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ABSTRACT

We propose an algorithm, guided variational autoencoder (Guided-VAE), that is
able to learn a controllable generative model by performing latent representation
disentanglement learning. The learning objective is achieved by providing sig-
nal to the latent encoding/embedding in VAE without changing its main backbone
architecture, hence retaining the desirable properties of the VAE. We design an un-
supervised and a supervised strategy in Guided-VAE and observe enhanced mod-
eling and controlling capability over the vanilla VAE. In the unsupervised strategy,
we guide the VAE learning by introducing a lightweight decoder that learns latent
geometric transformation and principal components; in the supervised strategy,
we use an adversarial excitation and inhibition mechanism to encourage the dis-
entanglement of the latent variables. Guided-VAE enjoys its transparency and
simplicity for the general representation learning task, as well as disentanglement
learning. On a number of experiments for representation learning, improved syn-
thesis/sampling, better disentanglement for classification, and reduced classifica-
tion errors in meta learning have been observed.

1 INTRODUCTION

The resurgence of autoencoders (AE) (LeCun, 1987; Bourlard & Kamp, 1988; Hinton & Zemel,
1994) is an important component in the rapid development of modern deep learning (Goodfellow
et al., 2016). Autoencoders have been widely adopted for modeling signals and images (Poultney
et al., 2007; Vincent et al., 2010). Its statistical counterpart, the variational autoencoder (VAE)
(Kingma & Welling, 2014), has led to a recent wave of development in generative modeling due to
its two-in-one capability, both representation and statistical learning in a single framework. Another
exploding direction in generative modeling includes generative adversarial networks (GAN) Good-
fellow et al. (2014), but GANs focus on the generation process and are not aimed at representation
learning (without an encoder at least in its vanilla version).

Compared with classical dimensionality reduction methods like principal component analysis (PCA)
(Hotelling, 1933; Jolliffe, 2011) and Laplacian eigenmaps (Belkin & Niyogi, 2003), VAEs have
demonstrated their unprecedented power in modeling high dimensional data of real-world com-
plexity. However, there is still a large room to improve for VAEs to achieve a high quality re-
construction/synthesis. Additionally, it is desirable to make the VAE representation learning more
transparent, interpretable, and controllable.

In this paper, we attempt to learn a transparent representation by introducing guidance to the la-
tent variables in a VAE. We design two strategies for our Guided-VAE, an unsupervised version
(Fig. 1.a) and a supervised version (Fig. 1.b). The main motivation behind Guided-VAE is to en-
courage the latent representation to be semantically interpretable, while maintaining the integrity of
the basic VAE architecture. Guided-VAE is learned in a multi-task learning fashion. The objective
is achieved by taking advantage of the modeling flexibility and the large solution space of the VAE
under a lightweight target. Thus the two tasks, learning a good VAE and making the latent variables
controllable, become companions rather than conflicts.

In unsupervised Guided-VAE, in addition to the standard VAE backbone, we also explicitly force
the latent variables to go through a lightweight encoder that learns a deformable PCA. As seen in
Fig. 1.a, two decoders exist, both trying to reconstruct the input data x: Decmain. The main decoder,
denoted as Decmain, functions regularly as in the standard VAE (Kingma & Welling, 2014); the
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secondary decoder, denoted as Decsub, explicitly learns a geometric deformation together with a
linear sub-space. In supervised Guided-VAE, we introduce a subtask for the VAE by forcing one
latent variable to be discriminative (minimizing the classification error) while making the rest of
the latent variable to be adversarially discriminative (maximizing the minimal classification error).
This subtask is achieved using an adversarial excitation and inhibition formulation. Similar to the
unsupervised Guided-VAE, the training process is carried out in an end-to-end multi-task learning
manner. The result is a regular generative model that keeps the original VAE properties intact, while
having the specified latent variable semantically meaningful and capable of controlling/synthesizing
a specific attribute. We apply Guided-VAE to the data modeling and few-shot learning problems and
show favorable results on the MNIST, CelebA, and Omniglot datasets.

