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Abstract

Variational Inference is a powerful tool in the Bayesian modeling toolkit, how-
ever, its effectiveness is determined by the expressivity of the utilized variational
distributions in terms of their ability to match the true posterior distribution. In
turn, the expressivity of the variational family is largely limited by the requirement
of having a tractable density function. To overcome this roadblock, we introduce
a new family of variational upper bounds on a log marginal density in the case
of hierarchical models (also known as latent variable models). We then derive a
family of increasingly tighter variational lower bounds on the otherwise intractable
standard evidence lower bound for hierarchical variational distributions, enabling
the use of more expressive approximate posteriors. We show that previously known
methods, such as Hierarchical Variational Models, Semi-Implicit Variational Infer-
ence and Doubly Semi-Implicit Variational Inference can be seen as special cases
of the proposed approach, and empirically demonstrate superior performance of
the proposed method in a set of experiments.

1 Introduction

Bayesian Inference is an important statistical tool. However, exact inference is possible only in a
small class of conjugate problems, and for many practically interesting cases, one has to resort to
Approximate Inference techniques. Variational Inference (Hinton and van Camp, 1993; Waterhouse
et al., 1996; Wainwright et al., 2008) being one of them is an efficient and scalable approach that
gained a lot of interest in recent years due to advances in Neural Networks.

However, the efficiency and accuracy of Variational Inference heavily depend on how close an
approximate posterior is to the true posterior. As a result, Neural Networks’ universal approximation
abilities and great empirical success propelled a lot of interest in employing them as powerful sample
generators that are trained to output samples from approximate posterior when fed some standard
noise as input (Nowozin et al., 2016; Goodfellow et al., 2014; MacKay, 1995). Unfortunately, a
significant obstacle in this direction is a need for a tractable density q(z | x), which in general
requires intractable integration. A theoretically sound approach then is to give tight lower bounds on
the intractable term – the differential entropy of q(z|x), which is easy to recover from upper bounds
on the log marginal density. One such bound was introduced by Agakov and Barber (2004); however
it’s tightness depends on the auxiliary variational distribution. Yin and Zhou (2018) suggested a
multisample surrogate whose quality is controlled by the number of samples.

In this paper we consider hierarchical variational models (Ranganath et al., 2016; Salimans et al.,
2015; Agakov and Barber, 2004) where the approximate posterior q(z | x) is represented as a
mixture of tractable distributions q(z|ψ, x) over some tractable mixing distribution q(ψ|x): q(z|x) =∫
q(z|ψ, x)q(ψ|x)dψ. We show that such variational models contain semi-implicit models where
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q(ψ|x) is allowed to be arbitrarily complicated while being reparametrizable (Yin and Zhou, 2018).
To overcome the need for the closed-form marginal density q(z|x) we then propose a novel family
of tighter bounds on the log marginal likelihood log p(x), which can be shown to generalize many
previously known bounds: Hierarchical Variational Models (Ranganath et al., 2016) also known as
auxiliary VAE bound (Maaløe et al., 2016), Semi-Implicit Variational Inference (Yin and Zhou, 2018)
and Doubly Semi-Implicit Variational Inference (Molchanov et al., 2018). At the core of our work
lies a novel variational upper bound on the log marginal density, which we apply to the evidence
lower bound (ELBO) to enable hierarchical approximate posteriors. Finally, our method can be
combined with the multisample bound of Burda et al. (2015) to tighten the log marginal likelihood
lower bound even further.

2 Background

Having a hierarchical model pθ(x) =
∫
pθ(x | z)pθ(z)dz for observable objects x, we are interested

in two tasks: inference and learning. The problem of Bayesian inference is that of finding the
true posterior distribution pθ(z | x), which is often intractable and thus is approximated by some
qφ(z | x). The problem of learning is that of finding parameters θ s.t. the marginal model distribution
pθ(x) approximates the true data-generating process of x as good as possible, typically in terms of
KL-divergence, which corresponds to the Maximum Likelihood Estimation problem.

