Under review as a conference paper at ICLR 2020

CONSISTENT META-REINFORCEMENT LEARNING VIA
MODEL IDENTIFICATION AND EXPERIENCE RELABEL-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning algorithms can acquire policies for complex tasks auto-
matically, however the number of samples required to learn a diverse set of skills
can be prohibitively large. While meta-reinforcement learning has enabled agents
to leverage prior experience to adapt quickly to new tasks, the performance of
these methods depends crucially on how close the new task is to the previously
experienced tasks. Current approaches are either not able to extrapolate well, or
can do so at the expense of requiring extremely large amounts of data due to
on-policy training. In this work, we present model identification and experience
relabeling (MIER), a meta-reinforcement learning algorithm that is both efficient
and extrapolates well when faced with out-of-distribution tasks at test time based
on a simple insight: we recognize that dynamics models can be adapted efficiently
and consistently with off-policy data, even if policies and value functions cannot.
These dynamics models can then be used to continue training policies for out-of-
distribution tasks without using meta-reinforcement learning at all, by generating
synthetic experience for the new task.

1 INTRODUCTION

Meta-reinforcement learning algorithms can enable acquisition of new tasks from just a small number
of samples by leveraging experience from previous related tasks (Duan et al., 2016; [Wang et al.|
2016} [Finn et al., 2017). However, the performance of these methods on new tasks depends crucially
on how close the tasks are to the meta-training task distribution. Meta-learned models can adapt
quickly to tasks that are similar to those seen during training, but can lose much of their benefit when
adapting to tasks that are too far away from the meta-training distribution. This places a significant
burden on the user to carefully construct meta-training task distributions that sufficiently cover the
kinds of tasks that may be encountered at test time.

Many meta-RL methods either utilize a variant of model-agnostic meta-learning (MAML) (Finn et al.|
2017 Rothfuss et al., 2018; Nagabandi et al.| 2018)), or an inference-based formulation with recur-
rent (Duan et al., [2016; |Wang et al., | 2016)), attentional (Mishra et al., 2017), or variational (Rakelly’
et al.L[2019) methods. The latter class of methods generally fails to handle out-of-distribution tasks, be-
cause the model cannot adequately deal with out-of-distribution inputs corresponding to the new task.
Most of the former class of methods, where gradient-based adaptation corresponds to a well-defined
and consistent learning process, require on-policy samples, resulting in high sample complexity for
meta-training in order to produce efficient adaptation. In this paper, we make use of a simple insight
to develop model identification and experience relabeling (MIER), a meta RL algorithm that is both
efficient and which extrapolates effectively when faced with out-of-distribution tasks at meta-test
time: we recognize that dynamics and reward models can be adapted consistently, using MAML-style
update rules with off-policy data, even if policies and value functions cannot. These models can then
be used to train new policies for out-of-distribution tasks without using meta-reinforcement learning
at all, by generating synthetic experience for the new task.

To be able to quickly learn dynamics models, we reformulate the meta-reinforcement learning problem
as one of MDP identification. We use this approach since identifying a task involves determining
its transition dynamics and reward function, which is exactly the information that a model of the

Under review as a conference paper at ICLR 2020

task needs to represent. Specifically, we use a supervised meta-learning method that optimizes for a
dynamics model initialization such that conditioned on a MDP context descriptor, prediction error
on a validation batch of data sampled from the task is minimized, after updating only the context
descriptor with a few gradient steps. Effective model training requires the validation batch to contain
data corresponding to optimal behavior for the tasks, which we obtain by training a universal policy
conditioned on the context descriptor. Note that since our formulation ensures that the context
descriptor contains sufficient information about the task, the policy does not need to be meta-trained
or adapted, and can hence be learned with simple and efficient off-policy RL algorithms, without
needing to handle the complexity of meta-reinforcement learning.

