result in a

1. Table 2, with more algorithms (e.g. SGD+momentum) for which the G2T principle holds, in appendix.

2

Automatic Gradient Estimator Selection

small reduction in variance. It may be better to remove them and accept a noisier but
cheaper estimator. How can we select what control variates to use?

When an unbiased gradient estimator gbase and control variates c1, ...cJ are given, a
gradient estimator can be expressed as

ga(w, ξ) = gbase(w, ξ) +

J∑
i=1

aici(w, ξ) = gbase(w, ξ) + C(w, ξ)a. (1)

The available estimators are G = {ga : a ∈ RJ}. The number of estimators ga ∈ G is infinite,
and Alg. 1 cannot be used (cannot measure T̂ and Ĝ2 for each estimator ga individually).

We show that, despite having an infinite number of estimators, when estimators are in-
dexed by control variate weights finding the one with minimum Ĝ2T̂ can be done efficiently.
This is because two properties hold: (i) Estimates T̂ (ga) and Ĝ2(ga) can be efficiently ob-
tained for all estimators ga ∈ G through the use of shared statistics (a finite number of
evaluations of the base estimator and control variates); and (ii) The resulting (combinato-
rial) optimization problem a∗ = arg mina Ĝ

2(ga)T̂ (ga) can be reduced to a Mixed Integer
Quadratically Constrained Program (MIQCP), which can be solved quickly in practice. The
solution, a∗, indicates what control variates to use (those with a∗i 6= 0) and their weights.
The algorithm is summarized in Alg. 2. (More details in the appendix).

Algorithm 1 SGD with minimum Ĝ2T̂ .

Require: Set of estimators, G.
Require: Times to re-select estimator.
Require: Number of MC samples M .

For all g ∈ G measure time T̂ (g).
for k = 1, 2, · · · do

if time to re-select estimator then
for each estimator g do
Ĝ2(g) = 1

M

∑M
m=1 ‖g(wk, ξkm)‖2.

end for
g ← arg min

g∈G
Ĝ2(g)× T̂ (g).

end if
wk+1 = wk − ηk g(wk, ξk)

end for

Algorithm 2 SGD with automatically se-
lected control variates.
Require: Set of estimators, G.
Require: Times to re-select estimator.
Require: Number of MC samples M .

For gbase measure time t0.
For i = 1, ..., J , measure ci time ti.
for k = 1, 2, · · · do

if time to re-select estimator then
a = arg mina∈RJ Ĝ2(ga) × T̂ (ga)

(solve MIQCP)
end if
ga = gbase(w, ξk) +

∑
i:ai 6=0 aici(w, ξk)

wk+1 = wk − ηk ga(wk, ξk)
end for

3. Experiments and Results

This section presents an overview of the experiments. Full details are in the appendix.
We tackle inference problems using SGVI. We consider three models: Logistic regression,
a hierarchical regression model, and a Bayesian neural network. For the simple logistic
regression model we use a Gaussian with a full rank covariance as variational distribution
qw(z). For the other more complex models we use a factorized Gaussian. We use SGD
with momentum to optimize, and five samples z ∼ qw(z) to form Monte Carlo gradient
estimates. For both Algs. 1 and 2 we update the estimator used (by minimizing Ĝ2T̂) three
times during training.

3

Automatic Gradient Estimator Selection

We first present an empirical validation for Alg. 1. We compare the results achieved
by using three different gradient estimators: (Rep) the plain reparameterization estimator,
(Miller) the estimator proposed by Miller et al. (Miller et al. (2017)), and (STL) the
“sticking the landing” estimator (Roeder et al. (2017)). We also run Alg. 1 with the set of
estimators G = {Rep,Miller, STL}, which uses the estimator g ∈ G with minimum Ĝ2T̂ .