Variational Inference provides a way to solve both tasks simultaneously by lower-bounding the
intractable log marginal likelihood log pθ(x) with the Evidence Lower Bound (ELBO) using a
posterior approximation qφ(z | x):

log pθ(x) ≥ log pθ(x)−DKL(qφ(z | x) || pθ(z|x)) = E
qφ(z|x)

log
pθ(x, z)

qφ(z | x)

The bound requires analytically tractable densities for both qφ(z | x) and pθ(x, z). Since the ELBO
is a biased objective, maximizing it w.r.t. θ not only (or necessarily) maximizes the log marginal
likelihood, but also minimizes the KL divergence, constraining the true posterior pθ(z|x) to stay
close to the approximate one qφ(z|x) and thus limiting the expressivity of pθ(x). Such variational
bias can be reduced by tightening the bound. In particular, Burda et al. (2015) proposed a family of
tighter multisample bounds, generalizing the ELBO. We call it the IWAE bound:

log pθ(x) ≥ E
qφ(z1:M |x)

log
1

M

M∑
m=1

pθ(x, zm)

qφ(zm | x)
,

where from now on we write qφ(z1:M |x) =
∏M
m=1 qφ(zm|x) for brevity. This bound has been shown

(Domke and Sheldon, 2018) to be a tractable lower bound on ELBO for a variational distribution
that has been obtained by self-normalizing importance sampling, or a special case of Sequential
Monte Carlo (Maddison et al., 2017; Naesseth et al., 2017; Le et al., 2017). However, the price of
this increased tightness is higher computation complexity that mostly stems from increased number
of evaluations of high-dimensional decoder pθ(x|z). We thus focus on learning more expressive
posterior approximations to be used in the ELBO – a special case of M = 1.

In the direction of improving the single-sample ELBO Agakov and Barber (2004); Salimans et al.
(2015); Maaløe et al. (2016); Ranganath et al. (2016) proposed to use a hierarchical variational model
(HVM) for qφ(z | x) =

∫
qφ(z | x, ψ)qφ(ψ | x)dψ with explicit joint density qφ(z, ψ | x), where ψ

are auxiliary latent variables. Since the standard ELBO is now intractable due to the log qφ(z | x)
term, the following variational lower bound on the ELBO is proposed. The tightness of this bound is
controlled by the auxiliary variational distribution τη(ψ | x, z):

log pθ(x) ≥ E
qφ(z|x)

log
pθ(x, z)

qφ(z | x)
≥ E
qφ(z,ψ|x)

[
log pθ(x, z)− log

qφ(z, ψ | x)

τη(ψ | x, z)

]
(1)

However, this bound now introduces auxiliary variational bias: the gap to the true ELBO is equal to
DKL(qφ(ψ|z, x) || τη(ψ|z, x)), which prevents learning expressive qφ(z|x).

Recently Yin and Zhou (2018) introduced semi-implicit models: hierarchical models qφ(z | x) =∫
qφ(z | ψ, x)qφ(ψ | x)dψ with implicit but reparametrizable qφ(ψ | x) and explicit qφ(z | ψ, x),
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and suggested the following surrogate objective, which was later shown to be a lower bound (the
SIVI bound) for all finite K by Molchanov et al. (2018):

log pθ(x) ≥ E
qφ(z,ψ0|x)

E
qφ(ψ1:K |x)

log
pθ(x, z)

1
K+1

∑K
k=0 qφ(z|ψk, x)

(2)

An appealing property of this bound is that it gets tighter as the number of samples K increases and
unlike the IWAE bound, it performs multiple computations in the smaller latent space. That said,
SIVI can be generalized to use multiple samples z similar to the IWAE bound (Burda et al., 2015) in
an efficient way by reusing samples ψ1:K for different zm:

log p(x) ≥ E

[
log

1

M

M∑
m=1

pθ(x, zm)
1

K+1

∑K
k=0 qφ(zm|x, ψm,k)

]
(3)

Where the expectation is taken over qφ(ψ1:M,0, z1:M | x) and ψm,1:K = ψ1:K ∼ qφ(ψ1:K | x) is the
same set of K i.i.d. random variables for all m2. Importantly, this estimator has O(M +K) sampling
complexity for ψ, unlike the naive approach, leading to O(MK +M) sampling complexity. We will
get back to this discussion in section 4.1.

2.1 SIVI Insights

Here we outline SIVI’s points of weaknesses and identify certain traits that make it possible to
generalize the method and bridge it with the prior work.

