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ABSTRACT

We introduce a new pre-trainable generic representation for visual-linguistic tasks,
called Visual-Linguistic BERT (VL-BERT for short). VL-BERT adopts the sim-
ple yet powerful Transformer model as the backbone, and extends it to take both
visual and linguistic embedded features as input. In it, each element of the in-
put is either of a word from the input sentence, or a region-of-interest (RoI) from
the input image. It is designed to fit for most of the visual-linguistic downstream
tasks. To better exploit the generic representation, we pre-train VL-BERT on the
massive-scale Conceptual Captions dataset, together with text-only corpus. Ex-
tensive empirical analysis demonstrates that the pre-training procedure can bet-
ter align the visual-linguistic clues and benefit the downstream tasks, such as
visual commonsense reasoning, visual question answering and referring expres-
sion comprehension. It is worth noting that VL-BERT achieved the first place
of single model on the leaderboard of the VCR benchmark. Code is released at
https://github.com/jackroos/VL-BERT.

1 INTRODUCTION

Pre-training of generic feature representations applicable to a variety of tasks in a domain is a hall-
mark of the success of deep networks. Firstly in computer vision, backbone networks designed for
and pre-trained on ImageNet (Deng et al., 2009) classification are found to be effective for improv-
ing numerous image recognition tasks. Recently in natural language processing (NLP), Transformer
networks (Vaswani et al., 2017) pre-trained with “masked language model” (MLM) objective (De-
vlin et al., 2018) on large language corpus excel at a variety of NLP tasks.

Meanwhile, for tasks at the intersection of vision and language, such as image captioning (Young
et al., 2014; Chen et al., 2015; Sharma et al., 2018), visual question answering (VQA) (Antol et al.,
2015; Johnson et al., 2017; Goyal et al., 2017; Hudson & Manning, 2019), visual commonsense
reasoning (VCR) (Zellers et al., 2019; Gao et al., 2019), there lacks such pre-trained generic feature
representations. The previous practice is to combine base networks pre-trained for image recognition
and NLP respectively in a task-specific way. The task-specific model is directly finetuned for the
specific target task, without any generic visual-linguistic pre-training. The task-specific model may
well suffer from overfitting when the data for the target task is scarce. Also, due to the task-specific
model design, it is difficult to benefit from pre-training, where the pre-training task may well be
different from the target. There lacks a common ground for studying the feature design and pre-
training of visual-linguistic tasks in general.

In the various network architectures designed for different visual-linguistic tasks, a key goal is to
effectively aggregate the multi-modal information in both the visual and linguistic domains. For ex-
ample, to pick the right answer in the VQA task, the network should empower integrating linguistic
information from the question and the answers, and aggregating visual information from the input
image, together with aligning the linguistic meanings with the visual clues. Thus, we seek to derive
generic representations that can effectively aggregate and align visual and linguistic information.
∗Equal contribution. This work is done when Weijie Su and Xizhou Zhu are interns at Microsoft Research

Asia. †Corresponding author.
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In the meantime, we see the successful application of Transformer attention (Vaswani et al., 2017)
in NLP, together with its MLM-based pre-training technique in BERT (Devlin et al., 2018). The
attention module is powerful and flexible in aggregating and aligning word embedded features in
sentences, while the pre-training in BERT further enhances the capability.

Inspired by that, we developed VL-BERT, a pre-trainable generic representation for visual-linguistic
tasks, as shown in Figure 1. The backbone of VL-BERT is of (multi-modal) Transformer attention
module taking both visual and linguistic embedded features as input. In it, each element is either
of a word from the input sentence, or a region-of-interest (RoI) from the input image, together
with certain special elements to disambiguate different input formats. Each element can adaptively
aggregate information from all the other elements according to the compatibility defined on their
contents, positions, categories, and etc. The content features of a word / an RoI are domain specific
(WordPiece embeddings (Wu et al., 2016) as word features, Fast R-CNN (Girshick, 2015) features
for RoIs). By stacking multiple layers of multi-modal Transformer attention modules, the derived
representation is of rich capability in aggregating and aligning visual-linguistic clues. And task-
specific branches can be added above for specific visual-linguistic tasks.

To better exploit the generic representation, we pre-train VL-BERT at both large visual-linguistic
corpus and text-only datasets1. The pre-training loss on the visual-linguistic corpus is incurred via
predicting randomly masked words or RoIs. Such pre-training sharpens the capability of VL-BERT
in aggregating and aligning visual-linguistic clues. While the loss on the text-only corpus is of the
standard MLM loss in BERT, improving the generalization on long and complex sentences.

Comprehensive empirical evidence demonstrates that the proposed VL-BERT achieves state-of-the-
art performance on various downstream visual-linguistic tasks, such as visual commonsense reason-
ing, visual question answering and referring expression comprehension. In particular, we achieved
the first place of single model on the leaderboard of visual commonsense reasoning.