At test time, given out-of-distribution tasks, the adapted context descriptor would indeed be out of
distribution and thus our context-conditioned model and policy might not perform well for the test
task. However, since our method uses gradient descent which is a consistent learning method for
adaptation, we can continue to improve our model using more gradient updates. We then leverage
all of the experience collected from other tasks during meta-training, by using the learned model to
relabel the next state and reward information, thus obtaining synthetic data to continue training the
policy.

Our main contribution is an off-policy meta-RL algorithm that is sample efficient, stable and which
extrapolates well to out-of-distribution tasks. By formulating the meta-adaptation as MDP identifica-
tion, we are able to transform the meta-RL problem into a supervised meta-learning problem and thus
benefit from the stability and consistency of supervised learning methods. The consistency of our
model also enables us to continue improving our policy without collecting extra data by relabeling
data collected from other tasks, thus allowing us to efficiently adapt to out-of-distribution tasks.

2 RELATED WORK

Meta-reinforcement learning algorithms extend the framework of meta-learning (Schmidhuber, |1987}
Thrun & Pratt, [1998; Naik & Mammonel |1992) to the reinforcement learning setting. Current meta-
reinforcement learning algorithms can be roughly categorized into 3 large categories, model-free
context based methods, model-free gradient based methods and model based methods.

Model-free, context based methods such as [Duan et al.| (2016); Wang et al.| (2016); Mishra et al.
(2017); Rakelly et al.| (2019); Humplik et al.| (2019) often encode the experience during adaptation
into a latent context variable, and the policy is conditioned on the task specific context to adapt to a
given task. The context encoding process is often done via a recurrent network (Duan et al.| 2016
Wang et al.,[2016)), via an attention mechanism (Mishra et al.l 2017) or via amortized probabilistic
inference (Rakelly et al.,[2019; [Humplik et al.,2019). While many of these methods can efficiently
summarize experiences during adaptation, it is often hard for them to encode any universal learning
algorithm such as gradient descent. This is because given a fixed distribution of training tasks, the
most efficient way of adapting to a particular task is to directly infer it from the task distribution,
rather than applying any universal learning algorithm. While efficient in handling in distribution
tasks, the lack of universal learning algorithm in these methods implies that they would be able to
adapt to out of distribution tasks. Our method, on the other hand, is able to handle out of distribution
tasks through continual adaptation with gradient descent.

Model-free gradient based meta-RL methods, such as [Finn et al.| (2017); Rothfuss et al.| (2018));
Zintgraf et al.|(2018)); Rusu et al.[(2018)); [Liu et al.[(2019), implement gradient descent as the adapta-
tion process. The parameters are often optimized such that the model achieves good performance
after only a few steps of gradient descent. Since gradient descent is a universal learning algorithm,
with a large capacity model, these methods are consistent in the way that they would guarantee to
improve even on out-of-distribution tasks. However, most of these methods are based on on-policy
RL algorithm, which means they are rather sample inefficient at training time and requires more
data to be collected when adapting to new tasks. It is worth noting that there are also works that
combine gradient based and context based methods such as|Lan et al.|(2019). However such methods
still suffer from the same sample efficiency problem as other gradient based methods because of the
use of on-policy gradient descent. Our method mitigate this problem by applying an off-policy RL
algorithm on top of a gradient based meta-learning algorithm to achieve better sample efficiency at
training time. At test time, our method reuses the experiences collected during training to enable fast
adaptation without collecting a lot more data.

Under review as a conference paper at ICLR 2020

Model based meta-RL methods such asNagabandi et al.| (2018); Seemundsson et al.| (2018)), a rapidly
adapting model instead of a policy is learned. Since learning a fast adapting model is a supervised
meta-learning problem, a broader range of meta-learning algorithms can be applied. If an universal
learning algorithm is used to represent the adaptation process, the model learning can then be made
consistent such as inNagabandi et al.|(2018)). At test time, when the model is adapted to a particular
task, standard planning techniques such as model predictive control is often applied to select actions.
While possible to be consistent, the model based meta-RL methods often suffer in long horizon tasks
due to the accumulated error of model while planning long time ahead into the future. Our method
does not suffer from this problem since we only use one step prediction of our model to train a
model-free policy, and only execute the policy during test time. This approach is similar to methods
presented in Sutton| (1991)); Janner et al.| (2019).