First, note that both SIVI bounds (2) and (3) use samples from qφ(ψ1:K | x) to describe z, and in
high dimensions one might expect that such "uninformed" samples would miss most of the time,
resulting in near-zero likelihood qφ(z | ψk, x) and thus reduce the "effective sample size". Therefore
it is expected that in higher dimensions it would take many samples to accurately cover the regions
high probability of qφ(ψ | z, x) for a given z. Instead, ideally, we would like to target such regions
directly while keeping the lower bound guarantees.

Another important observation that we’ll make use of is that many such semi-implicit models can
be equivalently reformulated as a mixture of two explicit distributions: due to reparametrizability
of qφ(ψ | x) we have ψ = gφ(ε | x) for some ε ∼ q(ε) with tractable density. We can then
consider an equivalent hierarchical model qφ(z|x) =

∫
qφ(z | gφ(ε | x), x)q(ε)dε that first samples

ε from some simple distribution, transforms this sample ε into ψ and then generates samples from
qφ(z | ψ, x). Thus from now on we’ll assume both qφ(z | ψ, x) and qφ(ψ | x) have a tractable density,
yet qφ(z | ψ, x) can depend on ψ in an arbitrarily complex way, making analytic marginalization
intractable.

3 Importance Weighted Hierarchical Variational Inference

Having intractable log qφ(z | x) as a source of our problems, we seek a tractable and efficient upper
bound, which is provided by the following theorem:

Theorem (Log marginal density upper bound). For any q(z, ψ | x), K ∈ N0 and τ(ψ | z, x) (under
mild regularity conditions) consider the following

UK = E
q(ψ0|x,z)

E
τ(ψ1:K |z,x)

log

(
1

K + 1

K∑
k=0

q(z, ψk | x)

τ(ψk | z, x)

)
Then the following holds:

1. UK ≥ log q(z | x)

2. UK ≥ UK+1

3. lim
K→∞

UK = log q(z | x)

2One could also include all ψ1:M,0 into the set of reused samples ψ, expanding its size to M +K.
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Proof. See Appendix for Theorem C.1.

The proposed upper bound provides a variational alternative to MCMC-based upper bounds (Grosse
et al., 2015) and complements the standard Importance Weighted stochastic lower bound of Burda
et al. (2015) on the log marginal density:

LK = E
τ(ψ1:K |z,x)

log

(
1

K

K∑
k=1

q(z, ψk | x)

τ(ψk | z, x)

)
≤ log q(z | x)

3.1 Tractable lower bounds on log marginal likelihood with a hierarchical proposal

The proposed upper bound UK allows us to lower bound the otherwise intractable ELBO in case
of hierarchical qφ(z | x), leading to Importance Weighted Hierarchical Variational Inference
(IWHVI) lower bound:

log pθ(x) ≥ E
qφ(z|x)

log
pθ(x, z)

qφ(z | x)
≥ E
qφ(z,ψ0|x)

E
τη(ψ1:K |z,x)

log
pθ(x, z)

1
K+1

∑K
k=0

qφ(z,ψk|x)
τη(ψk|z,x)

(4)

Crucially, we merged expectations over qφ(z|x) and qφ(ψ0|x, z) into an expectation over the joint
distribution qφ(ψ0, z|x), which admits a more favorable factorization into qφ(ψ0|x)qφ(z|x, ψ0), and
samples from the later are easy to simulate for the Monte Carlo-based estimation.

IWHVI introduces an additional auxiliary variational distribution τη(ψ | x, z) that is learned by
maximizing the bound w.r.t. its parameters η. While the optimal distribution is3 τ(ψ | z, x) = q(ψ |
z, x), one can see that some particular choices of auxiliary distributions and number of samples render
previously known methods like DSIVI, SIVI and HVM as special cases (see appendix A). Since the
bound (4) can be seen as variational generalization of SIVI (2) or as multisample generalization of
HVM (1), it has capacity to give tighter bound on the log marginal likelihood and reduce the auxiliary
variational bias, which should lead to more expressive variational approximations qφ(z|x) and reduce
in the variational bias.