2 RELATED WORK

Pre-training for Computer Vision Prior to the era of deep networks, it is far from mature to share
features among different tasks and to improve the features via pre-training. The models for various
computer vision tasks are of too diverse design choices to derive a generic representation. With the
success of AlexNet (Krizhevsky et al., 2012) in ImageNet (Deng et al., 2009) classification, we see
the renaissance of convolutional neural networks (CNNs) in the vision community. Soon after that,
researchers found that ImageNet pre-trained CNNs can serve well as generic feature representation
for various downstream tasks (Donahue et al., 2014), such as object detection (Girshick et al., 2014),
semantic segmentation (Long et al., 2015), instance segmentation (Hariharan et al., 2014). The
improvement in backbone networks for ImageNet classification further improves the downstream
tasks. Recently there are research works on directly training CNNs from scratch on massive-scale
target datasets, without ImageNet pre-training (He et al., 2018). They achieved performance on par
with those with ImageNet pre-training. While they also note that pre-training on a proper massive
dataset is vital for improving performance on target tasks with scarce data.

Pre-training for Natural Language Processing (NLP) It is interesting to note that the development
of pre-training techniques in NLP lags quite behind computer vision. There are previous research
works on improving word embedding (Mikolov et al., 2013; Pennington et al., 2014; Kiros et al.,
2015), which is a low-level linguistic feature representation. On top of that, numerous diverse ar-
chitectures are designed for various NLP tasks. In the milestone work of Transformers (Vaswani
et al., 2017), the Transformer attention module is proposed as a generic building block for various
NLP tasks. After that, a serious of approaches are proposed for pre-training the generic represen-
tation, mainly based on Transformers, such as GPT (Radford et al., 2018), BERT (Devlin et al.,
2018), GPT-2 (Radford et al., 2019), XLNet (Yang et al., 2019), XLM (Lample & Conneau, 2019),
and RoBERTa (Liu et al., 2019). Among them, BERT is perhaps the most popular one due to its
simplicity and superior performance.

Pre-training for Visual-Linguistic Tasks. The development course of models for visual-linguistic
tasks is also quite similar to those in the computer vision and NLP communities. Previously, task-

1Here we exploit the Conceptual Captions dataset (Sharma et al., 2018) as the visual-linguistic corpus, and
the BooksCorpus (Zhu et al., 2015) & English Wikipedia as the text-only corpus.
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specific models are designed, wherein the features derived from off-the-shelf computer vision and
NLP models are combined in an ad-hoc way for specific tasks. Model training is performed on the
dataset for the specific task only.

VideoBERT (Sun et al., 2019b) is the first work seeking to conduct pre-training for visual-linguistic
tasks. In it, video clips are processed by off-the-shelf networks for action recognition, and are as-
signed to different clusters (visual words) based on the derived features. The pre-training loss is
incurred via predicting the cluster ids of masked video clips. Due to the abrupt clustering of the
video clips, it losses considerable visual content information and hinders updating visual network
parameters. In the following work of CBT (Sun et al., 2019a), such clustering mechanism is re-
moved. Both works are applied on videos, which are of linear structure in the time dimension, same
as sentences. It is highly desired to study at the well-established image-based visual-linguistic tasks.

Concurrent to our work, multiple works released on Arxiv very recently also seek to derive a pre-
trainable generic representation for visual-linguistic tasks. Table 5 in Appendix compares among
them. We briefly discuss some of these works here.

In ViLBERT (Lu et al., 2019) and LXMERT (Tan & Bansal, 2019), which are under review or just
got accepted, the network architectures are of two single-modal networks applied on input sentences
and images respectively, followed by a cross-modal Transformer combining information from the
two sources. The attention pattern in the cross-modal Transformer is restricted, where the authors
believe to improve the performance. The authors of ViLBERT claim that such two-stream design is
superior than a single-stream unified model. Meanwhile, in the proposed VL-BERT, it is of a unified
architecture based on Transformers without any restriction on the attention patterns. The visual and
linguistic contents are fed as input to VL-BERT, wherein they interact early and freely. We found
that our unified model of VL-BERT outperforms such two-stream designs.

VisualBert (Li et al., 2019b), B2T2 (Alberti et al., 2019), and Unicoder-VL (Li et al., 2019a), which
are of work in progress or under review, are also of unified single-stream architecture. The differ-
ences of these works are compared in Table 5. The concurrent emergency of these research works
indicates the importance of deriving a generic pre-trainable representation for visual-linguistic tasks.

In addition, there are three noticeable differences between VL-BERT and other concurrent works in
pre-training. Their effects are validated in Section 4.3. (1) We found the task of Sentence-Image Re-
lationship Prediction used in all of the other concurrent works (e.g., ViLBERT (Lu et al., 2019) and
LXMERT (Tan & Bansal, 2019)) is of no help in pre-training visual-linguistic representations. Thus
such a task is not incorporated in VL-BERT. (2) We pre-train VL-BERT on both visual-linguistic
and text-only datasets. We found such joint pre-training improves the generalization over long and
complex sentences. (3) Improved tuning of the visual representation. In VL-BERT, the parame-
ters of Fast R-CNN, deriving the visual features, are also updated. To avoid visual clue leakage in
the pre-training task of Masked RoI Classification with Linguistic Clues, the masking operation is
conducted on the input raw pixels, other than the feature maps produced by layers of convolution.