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

Formally, a reinforcement learning problem is defined by a Markov decision process (MDP). We
adopt the standard definition of a MDP T = (S, A, p, to, 7, y), Where S is the state space, A is the
action space, p(s’|s, a) is the unknown transition probability of landing on next state s’ at the next
time step when an agent takes action a at state s, uo(s) is the initial state distribution, r(s, a) is the
reward function, and v € (0, 1) is the discount factor. An agent acts according to some policy 7(als)
and the objective of learning is to maximize the expected rewards Eg, a,~r[>_, 7'7(s¢t, ar)].

3.2 MODEL BASED REINFORCEMENT LEARNING

In model based reinforcement learning, a model p(s’, r|s, a) that predicts the reward and next state
from current state and action is trained using standard supervised learning approaches. The model is
then used to generate data to train a policy. Specifically, given a model, we perform the following
optimization to obtain the policy: arg max, Es, a,~x s[>, 7(St,a;)]. Note here the expectation is
taken with respect to the model distribution of states instead of the true environment distribution.

3.3 META-REINFORCEMENT LEARNING

In meta-reinforcement learning, we represent various of similar tasks with a distribution of MDPs

p(T), where each specific task is a sample drawn from the distribution. Given a specific task 7, the

agent is allowed to collect little amount of data Dggpt, adapt the policy to form 7 according to

the data. The objective of this problem is to maximize the expected rewards of the adapted policy
ETNP(T)»SmatNWT [Zf 'ytr(st, atﬂ .

3.4 SUPERVISED META-LEARNING AND MODEL AGNOSTIC META LEARNING

We briefly introduce the supervised meta-learning problem and the model agnostic meta-learning
approach, which is an important foundation of our work. In supervised meta-learning, we also have a

distribution of tasks p(7") similar to the meta-RL setup, except that the task 7 is now a pair of input
and output random variables (X7, Y7). Given a small dataset Dggpt sampled from a specific task
(7)

T, the objective is to built a model that performs well on the evaluation data D, /

; sampled from the
same task. If we denote our model as f(X;), the adaptation process as Z(0, DL(zth

function as £, the objective can be written as:

in B () [£(f (XT3 2(0, Do), Y7)

adapt

) and our loss

Model agnostic meta-learning (Finn et al.,[2017) is an approach to solve the supervised meta-learning
problem. Specifically, the model f(X;6) is represented as a neural network, and the adaptation
process is represented as few steps of gradient descent. For simplicity of notation, we only write out
the one step of gradient descent:

B (0, D7) 1)) = 0 — aVyE

adapt

o [L(f(X;0),Y)]

adapt

X,Y~D

Under review as a conference paper at ICLR 2020

Note that because =),y is the standard gradient descent, it does not contain any trainable parameters
and hence the trainable parameters are all contained in the network weights 6. Therefore, the training
process of MAML can be summarized as optimizing the loss of the model after few steps of gradient
descent on data from the new task.

4 CONSISTENT META-OPTIMIZATION BY RELABELING EXPERIENCE

In this section, we lay the meta- 340 e T Meta- Training of MIER
training and test time adaptation — — .
process of MIER. We first re- INPUT: task distribution p(7), model training steps N odei, policy

training steps Npoiicy, learning rate «
OUTPUT: policy parameter 1), model parameter 6, model context ¢

formulate the meta-RL problem
into a meta-model identification
problem, where we train a fast Randomly initialize policy parameter 1), model parameter €, model con-
adapting model to rapidly iden- (eXt¢