20 40 60 80 100 120 140 160

Time (s)
166

164

162

160

158

156

154

E
LB

O

Alg. 1
STL

Miller

Rep

BNN-A (red wine)

0 10 20 30 40 50 60

Time (s)

845.2

845.0

844.8

844.6

844.4

844.2 MillerAlg. 1

STL

Rep

Hierarchical Poisson (frisk)

0 10 20 30 40 50 60 70

Time (s)
610

608

606

604

602

600

598
Alg. 1RepSTL

Miller

Log. Regression (a1a)

Figure 1: Algorithm 1 leads to results as good as the results obtained using the best esti-
mator chosen retrospectively. (Higher ELBO is better.)

We now present an empirical validation for Alg. 2 (control variate selection). We con-
sider the same three models as above. The set of candidate estimators is GAuto = {ga : a ∈
R3}, where ga is as defined in eq. (2). The base estimator is plain reparameterization, and
there are three candidate control variates (c1, c2, c3). The goal is to check if Alg. 2 success-
fully navigates cost/variance tradeoffs. We thus compare against using each possible fixed
subsets of control variates S ⊆ {c1, c2, c3}, with the weights that minimize the estimator’s
variance (which can be estimated efficiently (Geffner and Domke (2018))).

25 50 75 100 125 150 175 200

Time (s)
168

166

164

162

160

158

156

154

E
LB

O

1
3
Auto
1323123122

Base

BNN-A (red wine)

20 40 60 80 100 120

Time (s)

845.6

845.4

845.2

845.0

844.8

844.6

844.4

844.2

844.0
22312312Auto

1
Base
13

3

Hierarchical Poisson (frisk)

0 20 40 60 80 100 120

Time (s)
615.0

612.5

610.0

607.5

605.0

602.5

600.0

597.5

1
Auto
Base
13
3
2
23

12
123

Log. Regression (a1a)

Figure 2: Automatically selecting what control variates to use leads to ELBO
values as high as the ones obtained with the best fixed set of control
variates chosen with hindsight. (Higher ELBO is better.) “ELBO vs Time”
plots obtained using Alg. 2 to select what control variates to use and their weights
(black line). We compare against using different fixed subsets of control variates
with the weights that minimize the estimator’s variance. Lines are identified as
follows: “Auto” stands for using Alg. 2 to select what control variates to use and
their weights, “Base” stands for optimizing using the base gradient alone, “1”
stands for using the fixed set of control variates {c1} with the minimum variance
weights, “12” stands for using the fixed set of control variates {c1, c2}, and so on.

4

Automatic Gradient Estimator Selection

References

Felix V Agakov and David Barber. An auxiliary variational method. In International
Conference on Neural Information Processing, pages 561–566. Springer, 2004.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

Tomas Geffner and Justin Domke. Using large ensembles of control variates for variational
inference. In Advances in Neural Information Processing Systems, pages 9960–9970, 2018.

Andrew Gelman, Jeffrey Fagan, and Alex Kiss. An analysis of the new york city police
department’s “stop-and-frisk” policy in the context of claims of racial bias. Journal of
the American Statistical Association, 102(479):813–823, 2007.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backprop-
agation through the void: Optimizing control variates for black-box gradient estimation.
In Proceedings of the International Conference on Learning Representations, 2018.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL http://www.

gurobi.com.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of
the International Conference on Learning Representations, 2013.

Andrew Miller, Nick Foti, Alexander D’Amour, and Ryan P Adams. Reducing reparam-
eterization gradient variance. In Advances in Neural Information Processing Systems,
pages 3708–3718, 2017.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks.
In International Conference on Machine Learning, 2014.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on op-
timization, 19(4):1574–1609, 2009.

John Paisley, David Blei, and Michael Jordan. Variational bayesian inference with stochastic
search. In Proceedings of the 29th International Conference on Machine Learning (ICML-
12), pages 1363–1370, 2012.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal
for strongly convex stochastic optimization. In Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages 1571–1578, 2012.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-
tion and approximate inference in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14), pages 1278–1286, 2014.

Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-
variance gradient estimators for variational inference. In Advances in Neural Information
Processing Systems, pages 6925–6934, 2017.

5

http://www.gurobi.com
http://www.gurobi.com

Automatic Gradient Estimator Selection

Francisco Ruiz, Titsias Michalis, and David Blei. The generalized reparameterization gra-
dient. In Advances in Neural Information Processing Systems, pages 460–468, 2016.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-
conjugate inference. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1971–1979, 2014.

Michalis Titsias and Miguel Lázaro-Gredilla. Local expectation gradients for black box
variational inference. In Advances in neural information processing systems, pages 2638–
2646, 2015.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein.
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models. In
Advances in Neural Information Processing Systems, pages 2627–2636, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochastic momen-
tum methods for convex and non-convex optimization. arXiv preprint arXiv:1604.03257,
2016.

6

Automatic Gradient Estimator Selection

Appendix A. Appendix

A.1. Details on models used

Three different models were considered: a Bayesian neural network, a hierarchical Poisson
model, and Bayesian logistic regression.

Bayesian logistic regression: We use the dataset a1a. The training set is given by
D = {xi, yi}Ni=1, where yi is binary. The model is specified by

w0 ∼ N (0, 1),

w ∼ N (0, I),

pi = (1 + exp(w0 + w · xi))−1 ,

yi ∼ Bernoulli(pi).

Hierarchical Poisson model: By Gelman et al. Gelman et al. (2007). The model
measures the relative stop-and-frisk events in different precincts in New York city, for dif-
ferent ethnicities. The model is specified by

µ ∼ N (0, 102)

log σα ∼ N (0, 102),

log σβ ∼ N (0, 102),

αe ∼ N (0, σ2
α),

βp ∼ N (0, σ2
β),

λep = exp(µ+ αe + βp + logNep),

Yep ∼ Poisson(λep).

In this case, e stands for ethnicity and p for precinct, Yep for the number of stops in
precinct p within ethnicity group e (observed), and Nep for the total number of arrests in
precinct p within ethnicity group e (observed).

BNN: As done by Miller et al. (Miller et al. (2017)) we use a subset of 100 rows from
the “Red-wine” dataset (regression). We implement a neural network with one hidden layer
with 50 units and Relu activations. Let D = {xi, yi}Ni=1 be the training set. The model is
specified by

logα ∼ N (0, 102),

log τ ∼ N (0, 102),

W ∼ N (0, α2I), (weights and biases)

ŷi = FeedForward(xi,W),

yi ∼ N (ŷi, τ
2).

7

Automatic Gradient Estimator Selection

A.2. Details on the simulations

Base gradient estimator: As base gradient estimator, gbase, we use what seems to be the
most common estimator. We compute the entropy term ∇w Eqw [log qw(Z)] in closed form,
and estimate the term ∇w Eqw [log p(x, Z)] with reparameterization.2

Control variates used:
c1: Difference between the entropy term computed exactly and estimated using reparame-
terization: c(w, ξ) = ∇w log qw(Tw(ξ))−∇w Eqw log qw(Z).

c2: Control variate by Miller et al. (Miller et al. (2017)) based on a second order Taylor
expansion of log p(x, z).

c3: Difference between the prior term computed exactly and estimated using reparameter-
ization: c(w, ξ) = ∇w log p(Tw(ξ))−∇w Eqw log p(Z).

Algorithmic details: For Alg. 2 we use M = 400 to estimate Ĝ2 (except for Logistic
regression, where we use M = 200). We re-select the optimal estimator three times during
training, initially, after 10% of training is done, and after 50% of training is done.

Optimization details: We use SGD with momentum (β = 0.9) with 5 samples
z ∼ qw(z) to form the Monte Carlo gradient estimates. For all models we find an initial set
of parameters by optimizing with the base gradient for 300 steps and a fixed learning rate
of 10−5. This initialization was helpful in practice because w tends to change rapidly at
the beginning of optimization. After this brief initialization, E ||g(w, ξ)||2 tends to change
much more slowly, meaning our technique is more helpful.