3 VL-BERT

3.1 REVISIT BERT MODEL

Let x = {x1, ..., xN} be the input elements in BERT (Devlin et al., 2018), which are of embed-
ded features encoding sentence words. They are processed by a multi-layer bidirectional Trans-
former (Vaswani et al., 2017), where the embedding features of each element are transformed
layer-by-layer in the fashion of aggregating features from the other elements with adaptive atten-
tion weights. Let xl = {xl1, ..., xlN} be the features of the l-th layer (x0 is set as the input x). The
features of the (l + 1)-th layer, xl+1, is computed by

h̃l+1
i =

M∑
m=1

W l+1
m

{ N∑
j=1

Am
i,j · V l+1

m xlj

}
Multi-head Attention, (1)

hl+1
i = LayerNorm(xli + h̃l+1

i ) Residual Connection, (2)

x̃l+1
i =W l+1

2 · GELU(W l+1
1 hl+1

i + bl+1
1 ) + bl+1

2 Feed-forward, (3)

xl+1
i = LayerNorm(hl+1

i + x̃l+1
i ) Residual Connection, (4)
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where m in Eq. 1 indexes over the attention heads, and Am
i,j ∝ exp[(Ql+1

m xli)
T (Kl+1

m xlj)] de-
notes the attention weights between elements i and j in the m-th head, which is normalized by∑N

j=1A
m
i,j = 1. W l+1

m , Ql+1
m , Kl+1

m and V l+1
m are learnable weights for mth attention head,

W l+1
1 ,W l+1

2 and bl+1
1 , bl+1

2 in Eq. 3 are learnable weights and biases, respectively. Note that, the
operations in Eq. 1 ∼ 4 is irrelevant to the order of input sequence, i.e. the final BERT representa-
tion of permuted input is same as the final BERT representation of the original input after the same
permutation. The position of an element in BERT is encoded in its own embedding features by se-
quence positional embedding. Thanks to such decoupled representation, the BERT model is flexible
enough to be pre-trained and finetuned for a variety of NLP tasks.

In BERT pre-training, the masked language modeling (MLM) task is introduced. The embedded
features of a certain input word would be randomly masked out (the token embedding channels
capturing the word content is replaced by a special [MASK] token). The BERT model is trained
to predict the masked word from linguistic clues of all the other unmasked elements. As explained
in Wang & Cho (2019), the overall MLM-based training of BERT is equivalent to optimizing the
following joint probability distribution

logP (x|θ) = 1

Z(θ)

N∑
i=1

log φi(x|θ), (5)

where φi(x|θ) is the potential function for the i-th input element, with parameters θ, and Z(θ) is the
partition function. Each log-potential term log φi(x) is defined as

log φi(x|θ) = xTi fi(x\i|θ)i, (6)

where fi(x\i|θ) denotes the final output feature of BERT corresponding to the i-th element for input
x\i, where x\i is defined as x\i = {x1, ..., xi−1, [MASK], xi+1, ..., xN}. The incurred MLM-based
loss is as

LMLM(θ) = −Ex∼D,i∼{1,...,N} log φi(x), (7)

where x is a randomly sampled sentence from the training set D, and i is a randomly sampled
location for masking words.

The second pre-training task, Next Sentence Prediction, focuses on modeling the relationship be-
tween two sentences. Two sentences are sampled from the input document, and the model should
predict whether the second sentence is the direct successor of the first. In BERT, the sampled two
sentences are concatenated into one input sequence, with special elements [CLS] and [SEP] inserted
prior to the first and the second sentences, respectively. A Sigmoid classifier is appended on the
final output feature corresponding to the [CLS] element to make the prediction. Let x be the input
sequence, t ∈ {0, 1} indicates the relationship between the two sentences. The loss function is
defined as

LNSP(θ) = −E(x,t)∼D
[
t log(g(xL0 )) + (1− t) log(1− g(xL0 ))

]
, (8)

where xL0 is the final output feature of the [CLS] element (at the L-th layer), and g(xL0 ) is the
classifier output.

3.2 MODEL ARCHITECTURE

Figure 1 illustrates the architecture of VL-BERT. Basically, it modifies the original BERT (Devlin
et al., 2018) model by adding new elements to accommodate the visual contents, and a new type
of visual feature embedding to the input feature embeddings. Similar to BERT, the backbone is of
multi-layer bidirectional Transformer encoder (Vaswani et al., 2017), enabling dependency mod-
eling among all the input elements. Different to BERT processing sentence words only, VL-BERT
takes both visual and linguistic elements as input, which are of features defined on regions-of-interest
(RoIs) in images and sub-words from input sentences, respectively. The RoIs can either be bounding
boxes produced by object detectors, or be annotated ones in certain tasks.

It is worth noting that the input formats vary for different visual-linguistic tasks (e.g., <Caption,
Image> for image captioning, and <Question, Answer, Image> for VQA (Antol et al., 2015; John-
son et al., 2017; Goyal et al., 2017; Hudson & Manning, 2019) and VCR (Zellers et al., 2019; Gao
et al., 2019)). But thanks to the unordered representation nature of Transformer attention (e.g., the
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Figure 1: Architecture for pre-training VL-BERT. All the parameters in this architecture including
VL-BERT and Fast R-CNN are jointly trained in both pre-training and fine-tuning phases.

position of a word in sentence is encoded by the positional embedding only, other than the order
in the input sequence), a generic representation can be derived as long as the input elements and
embedding features are properly designed. Three types of input elements are involved, namely, vi-
sual, linguistic, and special elements for disambiguating different input formats. The input sequence
always starts with a special classification element ([CLS]), then goes on with linguistic elements,
then follows up with visual elements, and ends with a special ending element ([END]). A special
separation element ([SEP]) is inserted in between different sentences in the linguistic elements, and
between the linguistic and visual elements. For each input element, its embedding feature is the
summation of four types of embedding, namely, token embedding, visual feature embedding, seg-
ment embedding, and sequence position embedding. Among them, the visual feature embedding is
newly introduced for capturing visual clues, while the other three embeddings follow the design in
the original BERT paper.