: L : Initialize multitask replay buffer R() @
f . play T)
tify transition dynamics and re ile 6, o, 1 not converged do

ward function for a given new Sample task T ~ p(T)

task. We parameterize the model Collect data batch D) before adaptati i d
with a latent context descriptor adapt ptation using 7, and ¢
to contain all task specific in- Compute adapted context 7 = ZEnam (6, 8, Dgipt)
formation aquired during adap- Collect data batch DiUT; , after adaptation using 7 and ¢7
tation. We then train a universal Add data to replay buffer R(T) < R(T) U DiZi—(z LU Déza)l
policy that condition on context fori = 110 Nypyoge; do ?
descriptor to solve all tasks sam- Sample task in replay buffer 7 ~ R

pled from the training distribu- Sample two batches of data Dgipt, D7)~ R(T)

tion. At test time, given a po-

. B : () (T
tentially out of distribution task, Train model (6, ¢) < (6, #) =aV6.6J5(0, &, Dagapt> Pevar)

adapt’ “eval

we continual to improve our pol- end

icy by using our model to rela- for i = 110 Nypoticy do

bel data from previously expe- Sample task in replay buffer 7 ~ R

rienced tasks. The consistency Sample two batches of data Dggp LD~ R(T)

of our mOd.e I adaptation process Compute adapted context 7 = Eyame (0, ¢, D
and policy improvement ensures (D)

that the policy will continue to Train policy ¢ <= ¢ — aVyJx (¢, Deyay)
improve even the task is out-of-
distribution. We provide the de-
tailed explain of each part of our
method in the following sections,
and we lay out the pseudo code for meta-training time in Algorithm[T]and test time in Algorithm [2]

(T))

adapt

end
end

4.1 META-MODEL IDENTIFICATION WITH LATENT CONTEXT

In a meta-RL problem, tasks are drawn from a distribution of MDPs, and an agent adapts to each of
the tasks by observing some data for the tasks. The adaptation process is usually performed as either
an implicit or explicit inference of some task representations. That is, the agent adapts to a task by
identifying it from other tasks in the same distribution. In a distribution of MDPs, the only varying
factors are the dynamics p and the reward function r. Therefore, a sufficient condition for identifying
the task is to learn the transition dynamics and the reward function, and this is exactly what model
based RL methods do. Hence, we can naturally formulate the meta-task identification problem as
model based RL and solve it with supervised meta-learning methods.

Specifically, we choose the MAML method for its simplicity and consistency. Unlike the standard
supervised MAML formulation, we condition our model on a latent context vector, and we only
change the context vector when adapting to new tasks. With this formulation, we restrict all the task
specific information learned during adaptation to the context vector, and thus allowing the policy
to condition on it. Let us denote our model as p(s’,r|s, a; 0, ¢), where 6 is the neural network
parameters and ¢ is the latent context vector that is passed in as input to the network. One step of
gradient adaptation can be written as follows:
67 = S (0,6, D10)) = 6 —aVGE o pon [~logp(s',x]s,a;0,0)]

adapt

Under review as a conference paper at ICLR 2020

We use the log likelihood as our objective for the probabilistic model. Then we evaluate the adapted

context vector ¢ and minimize its loss on the evaluation dataset to learn the model. Specifically,
7) (7)
D7) D

we minimize the model meta-loss function J;(6, ¢, D, apt> Peval

and context vector initialization ¢.

) to obtain the optimal parameter ¢

T (T) (T)y _ ; _ Ala! .
arg Igl}ld)n Jp(0, 6, Dadapt,Deml) = arg rgltbnE(s,a,s/,r)NDfﬂl[log p(s’, r|s, a; 6, d7)]

The main difference between our method and previously proposed context based meta-RL methods
(Rakelly et al.,|[2019;|Duan et al.,[2016)) is that we use gradient descent to adapt the context. Therefore,
given a model with large enough capacity, the adaptation process is consistent, in the sense that it
will continue to improve regardless of which task it is presented with. In-distribution tasks will of
course have much faster adaptation, since the meta-training process explicitly optimizes for this
objective, but the model for out-of-distribution tasks will still adapt to the task given enough samples
and gradient steps, since the adaptation process corresponds to a well-defined and convergent learning
process.