One could also consider a hierarchical prior p(z) (Atanov et al., 2019) and give tight multisample
variational lower bounds using the bound LK of Burda et al. (2015). Such nested variational inference
is out of the scope of this paper, so we leave this direction to future work. Notably, the combination
of two bounds can give multisample variational sandwich bounds on the KL divergence between
hierarchical models (See appendix B).

4 Multisample Extensions

Multisample bounds similar to the proposed one have already been studied extensively. In this section,
we relate our results to such prior work.

4.1 Multisample Bound and Complexity

One can generalize the bound (4) further in a way similar to the IWAE multisample bound (Burda
et al., 2015), leading to the Doubly Importance Weighted Hierarchical Variational Inference
(DIWHVI) (see Theorem C.4):

log pθ(x) ≥ E

log
1

M

M∑
m=1

pθ(x, zm)
1

K+1

∑K
k=0

qφ(zm,ψm,k|x)
τη(ψm,k|zm,x)

 (5)

Where the expectation is taken over the same generative process as in eq. (4), independently repeated
M times:

1. Sample ψm,0 ∼ qφ(ψ | x) for 1 ≤ m ≤M
2. Sample zm ∼ qφ(z | xn, ψm,0) for 1 ≤ m ≤M

3This choice makes the bound UK equal to the log marginal density.
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3. Sample ψm,k ∼ τη(ψ | zm, x) for 1 ≤ m ≤M and 1 ≤ k ≤ K

The price of the tighter bound (5) is quadratic sample complexity as it requires M(1 +K) samples
of ψ. Unfortunately, the DIWHVI cannot benefit from the sample reuse trick of the SIVI that leads to
the bound (3). The reason for this is that the bound (5) requires all terms in the outer denominator (the
log qφ(z | x) estimate) to use the same distribution τη(ψ|x, z), whereas by its very nature it should
be very different for different zm. A viable option, though, is to consider a multisample-conditioned
τη(ψ | z1:M ) that is invariant to permutations of z. We leave a more detailed investigation to a future
work.

Runtime-wise when compared to the multisample SIVI (3) the DIWHVI requires additional O(M)
passes to generate τ(ψ | x, zm) distributions. However, since the SIVI requires a much larger number
of samples K to reach the same level of accuracy (see section 6.1) that are all then passed through a
network to generate qφ(zm | x, ψmk) distributions, the extra τη computation is likely to either bear a
minor overhead, or be completely justified by reduced K. This is particularly true in the IWHVI case
(M = 1) where IWHVI’s single extra pass that generates τη(ψ|x, z) is dominated by K + 1 passes
that generate qφ(z|x, ψk).

4.2 Signal to Noise Ratio

Rainforth et al. (2018) have shown that multisample bounds (Burda et al., 2015; Nowozin, 2018)
behave poorly during the training phase, having more noisy inference network’s gradient estimates,
which manifests itself in decreasing Signal-to-Noise Ratio (SNR) as the number of samples in-
creases. This raises a natural concern whether the same happens in the proposed model as K
increases. Tucker et al. (2019) have shown that upon a careful examination a REINFORCE-like
(Williams, 1992) term can be seen in the gradient estimate, and REINFORCE is known for its typi-
cally high variance (Rezende et al., 2014). Authors further suggest to apply the reparametrization trick
(Kingma and Welling, 2013) the second time to obtain a reparametrization-based gradient estimate,
which is then shown to solve the decreasing SNR problem. The same reasoning can be applied to our
bound, and we provide further details and experiments in appendix D, developing an IWHVI-DReG
gradient estimator. We conclude that the problem of decreasing SNR exists in our bound as well, and
is mitigated by the proposed gradient estimator.

4.3 Debiasing the bound

Nowozin (2018) has shown that the standard IWAE can be seen as a biased estimate of the log marginal
likelihood with the bias of order O(1/M). They then suggested to use Generalized Jackknife of d-th
order to reuse these M samples and come up with an estimator with a smaller bias of order O(1/Md)
at the cost of higher variance and losing lower bound guarantees. Again, the same idea can be applied
to our estimate; we leave further details to appendix E. We conclude that this way one can obtain
better estimates of the log marginal density, however since there is no guarantee that the obtained
estimator gives an upper or a lower bound, we chose not to use it in experiments.