Token Embedding Following the practice in BERT, the linguistic words are embedded with Word-
Piece embeddings (Wu et al., 2016) with a 30,000 vocabulary. A special token is assigned to each
special element. For the visual elements, a special [IMG] token is assigned for each one of them.

Visual Feature Embedding We firstly describe visual appearance feature and visual geometry em-
bedding separately, and then how to combine them to form the visual feature embedding.

For the visual element corresponding to an RoI, the visual appearance feature is extracted by apply-
ing a Fast R-CNN (Girshick, 2015) detector (i.e., the detection branch in Faster R-CNN (Ren et al.,
2015)), where the feature vector prior to the output layer of each RoI is utilized as the visual feature
embedding (of 2048-d in paper). For the non-visual elements, the corresponding visual appearance
features are of features extracted on the whole input image. They are obtained by applying Faster
R-CNN on an RoI covering the whole input image.

The visual geometry embedding is designed to inform VL-BERT the geometry location of each in-
put visual element in image. Each RoI is characterized by a 4-d vector, as (xLT

W , yLT
H , xRB

W , hRB
H ), where

(xLT, yLT) and (xRB, yRB) denote the coordinate of the top-left and bottom-right corner respectively,
and W,H are of the width and height of the input image. Following the practice in Relation Net-
works (Hu et al., 2018), the 4-d vector is embedded into a high-dimensional representation (of
2048-d in paper) by computing sine and cosine functions of different wavelengths.

The visual feature embedding is attached to each of the input elements, which is the output of a
fully connected layer taking the concatenation of visual appearance feature and visual geometry
embedding as input.

Segment Embedding Three types of segment, A,B,C, are defined to separate input elements from
different sources, namely, A and B for the words from the first and second input sentence respec-
tively, and C for the RoIs from the input image. For example, for input format of <Question,
Answer, Image>, A denotes Question, B denotes Answer, and C denotes Image. For input format

5



Published as a conference paper at ICLR 2020

of <Caption, Image>, A denotes Caption, and C denotes Image. A learned segment embedding is
added to every input element for indicating which segment it belongs to.

Sequence Position Embedding A learnable sequence position embedding is added to every input
element indicating its order in the input sequence, same as BERT. Because there is no natural order
among input visual elements, any permutation of them in the input sequence should achieve the
same result. Thus the sequence position embedding for all visual elements are the same.

3.3 PRE-TRAINING VL-BERT

The generic feature representation of VL-BERT enables us to pre-train it on massive-scale datasets,
with properly designed pre-training tasks. We pre-train VL-BERT on both visual-linguistic and text-
only datasets. Here we utilize the Conceptual Captions dataset (Sharma et al., 2018) as the visual-
linguistic corpus. It contains around 3.3 million images annotated with captions, which are harvested
from web data and processed through an automatic pipeline. The issue with the Conceptual Captions
dataset is that the captions are mainly simple clauses, which are too short and simple for many down-
stream tasks. To avoid overfitting on such short and simple text scenario, we also pre-train VL-BERT
on text-only corpus with long and complex sentences. We utilize the BooksCorpus (Zhu et al., 2015)
and the English Wikipedia datasets, which are also utilized in pre-training BERT.

In SGD training, in each mini-batch, samples are randomly drawn from both Conceptual Captions
and BooksCorpus & English Wikipedia (at a ratio of 1:1). For a sample drawn from Conceptual
Captions, the input format to VL-BERT is of <Caption, Image>, where the RoIs in the image are
localized and categorized by a pre-trained Faster R-CNN object detector. Two pre-training tasks are
exploited to incur loss, which are as follows.

Task #1 : Masked Language Modeling with Visual Clues This task is very similar to the Masked
Language Modeling (MLM) task utilized in BERT. The key difference is that visual clues are incor-
porated in VL-BERT for capturing the dependencies among visual and linguistic contents. During
pre-training, each word in the input sentence(s) is randomly masked (at a probability of 15%). For
the masked word, its token is replaced with a special token of [MASK]. The model is trained to
predict the masked words, based on the unmasked words and the visual features. The task drives the
network to not only model the dependencies in sentence words, but also to align the visual and lin-
guistic contents. For example, in Figure 1 “kitten drinking from [MASK]”, without the input image,
the masked word could be any containers, such as “bowl”, “spoon” and “bottle”. The representation
should capture the correspondence of the word “bottle” and the corresponding RoIs in the image
to make the right guess. During pre-training, the final output feature corresponding to the masked
word is fed into a classifier over the whole vocabulary, driven by Softmax cross-entropy loss.

Task #2 : Masked RoI Classification with Linguistic Clues This is a dual task of Task #1. Each RoI
in image is randomly masked out (with 15% probability), and the pre-training task is to predict the
category label of the masked RoI from the other clues. To avoid any visual clue leakage from the
visual feature embedding of other elements, the pixels laid in the masked RoI are set as zeros before
applying Fast R-CNN. During pre-training, the final output feature corresponding to the masked
RoI is fed into a classifier with Softmax cross-entropy loss for object category classification. The
category label predicted by pre-trained Faster R-CNN is set as the ground-truth. An example is
shown in Figure 1. The RoI corresponding to cat in image is masked out, and the corresponding
category cannot be predicted from any visual clues. But with the input caption of “kitten drinking
from bottle”, the model can infer the category by exploiting the linguistic clues.