4.2 PoLiCcY OPTIMIZATION WITH LATENT CONTEXT

Given the latent context variable from the adapted model, the meta-RL problem can be effectively
reduced to a standard RL problem, as the task specific information has been all encoded in the context
variable. Therefore we can apply any model-free RL algorithm to obtain a policy, as long as we
condition the policy on the latent MDP descriptor context.

Specifically, we choose the soft actor critic (SAC) method (Haarnoja et all [2018)) for its sam-
ple efficiency and stability. Let us parameterize our policy m, by a parameter 1. The soft
actor critic method maintains an estimate of the values for the current policy Q™ (s, a, ¢7) =
Es,a;~my Do V7 (St:at)|so = s,80 = a,T] and V™ (s, ¢7) = Es, a,om, [2o, Y7 (8¢, 8¢)[80 =
s, T through Bellman backup, and improves the policy by minimizing the KL divergence between
the policy and the exponential advantage J (¢, D) = Ep[Dg(my|| exp{Q™ — V™ })] over some
dataset D. Note that we condition our value functions @™, V™ and policy 7y all on the adapted
task specific context vector ¢ so that the policy and value functions can access full information
about the task.

4.3 CONTINUAL ADAPTATION AND EXTRAPOLATION THROUGH DATA RELABELING

At meta-test time, when the

s Algorithm 2 Test Time Adaptation of MIER
model is given an unseen task

T, it will first sample a small
batch of data and obtain the la-
tent context ¢7 by running the
gradient descent adaptation pro-
cess on the context variable. If
the new task is in-distribution,
we can directly feed ¢ to the
policy. However, in many cases,
we might encounter tasks that are
out of distribution. If the task 7
is out of the meta-training distri-
bution, then the obtained latent
context ¢ will also be out of
distribution for the policy. Even
though our model is adapted with
a consistent method, the improve-
ment guarantee is only for the
model — the latent context ¢
that might be obtained for an out-
of-distribution task might not im-

INPUT: test task 77, multitask replay buffer R(7), model training
steps Npodel, policy training steps Npoiicy, policy parameter),
model parameter 6, model context ¢, learning rate o

OUTPUT: policy parameter v, model parameter 6, model context ¢

Collect data batch D(%)

adapt
Compute adapted context ¢4 = Eyam (6, @, Dgipt)
while 6, ¥ not converged do
for i = 10 Nyoder do
Train model 6 + 6 — aVeED@) [—logp(s’,rls,a;0, ¢4)]

adapt

from test task 7 using 7y and ¢

end
for:=11to Npolicy do
Sample task in replay buffer 7 ~ R

Sample data batch D7) ~ R(T)
Relabel data D7) « Relabel(D, 0, 1)
Train policy ¢ < ¥ — aVy Jx (9, 15(7))
end
end

mediately produce an effective policy. However, with an improved model, we can generate new

Under review as a conference paper at ICLR 2020

data for the task without sampling from the environment to continue training the policy, providing a
sample-efficient (but computationally more costly) adaptation method for out-of-distribution tasks.

When using data generated from a learned model to train a policy, a common caveat is that the
model’s predicted trajectory often diverges from the trajectory under the real dynamics in long
horizon tasks, due to accumulated error. In the special case of meta-RL, we argue that this issue
can be avoided by the multi-task setup in meta-RL. Although we have never seen this particular
new task, we have seen many other tasks that share the same state space and action space, and we
have collected a lot of experience from these tasks. Using the adapted model and policy, we can
relabel the transitions (s, a, s, r) from any other tasks by sampling a new actions with our adapted
policy, and sample next states and rewards with the adapted model. The relabeling process can be
written as Relabel(D, 0, ¢7) = {(s,a,s,r)|(s,a) € D;(s',r) ~ p(s’,r|s,a;0,¢7)}. We use
these relabeled transitions to continue training the policy. By doing so, we effectively transferred
experiences from other tasks into this new task, and thus avoided the divergence problem of sampling
long horizon trajectories as we are only doing one step prediction. This relabeling scheme is similar
to the Dyna algorithm introduced by |Sutton| (1991). By relabeling experiences from tasks seen before,
we can efficiently reuse the large amount of data collected from other tasks to improve our policy on
this new task.