The contributions of our work can be summarized as follows:

• We propose a new generative model disentanglement learning method by introducing latent vari-
able guidance to variational autoencoders (VAE). Both unsupervised and supervised versions of
Guided-VAE have been developed.

• In unsupervised Guided-VAE, we introduce deformable PCA as a subtask to guide the general
VAE learning process, making the latent variables interpretable and controllable.

• In supervised Guided-VAE, we use an adversarial excitation and inhibition mechanism to en-
courage the disentanglement, informativeness, and controllability of the latent variables.

Guided-VAE is able to keep the attractive properties of the VAE and it is easy to implement. It can
be trained in an end-to-end fashion. It significantly improves the controllability of the vanilla VAE
and is applicable to a range of problems for generative modeling and representation learning.

2 RELATED WORK

Related work can be discussed along several directions.

Generative model families such as generative adversarial networks (GAN) (Goodfellow et al., 2014;
Arjovsky et al., 2017) and variational autoencoder (VAE) (Kingma & Welling, 2014) have received a
tremendous amount of attention lately. Although GAN produces higher quality synthesis than VAE,
GAN is missing the encoder part and hence is not directly suited for representation learning. Here,
we focus on disentanglement learning by making VAE more controllable and transparent.

Disentanglement learning (Mathieu et al., 2016; Szabó et al., 2018; Hu et al., 2018; Achille & Soatto,
2018; Gonzalez-Garcia et al., 2018; Jha et al., 2018) recently becomes a popular topic in represen-
tation learning. Adversarial training has been adopted in approaches such as (Mathieu et al., 2016;
Szabó et al., 2018). Various methods (Peng et al., 2017; Kim & Mnih, 2018; Lin et al., 2019) have
imposed constraints/regularizations/supervisions to the latent variables but these existing approaches
often involve an architectural change to the VAE backbone and the additional components in these
approaches are not provided as secondary decoder for guiding the main encoder. A closely related
work is the β-VAE (Higgins et al., 2017) approach in which a balancing term β is introduced to con-
trol the capacity and the independence prior. β-TCVAE (Chen et al., 2018) further extends β-VAE
by introducing a total correlation term.

From a different angle, principal component analysis (PCA) family (Hotelling, 1933; Jolliffe, 2011;
Candès et al., 2011) can also be viewed as representation learning. Connections between robust PCA
(Candès et al., 2011) and VAE (Kingma & Welling, 2014) have been observed (Dai et al., 2018).
Although being a widely adopted method, PCA nevertheless has limited modeling capability due
to its linear subspace assumption. To alleviate the strong requirement for the input data being pre-
aligned, RASL (Peng et al., 2012) deals with unaligned data by estimating a hidden transformation
to each input. Here, we take the advantage of the transparency of PCA and the modeling power of
VAE by developing a sub-encoder (see Fig. 1.a), deformable PCA, that guides the VAE training
process in an integrated end-to-end manner. After training, the sub-encoder can be removed by
keeping the main VAE backbone only.

To achieve disentanglement learning in supervised Guided-VAE, we encourage one latent variable
to directly correspond to an attribute while making the rest of the variables uncorrelated. This
is analogous to the excitation-inhibition mechanism (Yizhar et al., 2011) or the explaining-away
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(Wellman & Henrion, 1993) phenomena. Existing approaches (Liu et al., 2018; Lin et al., 2019)
impose supervision as a conditional model for an image translation task, whereas our supervised
Guided-VAE model targets the generic generative modeling task by using an adversarial excitation
and inhibition formulation. This is achieved by minimizing the discriminative loss for the desired
latent variable while maximizing the minimal classification error for the rest of the variables. Our
formulation has connection to the domain-adversarial neural networks (DANN) (Ganin et al., 2016)
but the two methods differ in purpose and classification formulation. Supervised Guided-VAE is also
related to the adversarial autoencoder approach Makhzani et al. (2016) but the two methods differ
in objective, formulation, network structure, and task domain. In (Ilse et al., 2019), the domain
invariant variational autoencoders method (DIVA) differs from ours by enforcing disjoint sectors to
explain certain attributes.