5 Related Work

More expressive variational distributions have been under an active investigation for a while. While
we have focused our attention to approaches employing hierarchical models via bounds, there are
many other approaches, roughly falling into two broad classes.

One possible approach is to augment some standard q(z|x) with help of copulas (Tran et al., 2015),
mixtures (Guo et al., 2016; Gershman et al., 2012), or invertible transformations with tractable
Jacobians also known as normalizing flows (Rezende and Mohamed, 2015; Kingma et al., 2016;
Dinh et al., 2016; Papamakarios et al., 2017), all while preserving the tractability of the density.
Kingma and Dhariwal (2018) have demonstrated that flow-based models are able to approximate
complex high-dimensional distributions of real images, but the requirement for invertibility might
lead to inefficiency in parameters usage and does not allow for abstraction as one needs to preserve
dimensions.

An alternative direction is to embrace implicit distributions that one can only sample from, and
overcome the need for tractable density using bounds or estimates (Huszár, 2017). Methods based on
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Figure 1: (a) Negative entropy upper bounds for 50-dimensional Laplace distribution. Shaded area
denotes 90% confidence interval computed over 50 independent runs for each K. (b) Final log
marginal likelihood log p(x) estimates and expected MI[q(z, ψ|x)] for IWHVI or SIVI-based VAEs
trained with different K. Each model was trained and plotted 5 times.

estimates (Mescheder et al., 2017; Shi et al., 2017; Tran et al., 2017), for example, via the Density
Ratio Estimation trick (Goodfellow et al., 2014; Uehara et al., 2016; Mohamed and Lakshminarayanan,
2016), typically estimate the densities indirectly utilizing an auxiliary critic and hide dependency
on variational parameters φ, hence biasing the optimization procedure. Major disadvantage of such
methods is that they lose lower bound guarantees.

Titsias and Ruiz (2018) have shown that in the gradient-based ELBO optimization in case of a
hierarchical model with tractable qφ(z | ψ) and qφ(ψ) one does not need the log marginal density
log qφ(z | x) per se, only its gradient, which can be estimated using MCMC. Although unbiased, the
MCMC-based posterior sampling has sequential nature (one needs to to perform chain burn-in to
decorrelate ψ′ from its initial value) not amendable to efficient parallelization available with modern
hardware such as GPUs, which complicates scaling the method to larger problems. In contrast, our
method allows parallel computation of K density ratios in UK .

The core contribution of the paper is a novel upper bound on log marginal density. Previously, Dieng
et al. (2017); Kuleshov and Ermon (2017) suggested using χ2-divergence to give a variational upper
bound to the log marginal density. However, their bound was not an expectation of a random variable,
but instead a logarithm of the expectation, preventing unbiased stochastic optimization. Jebara and
Pentland (2001) reverse Jensen’s inequality to give a variational upper bound in case of mixtures of
exponential family distributions by extensive use of the problem’s structure. Related to our core idea
of joint sampling z and ψ0 in (7) is an observation of Grosse et al. (2015) that Annealed Importance
Sampling (AIS, Neal (2001)) ran backward from the auxiliary variable sample ψ0 gives an unbiased
estimate of 1/q(z | x), and thus can also be used to upper bound the log marginal density. However,
AIS-based estimation is too computationally expensive to be used during training.

6 Experiments

6.1 Toy Experiment

As a toy experiment we consider a 50-dimensional factorized standard Laplace distribution q(z) as a
hierarchical scale-mixture model:

q(z) =

50∏
d=1

Laplace(zd | 0, 1) =

∫ 50∏
d=1

N (zd | 0, ψd)Exp(ψd | 12 )dψ1:50

We do not make use of factorized joint distribution q(z, ψ) to explore bound’s behavior in high
dimensions. We use the proposed bound from Theorem C.1 and compare it to SIVI (Yin and Zhou,
2018) on the task of upper-bounding the negative differential entropy Eq(z) log q(z). For IWHVI we
take τ(ψ | z) to be a Gamma distribution whose concentration and rate are generated by a neural
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Figure 2: Left: Test log-likelihood on dynamically binarized MNIST and OMNIGLOT. Right:
Comparison of multisample DIWHVI and SIVI-IW on a trained MNIST VAE from section 6.2 for
M = 100 and 5000. Shaded area denotes ±2 std. interval, computed over 10 independent runs for
each value of K.