5 EXPERIMENTAL EVALUATION

We aim to answer the following questions in our experiments: (1) Can MIER meta-train efficiently on
standard meta-RL benchmarks without requiring large amounts of data? (2) How does MIER compare
to prior meta-learning approaches for extrapolation to meta-test tasks with out-of-distribution (a)
reward functions and (b) dynamics? (3) How important is cross task relabeling in leveraging the
model to learn an effective policy efficiently?

To answer these questions, we first compare the sample efficiency of MIER to existing methods on
several standard meta-RL benchmark environments. We then test MIER on a set of environment with
out of distribution meta-test tasks to analyze extrapolation performance. We further run an ablation of
our method without cross task labelling, and show that this isn’t able to adapt the policy as effectively
as our method.

5.1 SAMPLE EFFICIENCY ON META-RL BENCHMARKS

Figure 1: HalfCheetah and Humanoid robot simulated in MuJoCo physics engine. Our experiments use these
two domains.

We evaluate MIER on two standard meta-RL benchmark environments based on the MuJoCo physics
simulator (Todorov et al., 2012}, shown in Figure E} These environments were introduced by |[Finn
et al.[(2017), and later used by the state-of-the-art context based meta-RL method Rakelly et al.
(2019). They include half cheetah robot running at different velocities (HalfCheetah-Vel) and a
humanoid robot running in different directions (Humanoid-Dir). For all environments, we follow
the exact setting in Rakelly et al.|(2019). For comparison, we include performance of the PEARL
algorithm (Rakelly et al.,|2019) and MAML algorithm (Finn et al.,|2017) as our baselines, and we
average the performance of all algorithms across 3 random seeds.

We plot the test time performance after adaptation versus number of steps in the environment in
Figure[2] We see that our method is able to achieve performance comparable to the state of the art

Under review as a conference paper at ICLR 2020

method in meta-RL in terms of sample efficiency (PEARL). This is due to the ability of our method to
perform supervised meta-learning for the model, and off-policy reinforcement learning for the policy,
which results in a stable and efficient optimization procedure during meta-training. Note that here,
off-policy refers to the meta-training process. However, as we discuss in Section[#.3] our method can
also perform off-policy adaptation via cross task relabeling. We evaluate this in the next section.

Cheetah-Vel Standard Benchmark Humanoid-Dir Standard Benchmark
1000 —— MAML
-0 MIER (Ours)
—— PEARL
c -100 ¢ 800
5 S
& -150 — MAML g
o« < 600
o MIER (Ours) o
& —200 —— PEARL g
g ¢ 400
< -250 <
-0 200
-350
200000 300000 400000 500000 600000 700000 800000 200000 300000 400000 500000 600000 700000 800000
Number of Environment Steps Number of Environment Steps

Figure 2: Performance on standard meta-RL benchmarks for left: Half Cheetah velocity right: Humanoid
direction. The return is evaluated on (in-distribution) meta-test tasks at different steps during the meta-training
process, following the protocol from Rakelly et al.[(2019). Note that both our method and PEARL are
substantially more efficient than the on-policy MAML algorithm, and our method performs comparably to the
off-policy PEARL algorithm.