Our model also has connections to the deeply-supervised nets (DSN) (Lee et al., 2015) where in-
termediate supervision is added to a standard CNN classifier. There are also approaches (Engel
et al., 2018; Bojanowski et al., 2018) in which latent variables constraints are added but they have
different formulations and objectives than Guided-VAE. Recent efforts in fairness disentanglement
learning (Creager et al., 2019; Song et al., 2018) also bear some similarity but there is still with a
large difference in formulation.

3 GUIDED-VAE MODEL

In this section, we present the main formulations of our Guided-VAE models. The unsupervised
Guided-VAE version is presented first, followed by introduction of the supervised version.

Adversarial Excitation and Inhibition

(a) Unsupervised Guided-VAE (b) Supervised Guided-VAE

Figure 1: Model architecture for the proposed Guided-VAE algorithms.

3.1 VAE

Following the standard definition in variational autoencoder (VAE) (Kingma & Welling, 2014), a
set of input data is denoted as X = (x1, ...,xn) where n denotes the number of total input samples.
The latent variables are denoted by vector z. The encoder network includes network and variational
parameters φ that produces variational probability model qφ(z|x). The decoder network is param-
eterized by θ to reconstruct sample x̃ = fθ(z). The log likelihood log p(x) estimation is achieved
by maximizing the Evidence Lower BOund (ELBO) (Kingma & Welling, 2014):

ELBO(θ,φ;x) = Eqφ(z|x)[log(pθ(x|z))]−DKL(qφ(z|x)||p(z)). (1)

The first term in eq. (1) corresponds to a reconstruction loss
∫
qφ(z|x)× ||x− fθ(z)||2dz (the first

term is the negative of reconstruction loss between input x and reconstruction x̃) under Gaussian
parameterization of the output. The second term in eq. (1) refers to the KL divergence between the
variational distribution qφ(z|x) and the prior distribution p(z). The training process thus tries to
find the optimal (θ,φ)∗ such that:

(θ,φ)∗=argmaxθ,φ

∑n
i=1 ELBO(θ,φ;xi)=argmaxθ,φ

∑n
i=1

[
Eqφ(z|xi)

[log(pθ(xi|z))]−DKL(qφ(z|xi)||p(z))
]
(2)
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3.2 UNSUPERVISED GUIDED-VAE

In our unsupervised Guided-VAE, we introduce a deformable PCA as a secondary decoder to guide
the VAE training. An illustration can be seen in Fig. 1.a. This secondary decoder is called Decsub.
Without loss of generality, we let z = (zdef , zcont). zdef decides a deformation/transformation
field, e.g. an affine transformation denoted as τ(zdef ). zcont determines the content of a sample
image for transformation. The PCA model consists of K basis B = (b1, ...,bK). We define a
deformable PCA loss as:

LDPCA(φ, B) =
[ n∑
i=1

Eqφ(zdef ,zcont|xi)[||xi − τ(zdef ) ◦ (zcontBT )||2
]
+
∑
k,j 6=k

(bT
k bj)

2, (3)

where ◦ defines a transformation (affine in our experiments) operator decided by τ(zdef ) and∑
k,j 6=k(b

T
k bj)

2 is regarded as the orthogonal loss. A normalization term
∑

k(b
T
k bk − 1)2 can be

optionally added to force the basis to be unit vectors. We follow the spirit of the PCA optimization
and a general formulation for learning PCA, which can be found in (Candès et al., 2011). To keep
the simplicity of the method we learn a fixed basis function B and one can also adopt a probabilistic
PCA model (Tipping & Bishop, 1999). Thus, learning unsupervised Guided-VAE becomes:

(θ,φ, B)∗ = arg max
θ,φ,B

{[ n∑
i=1

ELBO(θ,φ;xi)
]
− LDPCA(φ, B)

}
. (4)