For a sample drawn from the BooksCorpus & English Wikipedia datasets, the input format to VL-
BERT degenerates to be <Text, ∅ >, where no visual information is involved. The “visual feature
embedding” term in Figure 1 is a learnable embedding shared for all words. The training loss is
from the standard task of Masked Language Modeling (MLM) as in BERT.

In summary, the pre-training on visual-linguistic corpus improves the detailed alignment between
visual and linguistic contents. Such detailed alignment is vital for many downstream tasks (for
example, in Visual Grounding (Kazemzadeh et al., 2014), the model locates the most relevant object
or region in an image based on a natural language query). While the pre-training on text-only corpus
facilitates downstream tasks involving understanding of long and complex sentences.
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3.4 FINE-TUNING VL-BERT

VL-BERT is designed to be a generic feature representation for various visual-linguistic tasks. It is
relatively simple to finetune VL-BERT for various downstream tasks. We simply need to feed VL-
BERT with properly formatted input and output, and finetune all the network parameters end-to-end.
For the input, the typical formats of <Caption, Image> and <Question, Answer, Image> cover the
majority visual-linguistic tasks. VL-BERT also supports more sentences and more images as long
as appropriate segment embeddings are introduced to identify different input sources. At the output,
typically, the final output feature of the [CLS] element is used for sentence-image-relation level
prediction. The final output features of words or RoIs are for word-level or RoI-level prediction. In
addition to the input and output format, task-specific loss functions and training strategies also need
to be tuned. See Section 4.2 for the detailed design choices and settings.

4 EXPERIMENT

4.1 PRE-TRAINING

As described in Section 3.3, we pre-train VL-BERT jointly on Conceptual Captions (Sharma et al.,
2018) as visual-linguistic corpus, and BooksCorpus (Zhu et al., 2015) & English Wikipedia as text-
only corpus. As VL-BERT is developed via adding new inputs capturing visual information to the
original BERT model, we initialize the parameters to be the same as the original BERT described in
(Devlin et al., 2018). VL-BERTBASE and VL-BERTLARGE denote models developed from the origi-
nal BERTBASE and BERTLARGE models, respectively. The newly added parameters in VL-BERT are
randomly initialized from a Gaussian distribution with mean of 0 and standard deviation of 0.02.
Visual content embedding is produced by Faster R-CNN + ResNet-101, initialized from parame-
ters pre-trained on Visual Genome (Krishna et al., 2017) for object detection (see BUTD (Anderson
et al., 2018)).

Prior to pre-training on Conceptual Captions, the pre-trained Faster R-CNN is applied to extract
RoIs. Specifically, at most 100 RoIs with detection scores higher than 0.5 are selected for each im-
age. At minimum, 10 RoIs are selected from one image, regardless of the detection score threshold.
The detailed parameter settings are in Appendix.

4.2 FINE-TUNING ON DOWNSTREAM TASKS

The pre-trained VL-BERT model can be fine-tuned for various downstream visual-linguistic tasks,
with simple modifications on the input format, output prediction, loss function and training strategy.

4.2.1 VISUAL COMMONSENSE REASONING (VCR)

Model Q → A QA → R Q → AR
val test val test val test

R2C (Zellers et al., 2019) 63.8 65.1 67.2 67.3 43.1 44.0
ViLBERT (Lu et al., 2019)† 72.4 73.3 74.5 74.6 54.0 54.8
VisualBERT (Li et al., 2019b)† 70.8 71.6 73.2 73.2 52.2 52.4
B2T2 (Alberti et al., 2019)† 71.9 72.6 76.0 75.7 54.9 55.0
VL-BERTBASE w/o pre-training 73.1 - 73.8 - 54.2 -
VL-BERTBASE 73.8 - 74.4 - 55.2 -
VL-BERTLARGE 75.5 75.8 77.9 78.4 58.9 59.7

Table 1: Comparison to the state-of-the-art methods with single model on the VCR dataset.
† indicates concurrent works.

Visual Commonsense Reasoning (VCR) focuses on higher-order cognitive and commonsense un-
derstanding of the given image. In the dataset of Zellers et al. (2019), given an image and a list of
categorized RoIs, a question at cognition level is raised. The model should pick the right answer
to the question and provide the rationale explanation. For each question, there are 4 candidate an-
swers and 4 candidate rationales. This holistic task (Q → AR) is decomposed into two sub-tasks
wherein researchers can train specific individual models: question answering (Q→ A) and answer
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Question Answer Image Regions

Tok NTok 1[CLS] [SEP] [IMG] [IMG] [END]
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(c) Input and output format for Referring Expression task on RefCOCO+ dataset

Figure 2: Input and output formats for fine-tuning different visual-linguistic downstream tasks.

justification (QA→ R). The released VCR dataset consists of 265k pairs of questions, answers, and
rationales, over 100k unique movie scenes (100k images). They are split into training, validation,
and test sets consisting of 213k questions and 80k images, 27k questions and 10k images, and 25k
questions and 10k images, respectively.