5.2 EXTRAPOLATION TO OUT-OF-DISTRIBUTION TASKS

We evaluate the extrapolation capability of MIER separately on environments with varying reward
functions, and those with different dynamics. In order to ensure fair comparisons, we train all
algorithms to convergence before testing on new tasks. Hence, MAML is trained for 80 millions
steps, while PEARL and MIER only require about a million steps. Unless stated otherwise, we adapt
with MIER using cross task relabeling in all of these experiments.

5.2.1 ADAPTATION TO OUT-OF-DISTRIBUTION REWARDS

For testing extrapolation ability to tasks with different rewards, we take the HalfCheetah-Vel environ-
ment from the standard benchmarks and restrict the meta-training task distribution. This is required
since, in the original environments, the meta-training distribution covers almost the entire feasible
task space, leaving little room for extrapolation. Instead, if we limit the training distribution, we can
easily find out-of-distribution tasks to test the extrapolation capability of our method.

The training tasks consist of target velocities at which the
cheetah needs to run sampled uniformly from O to 1. We 0
then evaluate the ability of the meta-learned polices to
adapt in order to run at new speeds chosen at 0.5 intervals
from 0.5 to 2.5, using only 2 trajectories sampled from the
environment. From Figure (3| we see that MIER attains
much higher return than other methods for target velocities

HalfCheetah Target Velocity Extrapolation Performance

-100

-200

-300

Average Return

that are substantially outside of the meta-training distribu- el T
tion. Eventually, performance degrades for all methods, e
. -500
since the state space distribution differs too much from 050 075 100 125 150 175 200 225 2.50

the meta-training tasks, making cross task relabeling inef- Target velocity

fective. Nonetheless, this experiment shows that MIER’s
capacity to adapt to out-of-distribution tasks substantially
exceeds that of prior meta-RL methods.

Figure 3: Target velocity (reward function)
extrapolation for HalfCheetah environment.

5.2.2 ADAPTATION TO OUT-OF-DISTRIBUTION DYNAMICS

To study adaptation to out-of-distribution dynamics, we take the HalfCheetah environment, and
randomly negate the control of 3 joints out of the total 6 joints of the robot. During meta-training, we
only select joints from the first 5 joints to negate, and during meta-test time, we select 2 joints from
the first 5 and always negate the 6th joint. This ensures that the agent never sees the negation of the

Under review as a conference paper at ICLR 2020

6th joint during meta-training time, and hence needs to extrapolate well to get good return on the test
tasks. In total, we have 10 training tasks and 10 test tasks.

We compare the return of all methods after adapting on 2 new trajectories of the validation task. From
the plot of average performance across test tasks, in Figure] we see that MIER achieves superior
performance compared to existing methods. We are able to extrapolate so efficiently since we are
able to leverage off-policy data collected during meta-training. This in turn is enabled by our ability
to learn a model quickly using minimal data, which is the consistent meta-training objective.

HalfCheetah Dynamics Extrapolation Performance Relabelling Analysis
T

1000

)
=3
S

"
® S
8 S
S 3

—— MIER (Ours)
No cross task relabelling

@
3
5}

600

Average Return
IS
]
8

400

Average Return

200

1 T 0

0 o] 1 2 3 4 5 6
PEARL MAML MIER (Ours) Number of relabelling steps

Figure 4: Dynamics extrapolation on HalfCheetah with negated joints. Left: Return after adaptation for each
method. Right: Ablation analysis on the effect of relabeling. The results show that MIER with cross task
relabeling substantially outperforms prior methods when adapting to this task with out-of-distribution dynamics.
The ablation analysis shows that the cross-task relabeling is essential to attain this level of performance.

To further highlight the importance of relabeling data from other tasks during adaptation, we run an
ablation where the policy is learned only using the sampled data. Figure |4|shows performance of the
policy plotted against the number of steps where we relabel exsiting data and continue to train the
policy. We see that without the benefit of off-policy data, the policy performance deteriorates rapidly
due to overfitting to the small batch of data sampled from the test task.