3.3 SUPERVISED GUIDED-VAE

For training data X = (x1, ...,xn), suppose there exists a total of T attributes with ground-truth
labels. The t-th attribute, let z = (zt, z

rst
t ) where zt defines a scalar variable deciding to decide

the t-th attribute and zrstt represents remaining latent variables. Let yt(xi) be the ground-truth label
for the t−th attribute of sample xi; yt(xi) ∈ {−1,+1}. For each attribute, we use an adversarial
excitation and inhibition method with term:

LExcitation(φ, t) = −
n∑

i=1

Eqφ(zt|xi)[(1− yt(xi)× zt)+], (5)

which is a hinge term. This is an excitation process since we want latent variable zt to directly
correspond to the attribute label. Notice the − sign before the summation since this term will be
combined with eq. (1) for maximization.

LInhibition(φ, t) = inf
Ct

{
n∑

i=1

Eqφ(zrst
t |xi)[− log pCt

(y = yt(xi)|zrstt )]}, (6)

where Ct(z
rst
t ) refers to classifier making a prediction for the t-th attribute using the remaining

latent variables zrstt . − log pCt
(y = y(x)|zrstt ) is a cross-entropy term for minimizing the classifi-

cation error in eq. (6). This is an inhibition process since we want the remaining variables zrstt as
independent as possible to the attribute label.

(θ,φ)∗ = argmax
θ,φ

{[ n∑
i=1

ELBO(θ,φ;xi)
]
+

T∑
t=1

[LExcitation(φ, t) + LInhibition(φ, t)]
}
. (7)

Note that the term LInhibition(φ, t) within eq. (7) for maximization is an adversarial term to make
zrstt as uninformative to attribute t as possible, by making the best possible classifier Ct to be
undiscriminative. The formulation of eq. (7) bears certain similarity to that in domain-adversarial
neural networks (Ganin et al., 2016) in which the label classification is minimized with the domain
classifier being adversarially maximized. Here, however, we respectively encourage and discourage
different parts of the features to make the same type of classification.

4 EXPERIMENTS

In this section, we first present qualitative results demonstrating our proposed unsupervised Guided-
VAE (Figure 1a) capable of disentangling latent embedding in a more favourable way than VAE and
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previous disentangle methods (Higgins et al., 2017; Dupont, 2018) on MNIST dataset (LeCun et al.,
2010). We also show that our learned latent representation can be later used to improve classification
performance. Next, we extend this idea to a supervised guidance approach in an adversarial exci-
tation and inhibition fashion, where a discriminative objective for certain image properties is given
(Figure 1b) on the CelebA dataset (Yang et al., 2015). Further, we show that our method can be
applied to the few-shot classification tasks, which achieves competitive performance on Omniglot
dataset proposed by Vinyals et al. (2016).

4.1 UNSUPERVISED GUIDED-VAE

4.1.1 QUALITATIVE EVALUATION

We present qualitative results on MNIST dataset by traversing latent variables received affine trans-
formation guiding signal. Here, we applied the Guided-VAE with the bottleneck size of 10 (i.e.
the latent variables z ∈ R10). The first latent variable z1 represents the rotation information and
the second latent variable z2 represents the scaling information. The rest of the latent variables
z3:10 represent the content information. Thus, the latent variables z ∈ R10 are represented by
z = (zdef , zcont) = (z1:2, z3:10).

(a)VAE (b) β-VAE (c) CCβ-VAE (d) JointVAE (e) Ours

Figure 2: Latent Variables Traversal on MNIST: Comparison of traversal results from vanilla VAE (Kingma
& Welling, 2014), β-VAE (Higgins et al., 2017), β-VAE with controlled capacity increase (CCβ-VAE), Joint-
VAE (Dupont, 2018) and our Guided-VAE on the MNIST dataset. z1 and z2 in Guided-VAE are controlled.

b1 b2 b3 b4 b5 b6 b7 b8

Figure 3: PCA basis learned by the secondary de-
coder in unsupervised Guided-VAE.