Our experimental protocol for VCR follows that in R2C (Zellers et al., 2019). The model is trained
on the train split, and is evaluated at the val and test sets. In the original work R2C, task-specific
“Grounding”, “Contextualization” and “Reasoning” modules are designed. Here we simply adopt
the generic representation of VL-BERT for the task. Figure 2 (a) illustrates the input format,
<Question, Answer, Image>. For the sub-task of Q → A, ‘Q’ and ‘A’ are filled to the Question
section and Answer section respectively. For the sub-task of QA → R , the concatenation of ‘Q’
and ‘A’ is filled to the Question section, and ‘R’ is filled to the Answer section. The input RoIs to
VL-BERT are the ground-truth annotations in the dataset. The final output feature of [CLS] element
is fed to a Softmax classifier for predicting whether the given Answer is the correct choice. During
fine-tuning, we adopt two losses, the classification over the correctness of the answers and the RoI
classification with linguistic clues. The detailed parameter settings are in Appendix.

Table 1 presents the experiment results. Pre-training VL-BERT improves the performance by 1.0%
in the final Q → AR task, which validates the effectiveness of pre-training. Compared with R2C,
we do not use ad-hoc task-specific modules. Instead, we simply adopt the generic representation
of VL-BERT and jointly train the whole model end-to-end. Despite the same input, output and
experimental protocol as R2C, VL-BERT outperforms R2C by large margins, indicating the power
of our simple cross-modal architecture. Compared with other concurrent works, i.e., ViLBERT,
VisualBERT and B2T2, our VL-BERT achieves the state-of-the-art performance.

4.2.2 VISUAL QUESTION ANSWERING (VQA)

In the VQA task, given a natural image, a question at the perceptual level is asked, and the algorithm
should generate / choose the correct answer. Here we conduct experiments on the widely-used VQA
v2.0 dataset (Goyal et al., 2017), which is built based on the COCO (Lin et al., 2014) images. The
VQA v2.0 dataset is split into train (83k images and 444k questions), validation (41k images and
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Model test-dev test-std
BUTD (Anderson et al., 2018) 65.32 65.67
ViLBERT (Lu et al., 2019)† 70.55 70.92
VisualBERT (Li et al., 2019b)† 70.80 71.00
LXMERT (Tan & Bansal, 2019)† 72.42 72.54
VL-BERTBASE w/o pre-training 69.58 -
VL-BERTBASE 71.16 -
VL-BERTLARGE 71.79 72.22

Table 2: Comparison to the state-of-the-art methods with single model on the VQA dataset.
† indicates concurrent works.

214k questions), and test (81k images and 448k questions) sets. Following the experimental protocol
in BUTD (Anderson et al., 2018), for each question, the algorithm should pick the corresponding
answer from a shared set consisting of 3,129 answers.

Figure 2 (b) illustrates the input format for the VQA task, which is of <Question, Answer, Image>.
As the possible answers are from a shared pool independent to the question, we only fill a [MASK]
element to the Answer section. As in BUTD (Anderson et al., 2018), the input RoIs in VL-BERT
are generated by a Faster R-CNN detector pre-trained on Visual Genome (Krishna et al., 2017). The
answer prediction is made from a multi-class classifier based upon the output feature of the [MASK]
element. During fine-tuning, the network training is driven by the multi-class cross-entropy loss over
the possible answers. The detailed parameter settings are in Appendix.

Table 2 presents our experimental results. Pre-training VL-BERT improves the performance by
1.6%, which validates the importance of pre-training. VL-BERT shares the same input (i.e., ques-
tion, image, and RoIs), output and experimental protocol with BUTD, a prevalent model specifi-
cally designed for the task. Still, VL-BERT surpasses BUTD by over 5% in accuracy. Except for
LXMERT, our VL-BERT achieves better performance than the other concurrent works. This is be-
cause LXMERT is pre-trained on massive visual question answering data (aggregating almost all
the VQA datasets based on COCO and Visual Genome). While our model is only pre-trained on
captioning and text-only dataset, where there is still gap with the VQA task.

4.2.3 REFERRING EXPRESSION COMPREHENSION

Model Ground-truth Regions Detected Regions
val testA testB val testA testB

MAttNet (Yu et al., 2018) 71.01 75.13 66.17 65.33 71.62 56.02
ViLBERT (Lu et al., 2019)† - - - 72.34 78.52 62.61
VL-BERTBASE w/o pre-training 74.41 77.28 67.52 66.03 71.87 56.13
VL-BERTBASE 79.88 82.40 75.01 71.60 77.72 60.99
VL-BERTLARGE 80.31 83.62 75.45 72.59 78.57 62.30

Table 3: Comparison to the state-of-the-art methods with single model on the RefCOCO+ dataset.
† indicates concurrent work.

A referring expression is a natural language phrase that refers to an object in an image. The referring
expression comprehension task is to localize the object in an image with the given referring expres-
sion. We adopt the RefCOCO+ (Kazemzadeh et al., 2014) dataset for evaluation, consisting of 141k
expressions for 50k referred objects in 20k images in the COCO dataset (Lin et al., 2014). The
referring expressions in RefCOCO+ are forbidden from using absolute location words, e.g. left dog.
Therefore the referring expressions focus on purely appearance-based descriptions. RefCOCO+ are
split into four sets, training set (train), validation set (val), and two testing sets (testA and testB). Im-
ages containing multiple people are in testA set, while images containing multiple objects of other
categories are in testB set. There is no overlap between the training, validation and testing images.