The performance of all algorithms depends on the step-size. To give a fair comparison,
Figs. 1 and 2 summarize by showing the results with the best step-size for each estimator.
(12 stepsizes between 10−6 and 10−3 were considered.)

A.3. Details on G2T for Control Variate selection

Estimators with control variates can be expressed as

ga(w, ξ) = gbase(w, ξ) +
J∑
i=1

aici(w, ξ)

= gbase(w, ξ) + C(w, ξ)a. (2)

An expression for T̂ (ga) can be obtained by noticing that computing ga only requires
computing the base gradient and the control variates with non-zero weights. Then, for all
ga ∈ G,

T̂ (ga) = T̂ (gbase) +

J∑
i=1

T̂ (ci) 1[ai 6= 0]. (3)

2. Using Tw(ξ) = µ+D1/2ξ, where ξ ∼ N (0, I), µ is the mean of qw and D1/2 is the Cholesky factorization
of the covariance of qw.

8

Automatic Gradient Estimator Selection

Thus, we can compute T̂ (ga) for all ga ∈ G only by profiling the base gradient and each
control variate individually.

Similarly, Ĝ2(ga, w) is determined by the same set of base gradient and control variate
evaluations, regardless of the value of a. Suppose that, at iteration k, we sample ξk1, ..., ξkM .
Then, for all ga ∈ G,

Ĝ2(ga, wk) =
1

M

M∑
m=1

‖gbase(wk, ξkm) + C(wk, ξkm) a‖2. (4)

Thus, we can compute Ĝ2(ga, wk) for all ga ∈ G using only M evaluations of the base
gradient gbase and each control variate ci.

Equations (3) and (4) characterize the (estimated) cost and variance of the gradient
estimator with weights a. We find the weights that result in the optimal cost-variance
tradeoff by solving

a∗(w) = arg min
a∈RJ

Ĝ2(ga, w)× T̂ (ga), (5)

where T̂ (ga) and Ĝ2(ga, w) are as in equations (3) and (4). The solution a∗(w) indicates
what control variates to use (those with a∗i 6= 0), and their weights.

Solving the (combinatorial) minimization problem in equation (5) may be challenging.
However, theorem 1 states that it can be reduced to a MIQCP, which can be solved fast
using solvers such as Gurobi Gurobi Optimization (2018).

Theorem 1 When different gradient estimators are indexed by a set of J control variate
weights, the problem of finding a∗(w) as in equation (5) can be reduced to solving a mixed
integer quadratically constrained program with 2J + 2 variables, one quadratic constraint,
and one linear constraint.

A.3.1. Mixed Integer Quadratic Program

A mixed integer quadratic program is an optimization problem in which the objective
function and constraints are quadratic (or linear), and some (or all) variables are restricted
to be integers:

minimize
x

1

2
x>Q0x+ r>0 x+ u0

s.t.
1

2
x>Qix+ r>i x+ ui ≥ 0 i = 1, ...,m, (6)

Ax+ b = 0,

where x ∈ Rn, Q0, ..., Qm ∈ Rn×n, and some components of x are restricted to be integers.
We now prove the theorem 1.

Proof
Given

T̄ (ga) = T̄ (gbase) +

J∑
i=1

T̄ (ci) 1[ai 6= 0] (7)

9

Automatic Gradient Estimator Selection

and

Ḡ2(ga, w) =
1

M

M∑
m=1

‖gbase(w, ξm) + C(w, ξm)a‖2, (8)

we want to find
a∗(w) = arg min

a∈RJ

Ḡ2(ga, w)× T̄ (ga). (9)

To simplify notation, we use Ḡ2 = Ḡ2(ga, w), gbm = gbase(w, ξm) and Cm = C(w, ξm).
Expanding the squared norm in eq. 8 we get