In Figure 2, we show traversal results of all la-
tent variables on MNIST dataset for vanilla VAE
(Kingma & Welling, 2014), β-VAE (Higgins et al.,
2017), JointVAE (Dupont, 2018) and our guided
VAE (β-VAE, JointVAE results are adopted from
(Dupont, 2018)). While β-VAE cannot generate
meaningful disentangled representations, even with controlled capacity increased, JointVAE is able
to disentangle class type from continuous factors. Different from previous methods, our Guided-
VAE disentangles geometry properties (z1 and z2) like rotation angle and stroke thickness from the
rest content information z3:10.

In Figure 3, we visualize the basis B = (b1, ...,b8) in the PCA part of Decsub. The basis primarily
capture the content information.

4.1.2 QUANTITATIVE EVALUATION

For a quantitative evaluation, we first compare the reconstruction error among different models on
the MNIST dataset. In this experiment, we set the bottleneck size to 8 in Guided-VAE and use three
settings for the deformation/transformation: Rotation, scaling, and both. In Guided-VAE (Rotation)
or Guided-VAE (Scaling), we take the first latent variable z1 to represent the rotation or the scaling
information. In Guided-VAE (Rotation and Scaling), we use the first and second latent variables
(z1 and z2) to represent rotation and scaling respectively. As Table 1 shows, our reconstruction loss
is on par with vanilla VAE, whereas the previous disentangling method (β-VAE) has higher loss.
Our proposed method is able to achieve added disentanglement while not sacrificing reconstruction
capability over vanilla VAE.

In addition, we perform classification tasks on latent embeddings of different models. Specifically,
for each data point (x, y), we use the pre-trained VAE model to obtain the value of latent variable
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Table 1: Reconstruction loss on MNIST digits data.
Model Reconstruction Loss
VANILLA VAE 84.4
β-VAE (BETA=2) 89.2
β-VAE (BETA=4) 100.1
GUIDED-VAE (ROTATION) 86.6
GUIDED-VAE (SCALING) 85.8
GUIDED-VAE (ROTATION, SCALING) 84.3

z given input image x. Here z is a dz-dim vector. We then train a linear classifier f(·) on the
embedding-label pairs {(z, y)} in order to predict the class of digits. For the Guided-VAE, we
disentangle the latent variables z into deformation variables zdef and content variables zcont with
same dimensions (i.e. dzdef

= dzcont ) and use affine transformation as τ(zdef ). We compare the
classification errors of different models under multiple choices of dimensions of the latent variables
in Table 2. It shows that generally higher dimensional latent variables result in lower classification
errors. Our Guided-VAE method compares favourably over vanilla VAE and β-VAE.

Table 2: Classification error over different methods.
Model dz = 16 dz = 32 dz = 64
VANILLA VAE 2.85% 2.63% 2.87%
β-VAE (β=2) 4.70% 5.10% 5.23%
GUIDED-VAE (OURS) 2.17% 1.51% 1.42%

Moreover, we attempt to validate the effectiveness of disentanglement in Guided-VAE. We follow
the same classification tasks above but use different parts of latent variables as input features for the
classifier f(·): We may choose the deformation variables zdef , the content variables zcont, or the
whole latent variables z as the input feature vector. To reach a fair comparison, we keep the same
dimensions for the deformation variables zdef and the content variables zcont. Table 3 shows that
the classification errors on zcont are significantly lower than the ones on zdef , which indicates the
success of disentanglement since the content variables should determine the class of digits while the
deformation variables should be invariant to the class. In addition, when the dimensions of latent
variables z are higher, the classification errors on zdef increase while the ones on zcont decrease,
indicating a better disentanglement between deformation and content.

Table 3: Classification error on different latent variables. [↑ means higher is better, ↓ means lower is better]
Model dzdef

dzcont
dz zdef Error ↑ zcont Error ↓ z Error ↓

GUIDED-VAE 8 8 16 27.1% 3.69% 2.17%
16 16 32 42.07% 1.79% 1.51%
32 32 64 62.94% 1.55% 1.42%

4.2 SUPERVISED GUIDED-VAE

4.2.1 QUALITATIVE EVALUATION

We first present qualitative results on the CelebA dataset by traversing latent variables of attributes.
We select three labeled attributes (emotion, gender and color) in the CelebA dataset as supervised
guidance objectives. The bottleneck size is set to 16. We use the first three latent variables z1, z2, z3
to represent the attribute information and the rest z4:16 to represent the content information. During
evaluation, we choose zt ∈ {z1, z2, z3} while keeping the remaining latent variables zrstt fixed.
Then we obtain a set of images through traversing from the image with t-th attribute to the image
without t-th attribute (e.g. smiling to non-smiling) and compare them over methods.