Figure 2 (c) illustrates the input format for referring expression comprehension , where the input
format is of <Query, Image>. Model training and evaluation are conducted either on the ground-
truth RoIs or on the detected boxes in MAttNet (Yu et al., 2018). And the results are reported either
in the track of ground-truth regions or that of detected regions, respectively. During training, we
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compute the classification scores for all the input RoIs. For each RoI, a binary classification loss
is applied. During inference, we directly choose the RoI with the highest classification score as the
referred object of the input referring expression. The detailed parameter settings are in Appendix.

Table 3 presents our experimental results. Pre-trained VL-BERT significantly improves the per-
formance. Compared with MAttNet, VL-BERT is much simpler without task-specific architecture
designs, yet much better. VL-BERT achieves comparable performance with the concurrent work of
ViLBERT.

4.3 ABLATION STUDY

Settings
Masked Language

Modeling with
Visual Clues

Masked RoI
Classification with
Linguistic Clues

Sentence-Image
Relationship
Prediction

with
Text-only
Corpus

Tuning
Fast R-CNN

VCR VQA RefCOCO+
Detected RegionsQ→A QA→R

val val test-dev val
w/o pre-training 72.9 73.0 69.5 62.7

(a) X 72.9 73.1 71.0 69.1
(b) X X 73.0 73.1 71.1 70.7
(c) X X X 72.2 72.4 70.3 69.5
(d) X X X 73.4 73.8 71.1 70.7

VL-BERTBASE X X X X 73.8 73.9 71.2 71.1

Table 4: Ablation study for VL-BERTBASE with 0.5× fine-tuning epochs.

Table 4 ablates key design choices in pre-training VL-BERT. For experimental efficiency, the fine-
tuning epoches of VL-BERT are of 0.5× of those in Section 4.2, with only VL-BERTBASE model.

Overall, the pre-training of VL-BERT improves the performance over all the three down-stream
tasks (by comparing setting “w/o pre-training” and VL-BERTBASE). The improvement amplitude
varies for different tasks. By comparing setting (a) to that of “w/o pre-training”, we see the benefits
of Task #1, Masked Language Modeling with Visual Clues. By further incorporating Task #2,
Masked RoI Classification with Linguistic Clues, the accuracy further improves on RefCOCO+, but
gets stuck at VCR and VQA. This might be because only RefCOCO+ utilizes the final output feature
corresponding to [IMG] tokens for prediction. Thus the pre-training of such features is beneficial.
Setting (c) incorporates the task of Sentence-Image Relationship Prediction as in ViLBERT (Lu
et al., 2019) and LXMERT (Tan & Bansal, 2019). It would hurt accuracy on all the three down-
stream tasks. We guess the reason is because the task of Sentence-Image Relationship Prediction
would introduce unmatched image and caption pairs as negative examples. Such unmatched samples
would hamper the training of other tasks. Setting (d) adds text-only corpus during pre-training.
Compared with setting (b), it improves the performance over all three down-stream tasks, and is most
significant on VCR. This is because the task of VCR involves more complex and longer sentences
than those in VQA and RefCOCO+2. By further finetuning the network parameters of Fast R-CNN,
which generates the visual features, we get the final setting of VL-BERTBASE. Such end-to-end
training of the entire network is helpful for all the downstream tasks.

5 CONCLUSION

In this paper, we developed VL-BERT, a new pre-trainable generic representation for visual-
linguistic tasks. Instead of using ad-hoc task-specific modules, VL-BERT adopts the simple yet
powerful Transformer model as the backbone. It is pre-trained on the massive-scale Conceptual
Captions dataset, together with text-only corpus. Extensive empirical analysis demonstrates that the
pre-training procedure can better align the visual-linguistic clues, and thus benefit the downstream
tasks. In the future, we would like to seek better pre-training tasks, which could beneficial more
downstream tasks (e.g., Image Caption Generation).
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2In VCR, there are 16.0 and 33.7 words per sample on average for Q → A and QA → R sub-tasks, respec-
tively. While the words per sample for VQA and RefCOCO+ are of 7.2 and 3.5, respectively.
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A APPENDIX

A.1 COMPARISON AMONG VL-BERT AND OTHER WORKS

Table 5 compares among VL-BERT and other concurrent works for pre-training generic visual-
linguistic representations.

Method Architecture Visual Token Pre-train Datasets Pre-train Tasks Downstream Tasks

Published
Works

VideoBERT
(Sun et al., 2019b) single cross-modal Transformer video frame Cooking312K

(Sun et al., 2019b)

1) sentence-image alignment 1) zero-shot action classification
2) masked language modeling 2) video captioning
3) masked visual-words prediction

Works
Under

Review /
Just Got
Accepted

CBT
(Sun et al., 2019a)

two single-modal Transformer
video frame Cooking312K

(Sun et al., 2019b)

1) sentence-image alignment 1) action anticipation
(vision & language respectively) 2) masked language modeling 2) video captioning
+ one cross-modal Transformer 3) masked visual-feature regression

ViLBERT
(Lu et al., 2019)

one single-modal Transformer
(language)
+ one cross-modal Transformer
(with restricted attention pattern)

image RoI Conceptual Captions
(Sharma et al., 2018)