Ḡ2 =
1

M

M∑
m=1

‖gbm + Cma‖2

=
1

M

M∑
m=1

(
g>bm gbm + 2g>bmCma+ a>C>mCma

)
=

1

M

M∑
m=1

‖gbm‖2︸ ︷︷ ︸
u1

+

(
2

M

M∑
m=1

g>bmCm

)
︸ ︷︷ ︸

r1

a (10)

+
1

2
a>

(
2

M

M∑
m=1

C>mCm

)
︸ ︷︷ ︸

Q1

a

= u1 + r>1 a+
1

2
a>Q1a. (11)

On the other hand, equation 7 can be expressed as

T̄ (ga) = t0 + t>b, s.t. bi = 1[ai 6= 0], (12)

where t0 = T̄ (gbase), and ti = T̄ (ci). Using equations 11 and 12, the minimization
problem from equation 9 can be expressed as

(a∗, b∗) = arg min
a∈RJ ,b∈{0,1}J

(
1

2
a>Q1a+ r>1 a+ u1

)
×
(
t0 + t>b

)
,

s.t bi = 1[ai 6= 0]. (13)

Introducing two extra varaibles, VG and VT , we can express the minimization problem
in eq. 13 as

(a∗, b∗, V ∗G, V
∗
T) = arg min

a∈RJ ,b∈{0,1}J ,VG∈R,VT∈R
VG × VT ,

s.t VG ≥
1

2
a>Q1a+ r>1 a+ u1

VT = t0 + t>b

bi = 1[ai 6= 0]. (14)

10

Automatic Gradient Estimator Selection

The final minimization problem shown in equation 14 has the form of a general MIQCP,
shown in equation 6, with the exception of the last constraint bi = 1[ai 6= 0]. Despite not
being in the original definition of a MIQCP, several solver accept constraints of this type
(Gurobi Gurobi Optimization (2018), the solver used in our simulation, does).

A.4. More SGD convergence rates

Assumptions Needed
Algorithm Guarantee

Convex λ-strongly convex L-smooth

X X X SGD, ηk = 1/(λk) EF (wK)− F (w∗) ≤ 2L
λ2

G2

K

X X − SGD, ηk = 1/(λk) E ||wK − w∗||2 ≤ 4
λ2

G2

K

X − − SGD, ηk = Dw

G
√
K

EF (w̄)− F (w∗) ≤ Dw
G√
K

− − X SGD, ηk =
√

2Df

LKG2 E 1
K

∑K
i=1 ||∇F (wi)||2 ≤

√
LDf

G√
K

− − X
SGD+Momentum (β), E 1

K

∑K
i=1 ||∇F (wi)||2 ≤

ηk =
√

2Df (1−β)4
(β2+(1−β)2)KLG2

√
8DfL(β2+(1−β)2)

(1−β)2
G√
K

− − X
SGD+Nesterov (β), E 1

K

∑K
i=1 ||∇F (wi)||2 ≤

ηk =
√

2Df (1−β)4
(β4+(1−β)2)KLG2

√
8DfL(β4+(1−β)2)

(1−β)2
G√
K

Table 2: ηk is the step size at iteration k. Constants in the results are Df = F (w0)− F (w∗)

and Dw = ||w0 −w∗|| . K is the number of optimization steps, and G2 is such that

Eξ ||g(w, ξ)||2 ≤ G2 ∀w . The learning rates shown are the optimal ones. Proofs in
(Rakhlin et al. (2012); Nemirovski et al. (2009); Bottou et al. (2018); Yang et al.
(2016)).

11

	Introduction
	The G2T Principle and Gradient Estimator Selection
	G2 T principle
	G2 T for Gradient Estimator Selection
	G2T for Control Variates Selection

	Experiments and Results
	Appendix
	Details on models used
	Details on the simulations
	Details on G2T for Control Variate selection
	Mixed Integer Quadratic Program

	More SGD convergence rates