Figure 4 shows the traversal results for β-VAE and our Guided-VAE. β-VAE performs decently for
the controlled attribute change, but the individual z in β-VAE is not fully entangled or disentangled
with the attribute. Guided-VAE has a better disentanglement for latent variables and is able to better
isolate the attributes w.r.t. the corresponding latent variables.

4.2.2 QUANTITATIVE EVALUATION

In supervised Guided-VAE, we train a classifier to predict the attributes by using the disentangled
attribute latent variable zt or the rest of latent variables zrstt as input features. We perform adversarial
excitation and inhibition by encouraging the target latent variable to best predict the corresponding
t-th attribute and discouraging the rest of the variables for the prediction of that attribute. Figure 5
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Gender Smile Color

Figure 4: Traversal of Latent Factors learned on CelebA: Column 1 shows the traversed images from no-
smiling to smiling. Column 2 shows the traversed images from male to female. Column 3 transits the color.
The first row is from (Higgins et al., 2017) and we follow its figure generation procedure.

(left) shows that the classification errors on zt is significantly lower than the ones on zrstt , which
indicates the effectiveness of disentanglement during the training procedure.

Model Latent Classification
Variable Error

GENDER z1 3.57% ↓
zrst1 24.51% ↑

SMILE z2 8.85% ↓
zrst2 32.81% ↑

3 2 1 0 1 2 3
z
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0.8

1.0
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z1:Gender
z2:Smile

Figure 5: (left) Classification error on CelebA training set. (right) Experts (high-performance external classi-
fiers for attribute classification) prediction for being negatives on the generated images. We traverse z1 (gender)
and z2 (smile) separately to generate images for the classification test. Each latent z is traversed from −3.0 to
3.0 with 0.1 as the stride length.

Furthermore, we attempt to validate that the generated images from the supervised Guided-VAE can
be actually controlled by the disentangled attribute variables. Thus, we pre-train an external binary
classifier for t-th attribute on the CelebA training set and then use this classifier to test the generated
images from Guided-VAE. Each test includes 10, 000 generated images randomly sampled on all
latent variables except for the particular latent variable zt we decide to control. As Figure 5 (right)
shows, we can draw the confidence-z curves of the t-th attribute where z = zt ∈ [−3.0, 3.0].
For the gender and the smile attributes, it can be seen that the corresponding zt is able to enable
(zt < −1) and disable (zt > 1) the attribute of the generated image. Besides, for all the attributes,
the probability monotonically decreases when zt increases, which shows the controlling ability of
the t-th attribute by tuning the corresponding latent variable zt.

4.3 FEW-SHOT LEARNING

Previously, we have shown that Guided-VAE can generate images and be used as representation to
perform classification task. In this section, we will apply the proposed method to few-shot classifi-
cation problem. Specifically, we use our adversarial excitation and inhibition method in the Neural
Statistician (Edwards & Storkey, 2017) by adding a supervised guidance network after the statistic
network. The supervised guidance signal is the label of each input. We also apply the Mixup method
(Zhang et al., 2018) in the supervised guidance network. However, we couldn’t reproduce exact re-
ported results in the Neural Statistician, which is also indicated in Korshunova et al. (2018). For
comparison, we mainly consider the Matching Nets (Vinyals et al., 2016) and Bruno (Korshunova
et al., 2018). Yet it cannot outperform Matching Nets, our proposed Guided-VAE reaches equivalent
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performance as Bruno (discriminative), where a discriminative objective is fine-tuned to maximize
the likelihood of correct labels.