network with three 500-dimensional hidden layers from z. We use the freedom to design architecture
and initialize the network at prior. Namely, we also add a sigmoid "gate" output with large initial
negative bias and use the gate to combine prior concentration and rate with those generated by the
network. This way we are guaranteed to perform no worse than SIVI even at a randomly initialized τ .
Figure 1a shows the value of the bound for a different number of optimization steps over τ parameters,
minimizing the bound. The whole process (including random initialization of neural networks) was
repeated 50 times to compute empirical 90% confidence intervals. As results clearly indicate, the
proposed bound can be made much tighter, more than halving the gap to the true negative entropy
compared to SIVI and HVM.

6.2 Variational Autoencoder

We further test our method on the task of generative modeling, applying it to VAE (Kingma and
Welling, 2013), which is a standard benchmark for inference methods 4. Ideally, better inference
should allow one to learn more expressive generative models. We report results on two datasets:
MNIST (LeCun et al., 1998) and OMNIGLOT (Lake et al., 2015). For MNIST we follow the setup
by Mescheder et al. (2017), and for OMNIGLOT we follow the standard setup (Burda et al., 2015).
For experiment details see appendix G.

During training we used the proposed bound eq. (4) with standard prior p(z) = N (z | 0, 1) with
increasing number K: we used K = 0 for the first 250 epochs, K = 5 for the next 250 epochs, and
K = 25 for the next 500 epochs, and K = 50 from then on (90% of training). Such schedule is
motivated by a natural observation (see the last paragraph of this section) that larger values of K lead
to more expressive variational models, yet large values of K sometimes caused instabilities early
in training due to an unlucky initialization. Regarding the number of samples z, we used M = 1
throughout training.

To estimate the log marginal likelihood for hierarchical models (IWHVI, SIVI, HVM) we use the
DIWHVI lower bound (5) for M = 5000, K = 100 (for justification of DIWHVI as an evaluation
metric see section 6.3). Results are shown in fig. 2. To evaluate the SIVI using the DIWHVI bound
we fit τ to a trained model by making 7000 epochs on the trainset with K = 50, keeping parameters
of qφ(z, ψ | x) and pθ(x, z) fixed. We observed improved performance compared to special cases of
HVM and SIVI, and the method showed comparable results to the prior works.

For HVM on MNIST we observed its τ(ψ | z) essentially collapsed to q(ψ), having expected KL
divergence between the two extremely close to zero. This indicates the "posterior collapse" (Kim et al.,
2018; Chen et al., 2016) problem where the inference network q(z | ψ) choses to ignore the extra
input ψ and thus the whole model effectively degenerates to a vanilla VAE. At the same time IWHVI
does not suffer from this problem due to non-zero K, achieving average DKL(τ(ψ | z, x) || q(ψ))

4Code is available at https://github.com/artsobolev/IWHVI
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of approximately 6.2 nats, see section 6.3. On OMNIGLOT the HVM did learn useful τ and achieved
average DKL(τ(ψ | z, x) || q(ψ)) ≈ 1.98 nats, however the IWHVI did much better and achieved
≈ 9.97 nats.

We also tried to learn hierarchical approximate posterior q(z|x) using UIVI (Titsias and Ruiz,
2018). Unfortunately, the default parameters used in the original paper did not lead to a significant
improvement over the standard VAE (-84.9 vs -85.0 on MNIST). We hypothesize this is due to HMC’s
poor mixing over different modes and high sensitivity to hyperparameters. This, combined with
computational expensiveness of UIVI (our TensorFlow-based implementation was nearly 10 times
slower than IWHVI, see discussion in section 5), prevented us from exploiting the hyperparameter
space more exhaustively.

Influence of K: to investigate K’s influence on the training process, we trained VAEs on MNIST for
3000 epochs for different values of K with SIVI, IWHVI and IWHVI-DReG, evaluated DIWHVI
bound for M = 1000,K = 100 and Mutual Information (MI, see appendix F for details) between z
and ψ under the joint qφ(z, ψ|x). Results in fig. 1b clearly show that larger values of K lead to better
final models in terms of the log marginal likelihood, as well as approximate posteriors qφ(z|x) that
rely on the latent ψ more heavily, as measured by the MI. Notably, the IWHVI achieves much higher
values of the Mutual Information than the SIVI, and the improved gradient estimator IWHVI-DReG
enables even better results due to better auxiliary distribution τη(ψ|z, x) (Tucker et al., 2019). These
results empirically validate the claim that tighter bounds reduce the (auxiliary) variational bias.