6 CONCLUSION

In this paper, we introduce a consistent and sample efficient meta-RL algorithm by reformulating
the meta-RL problem as model identification. Our algorithm can adapt to new tasks by determining
the parameters of the model, which predicts the reward and future transitions. This allows us
to perform meta-learning via supervised learning of the model, which is more stable and sample
efficient. More importantly, this provides us with a consistent adaptation procedure, where adaptation
is performed via gradient descent. This means that, even for out-of-distribution meta-test tasks, our
method eventually learns the right model. This model then allows us to relabel past experience to
reuse it for the new task, running off-policy reinforcement learning to acquire the policy for the
new task. Experiment results show that our method achieves superior performance compared to
existing methods, especially on out-of-distribution tasks that requires extrapolation, where consistent
adaptation of the model followed by relabeling and off-policy reinforcement learning substantially
outperforms prior methods that adapt to the new task directly.

REFERENCES

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RI®: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp- 1126-1135. IMLR. org, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Under review as a conference paper at ICLR 2020

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,
2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. arXiv preprint arXiv:1906.08253, 2019.

Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. Meta reinforcement learning with task
embedding and shared policy. arXiv preprint arXiv:1905.06527, 2019.

Hao Liu, Richard Socher, and Caiming Xiong. Taming maml: Efficient unbiased meta-reinforcement
learning. In International Conference on Machine Learning, pp. 4061-4071, 2019.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141, 2017.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347,2018.

Devang K Naik and RJ Mammone. Meta-neural networks that learn by learning. In [Proceedings
1992] IJCNN International Joint Conference on Neural Networks, volume 1, pp. 437-442. IEEE,
1992.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. arXiv preprint arXiv:1903.08254,
2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Steind6r Semundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement learning
with latent variable gaussian processes. arXiv preprint arXiv:1803.07551, 2018.

Jirgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universitdt Miinchen, 1987.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160-163, 1991.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn,
pp- 3—17. Springer, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew M Botvinick. Learning to reinforcement learn.
ArXiv, abs/1611.05763, 2016.

Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Caml:
Fast context adaptation via meta-learning. arXiv preprint arXiv:1810.03642, 2018.

Under review as a conference paper at ICLR 2020

Appendices

A IMPLEMENTATION DETAILS

The implementation of the algorithm largely builds on the Model Based Policy Optimization code
(Janner et al.[(2019)), and the environments are standard meta-RL benchmarks, with slight modi-
fications for the extrapolation tasks as described in the experiment section. The context vector is a
variable that is appended to the states and actions when sent to the model, and appended to the states
when passed to the policy. The hyper-parameters are kept mostly fixed across all experiments. One
major change is that environments with changing dynamics have models predicting both next state
and reward, while the environments with only changing reward have prediction just for reward.

Some key hyperparameters (common across experiments):

. Number of fast adapt steps for model meta-training : 2

. Fast adapt learning rate for the model : 0.1

. Batch size for model adaptation : 256

. Reward-dynamics model architecture : 200-200-200-200
. Dimension of context vector : 5

. Regression weight on post-update contexts : 0.01

. Number of tasks sampled per training epoch : 5

. Number of data points sampled from a task per training epoch : 1000

O 00 N N Lt AW N =

. Number of SAC training steps per training epoch : 1000
10. Learning rate for Q functions in SAC : 0.0003
11. Q network hidden layers : 256-256

10

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Model Based Reinforcement Learning
	Meta-Reinforcement Learning
	Supervised Meta-Learning and Model Agnostic Meta Learning

	 Consistent Meta-Optimization by Relabeling Experience
	Meta-Model Identification with Latent Context
	Policy Optimization with Latent Context
	Continual Adaptation and Extrapolation through Data Relabeling

	Experimental Evaluation
	Sample Efficiency on Meta-RL Benchmarks
	Extrapolation to Out-of-Distribution Tasks
	Adaptation to Out-of-Distribution Rewards
	Adaptation to Out-of-Distribution Dynamics

	Conclusion
	Appendices
	Implementation Details