Table 4: Classification accuracy for a few-shot learning task on the Omniglot dataset.
Omniglot 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot
PIXELS 41.7% 63.2% 26.7% 42.6%
BASELINE CLASSIFIER 80.0% 95.0% 69.5% 89.1%
MATCHING NETS 98.1% 98.9% 93.8% 98.5%
BRUNO 86.3% 95.6% 69.2% 87.7%
BRUNO (DISCRIMINATIVE) 97.1% 99.4% 91.3% 97.8%
BASELINE 97.7% 99.4% 91.4% 96.4%
OURS (DISCRIMINATIVE) 97.8% 99.4% 92.1% 96.6%

5 ABLATION STUDY

We conduct a series of ablation experiments to validate our proposed Guided-VAE model.

5.1 GEOMETRIC TRANSFORMATIONS

In this part, we conduct an experiment by excluding the geometry-guided part from the unsupervised
Guided-VAE. In this way, the nudging decoder is just a PCA-like decoder but not a deformable PCA.

The setting of this experiment is exactly same as described in the unsupervised Guided-VAE section.
The bottleneck size of our model is set to 10 of which the first two latent variables z1, z2 represent
the rotation and scaling information separately. In the ablation part, we drop off the geometry-guided
part so all 10 latent variables are controlled by the PCA-like light decoder.

(a) Unsupervised Guided-VAE (b) Unsupervised Guided-VAE
without geometry transformation

Figure 6: Ablation study on geometry transformation: The results here are traversed on z1 and z2. Com-
pared to (b), (a) presents little about the rotation and scaling information.

5.2 ADVERSARIAL EXCITATION AND INHIBITION

In this part, we conduct an experiment of using the adversarial excitation method. We design the
experiment using the exact same setting described in the supervised Guided-VAE part.

As Figure 7 shows, though the traversal results still show the traversed results on some latent vari-
ables. The results from the adversarial excitation method outperforms the results from the discrimi-
native method. While traversing the latent variable controlling the smiling information, the left part
(a) also changes in the smiling status but it’s controlled by another latent variable.

(a) Supervised Guided-VAE without Inhibition (b) Supervised Guided-VAE

Figure 7: Ablation study on the adversarial excitation and inhibition method for gender: The left part
shows the traversed images from the supervised Guided-VAE without adversarial inhibition. The right part
shows the traversed images from the supervised Guided-VAE using adversarial excitation and inhibition. Both
images are traversed on the latent variable that is supposed to control the gender information.

6 CONCLUSION

In this paper we have presented a new representation learning method, guided variational au-
toencoder (Guided-VAE), for disentanglement learning. Both versions of Guided-VAE utilize
lightweight guidance to the latent variables to achieve better controllability and transparency. Im-
provements on disentanglement, image traversal, and meta-learning over the competing methods
are observed. Guided-VAE maintains the backbone of VAE and can be applied to other generative
modeling applications.
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A APPENDIX

A.1 PERCENTAGE OF DATA PARTICIPATING IN THE GUIDED SUB-NETWORK

In this part, we design an experiment to show how the percentage of data participating in the guided
sub-network can influence the final prediction. We conduct this ablation study on MNIST using un-
supervised Guided-VAE. We change the percentage of data participating in the guided sub-network
and then present the classification accuracy using the first half latent variables (represent geometry
information) and the second half latent variables (represent content information) separately.

From Figure 8, we observe consistent improvement for the last half latent variables when adding
more samples to guide sub-network. This indicates adding more samples can improve disentangle-
ment, which causes that more content information is represented in the second half latent variables.
Similarity, the improvement of disentanglement leads the first half latent variables can represent
more geometry information, which is indiscriminative for classes. We also observe accuracy im-
provement when large amount of samples are used to train sub-network. We hypothesize this is
because geometry information is still partially affected by classes.
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Figure 8: Study on changing the percentage of the data participating in the guided sub-network:The
three figures present the accuracy from the unsupervised Guided-VAE of which the bottleneck size is 16, 32,
64 separately.
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