6.3 DIWHVI as Evaluation Metric

One of the established approaches to evaluate the intractable log marginal likelihood in Latent
Variable Models is to compute the multisample IWAE-bound with large M since it is shown to
converge to the log marginal likelihood as M goes to infinity. Since both IWHVI and SIVI allow
tightening the bound by taking more samples zm, we compare methods along this direction.

Both DIWHVI and SIVI (being a special case of the former) can be shown to converge to log marginal
likelihood as both M and K go to infinity, however, rates might differ. We empirically compare the
two by evaluating an MNIST-trained IWHVAE model from section 6.2 for several different values K
and M . We use the proposed DIWHVI bound (5), and compare it with several SIVI modifications.
We call SIVI-like the (5) with τ(ψ | z) = q(ψ), but without ψ reuse, thus using MK independent
samples. SIVI Equicomp stands for sample reusing bound (3), which uses only M + K samples,
and uses same ψ1:K for every zm. SIVI Equisample is a fair comparison in terms of the number of
samples: we take M(K + 1) samples of ψ, and reuse MK of them for every zm. This way we use
the same number of samples ψ as DIWHVI does, but perform O(M2K) log-density evaluations to
estimate log q(z | x), which is why we only examine the M = 100 case.

Results shown in section 6.2 indicate superior performance of the DIWHVI bound. Surprisingly
SIVI-like and SIVI Equicomp estimates nearly coincide, with no significant difference in variance;
thus we conclude sample reuse does not hurt SIVI. Still, there is a considerable gap to the IWHVI
bound, which uses similar to SIVI-like amount of computing and samples. In a more fair comparison
to the Equisample SIVI bound, the gap is significantly reduced, yet IWHVI is still a superior bound,
especially in terms of computational efficiency, as there are no O(M2K) operations.

Comparing IWHVI and SIVI-like for M = 5000 we see that the former converges after a few dozen
samples, while SIVI is rapidly improving, yet lagging almost 1 nat behind for 100 samples, and even
0.5 nats behind the HVM bound (IWHVI for K = 0). One explanation for the observed behaviour is
large Eq(z|x)DKL(q(ψ | x) || q(ψ | x, z)), which was estimated 5 (on a test set) to be at least 46.85
nats, causing many samples from q(ψ) to generate poor likelihood q(z | ψ) for a given zm due to
large difference with the true inverse model q(ψ | x, z). This is consistent with motivation layed
out in section 2.1: a better approximate inverse model τ leads to more efficient sample usage. At
the same time Eq(z|x)DKL(τ(ψ | x, z) || q(ψ | x, z)) was estimated to be approximately 3.24 and
Eq(z|x)DKL(τ(ψ | x, z) || q(ψ | x)) ≈ 6.25, proving that one can indeed do much better by learning
τ(ψ | x, z) instead of using the prior q(ψ | x).

5Difference between K-sample IWAE and ELBO gives a lower bound on DKL(τ(ψ | z) || q(ψ | z)), we
used K = 5000.

8



7 Conclusion

We presented a multisample variational upper bound on the log marginal density, which allowed us to
give tight tractable lower bounds on the intractable ELBO in the case of hierarchical variational model
qφ(z | x). We experimentally validated the bound and showed it alleviates (auxiliary) variational bias
to a further extent than prior works do (which we showed to be a special cases of the proposed bound
in appendix A), allowing for more expressive approximate posteriors, which does translate into a
better inference. We then combined our bound with multisample IWAE bound, which led to a tighter
lower bound of the log marginal likelihood. We therefore believe the proposed variational inference
method will be useful for many approximate inference problems, and the multisample variational
upper bound on log marginal density is a useful theoretical tool, allowing, for example, to give an
upper bound on KL-divergence (appendix B) or to give sandwich bounds on the Mutual Information
(appendix F).
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