1) sentence-image alignment 1) visual question answering
2) masked language modeling 2) visual commonsense reasoning
3) masked visual-feature classification 3) grounding referring expressions

4) image retrieval
5) zero-shot image retrieval

B2T2
(Alberti et al., 2019) single cross-modal Transformer image RoI Conceptual Captions

(Sharma et al., 2018)
1) sentence-image alignment 1) visual commonsense reasoning
2) masked language modeling

LXMERT
(Tan & Bansal, 2019) image RoI

‡ COCO Caption 1) sentence-image alignment 1) visual question answering
two single-modal Transformer + VG Caption 2) masked language modeling 2) natural language visual reasoning
(vision & language respectively) + VG QA 3) masked visual-feature classification
+ one cross-modal Transformer + VQA 4) masked visual-feature regression

+ GQA 5) visual question answering

VisualBERT
(Li et al., 2019b) single cross-modal Transformer image RoI COCO Caption

(Chen et al., 2015)

1) sentence-image alignment 1) visual question answering
2) masked language modeling 2) visual commonsense reasoning

3) natural language visual reasoning
4) grounding phrases

Unicoder-VL
(Li et al., 2019a) single cross-modal Transformer image RoI Conceptual Captions

(Sharma et al., 2018)

1) sentence-image alignment 1) image-text retrieval
2) masked language modeling 2) zero-shot image-text retrieval
3) masked visual-feature classification

Our VL-BERT single cross-modal Transformer image RoI

Conceptual Captions
(Sharma et al., 2018)
+ BooksCorpus
(Zhu et al., 2015)
+ English Wikipedia

1) masked language modeling 1) visual question answering
2) masked visual-feature classification 2) visual commonsense reasoning

3) grounding referring expressions

‡ LXMERT is pre-trained on COCO Caption (Chen et al., 2015), VG Caption (Krishna et al., 2017), VG QA (Zhu et al., 2016), VQA (Antol et al., 2015) and GQA (Hudson & Manning, 2019).

Table 5: Comparison among our VL-BERT and other works seeking to derive pre-trainable generic
representations for visual-linguistic tasks.

A.2 DETAILED EXPERIMENT SETTINGS

Pre-training is conducted on 16 Tesla V100 GPUs for 250k iterations by SGD. In each mini-batch,
256 samples are drawn. Among them, 128 samples are of<Caption, Image> pairs from Conceptual
Captions, and the rest 128 samples are sequential tokens (at most 64 tokens for each sequence) from
BooksCorpus & English Wikipedia. In SGD, Adam optimizer (Kingma & Ba, 2014) is applied, with
base learning rate of 2× 10−5, β1 = 0.9, β2 = 0.999, weight decay of 10−4, learning rate warmed
up over the first 8,000 steps, and linear decay of the learning rate. All the parameters in VL-BERT
and Fast R-CNN are jointly trained in both pre-training and fine-tuning phase. The visual feature
input for textual corpus is a learnable embedding shared for all words. In the task of Masked RoI
Classification with Linguistic Clues, the pixels lying in all the masked RoIs are set as zeros in the
image. A box covering the whole image is added as a RoI and would not be masked.

For VCR, the fine-tuning is conducted on 16 Tesla V100 GPUs for 20 epochs. In each mini-batch,
256 triplets of <Question, Answer, Image> are sampled. In SGD, the basic mini-batch gradient
descent is conducted, with base learning rate of 5 × 10−3, momentum of 0.9, and weight decay of
10−4. The learning rate is linearly warmed up in the first 1,000 steps from an initial learning rate of
0, and is decayed by 0.1 at the 14-th and the 18-th epochs.

For VQA, the fine-tuning is conducted on 16 Tesla V100 GPUs for 20 epochs. In each mini-batch,
256 triplets of <Question, Answer, Image> are sampled. In SGD, Adam optimizer is applied, with
base learning rate of 1× 10−4, β1 = 0.9, β2 = 0.999, weight decay of 10−4, learning rate warmed
up over the first 2,000 steps, and linear decay of the learning rate.

For RefCOCO+, the fine-tuning is conducted on 16 Tesla V100 GPUs for 20 epochs. In each mini-
batch, 256 pairs of <Query, Image> are sampled. In SGD, Adam optimizer is applied, with base
learning rate of 1 × 10−4, β1 = 0.9, β2 = 0.999, weight decay of 10−4, learning rate warmed up
over the first 500 steps, and linear decay of the learning rate.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Visualization of attention maps in pre-trained VL-BERTBASE. Line intensity indicates
the magnitude of attention probability with the text token as query and the image RoI as key. The
intensity is affinely rescaled to set the maximum value as 1 and the minimum as 0, across different
heads in each layer. The index of network layer and attention head is counted from 0.
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A.3 VISUALIZATION OF ATTENTION MAPS IN VL-BERT

To better understand what VL-BERT learns from pre-training, we visualized the attention maps of
pre-trained VL-BERT (without fine-tuning on downstream tasks) using BertViz3(Vig, 2019).

Some visualization results on COCO (Lin et al., 2014; Chen et al., 2015) val2017 set are shown in
Figure 3. We can see different attention patterns across attention heads. For some attention heads,
text tokens attend more on the associated image RoIs. While in some other heads, text tokens attend
uniformly to all RoIs. It demonstrates the ability of VL-BERT in aggregating and aligning visual-
linguistic contents.

3https://github.com/jessevig/bertviz
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