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Abstract

Automatic Speech Recognition (ASR) systems, which perform well on regular
speech, are found to be vulnerable to adversarial examples generated by small
perturbations in the audio signal. Even naturally introduced perturbations in
audio signal, caused by emotional and physical states of the speaker, can signif-
icantly degrade ASR performance. In this paper, we propose a front-end based
on Cycle-Consistent Generative Adversarial Network (CycleGAN) to reduce the
perturbations, and hence add robustness to ASR performance. CycleGAN is trained
using non-parallel examples of perturbed and normal speech. Experiments on spon-
taneously generated laughter-speech and creaky voice datasets tested with Google
cloud ASR show absolute improvements in WER of 14.9% and 11%, respectively,
on speech converted using the CycleGAN based front-end as compared to the
original perturbed speech.

1 Introduction

The advent of powerful deep learning techniques in the recent past have resulted in significant
improvements in the performance of Automatic Speech Recognition (ASR) systems [1, 2, 3]. In some
scenarios, ASR systems are performing at par with human-level accuracy. Further, the advent of
voice assistants such as Google Home, Amazon Echo etc., have led to the wide use of ASR systems
in various day-to-day applications such as voice-based search [4], home automation [5] and elderly
care [6].

However, recent studies have shown that the adversarial examples, generated by either adding a
small amount of noise or by modifying a few bits of the audio signal, can be used to attack the
ASR systems to generate a completely different output [7, 8, 9], even though the changes in the
audio signal cannot be perceived by humans. If small artificial perturbations in the audio signal can
affect the performance of ASR systems so significantly [10], natural perturbations in human speech
may also have an adverse effect. Naturally perturbed speech can arise due to the psychological and
physical state of the speaker. For instance, expressive speech such as excited [11, 12], frustrated etc.,
and speech generated with different voice qualities such as creaky, breathy, etc [13, 14, 15].

In this paper, we show that the performance of the state-of-the-art deep neural network based ASR
systems can significantly degrade for speech colored by either emotion or voice-quality. We show that
these natural perturbations can be modeled using Cycle-consistent GANs (CycleGANs) [16, 17, 18], a
variant of Generative Adversarial Networks (GANs) [19] which can learn distributions of data across
different domains without a parallel corpus. Generator from our CycleGAN model has the ability
to filter out the natural perturbations in speech and hence can be used as a front-end processor to
improve the robustness of ASR systems. This front-end processing does not affect ASR performance
in absence of the perturbations. The main contributions of this work are:
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• Analyze the performance of state-of-the-art ASR systems tested with naturally perturbed
speech, including laughter and creaky speech.

• CycleGAN based front-end to convert perturbed speech into normal speech.
• Analyze the CycleGAN front-end transformation and its effectiveness in ASR performance.

2 Related Work

Very few studies have analyzed the effect of emotional coloring of speech on ASR performance
[20, 21, 22]. These studies have shown significant degradation in the performance of GMM-HMM
based ASR systems, when tested with emotive speech. Moreover, most of these approaches are
based on modifying the acoustic and language models of the ASR system to handle the variations
exhibited by emotive speech. Recently, emotive speech utterances were converted to the neutral
speech utterances by modeling prosody-based features [23]. But these approaches require a parallel
data corpus (i.e., same utterance spoken in neutral and with emotion), which is very difficult to collect
for spontaneous speech.

Analysis of the effect of voice qualities on ASR performance is not much explored. Only a few
studies have considered the detection of creaky voice in spontaneous speech [13, 24]. Further, GMM-
HMM-based systems were considered for synthesizing creaky speech [25, 26], but no previous works
have considered the conversion of creaky to neutral speech. One of the main issue in the conversion
of creaky to neutral speech is the lack of parallel speech corpus for creaky and neutral speech.

As compared to these works, we propose a CycleGAN-based [16] approach to transform speech
perturbed with emotions and voice quality to normal speech. GANs were initially proposed for
the generation of images when provided with some arbitrary random noise as input, and thereafter
have achieved impressive results in image generation [27, 28], image-to-image translation [29], style
transfer [30] and text-to-image synthesis [31, 32]. More recently, unpaired image-to-image translation
was successfully learned by adopting a variant of GAN, called cycle-consistent adversarial networks
[16, 17, 18] with an identity-mapping loss [33]. We adopt the concept of CycleGAN for performing
the task of non-parallel speech-to-speech translation for emotion conversion. CycleGAN was earlier
used for parallel-data-free speaker voice conversion [34] and speech enhancement [35]. To the best
of our knowledge there is no prior work on converting speech perturbed with emotion or voice quality
to normal speech, by considering non-parallel data. We are the first to use CycleGAN for perturbed
to normal speech conversion. Moreover, our approach provides a front-end processor which can add
robustness to speech recognition.

3 Cyclic-GANS

GANs consist of two different networks i.e., a generator G and a discriminator D [19]. The generator
is used to generate fake samples G(z), that resemble a given data distribution X , by taking a random
sample z from a prior distribution pz as input. The discriminator is used to discriminate fake samples
from real samples in the data X . Both, generator and discriminator are trained adversarially such that
the generator learns to generate samples which resemble the original samples in the data by taking
a feedback from the discriminator. The discrimintor itself gets better at discriminating the samples
generated by the generator from the original samples.

A typical GAN tries to minimize the adversarial loss Ladv(GX→Y (x), y) which measures how far
is the generated data GX→Y (x) from the target data y. But for applications with no parallel data,
particularly in speech, a typical GAN with only the adversarial loss may not be able to preserve the
context information in the speech features. In order to learn the transformation using only non-parallel
data, we use Cycle-GAN architecture [16]. The CycleGAN model can handle this using a pair of
GANs with two adversarial loss functions and an additional cycle consistency loss function. The first
adversarial loss Ladv(GX→Y (x), y) corresponds to the forward mapping, the second adversarial
loss Ladv(GY→X(y), x) corresponds to the inverse mapping and the cycle consistency loss given as:

Lcyc =Ex |GY→X(GX→Y (x))− x|1
+ Ey |GX→Y (GY→X(y))− y|1 (1)

helps to preserve the context information. The cycle consistency loss Lcyc is scaled with a trade-of
parameter λcyc.
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Table 1: ASR performance without front-end (W/O FE) and with front-end (With FE).
Google ASpIRE

W/O FE With FE W/O FE With FE

Perturbation MFBs MFBs+APs MFBs MFBs+APs

Laughter speech %WER 38.4 30.9 23.5 53.5 45.1 32.5
%SER 91.8 79.6 75.5 93.1 91.4 89.7

Creaky speech %WER 27.4 22.9 16.4 32.2 30.2 24.3
%SER 86.1 77.8 63.9 94.4 91.7 83.3

3.1 CycleGAN-based Speech-to-Speech Conversion

Our CycleGAN model architecture, considered in this work, is motivated from [34]. The block
diagram of the architecture is presented as an appendix to the paper. All convolution layers are
1-dimensional to preserve the temporal structure [36]. Similar to [37], gated linear units which
achieved state-of-the-art performance in language and speech modeling, are used as an activation
function in the convolutional layers. We also used instance normalization, proposed for style-transfer
in [30]. For the discriminator network, we use a 6× 6 patch GAN [38, 39], which classifies whether
each 6× 6 patch is real or fake.

Training Details: In order to achieve more stable training and to generate higher quality outputs, we
used the least square loss to compute the discriminator loss in place of the negative log likelihood
objective [40, 16]. We also considered the identity-loss function [16], originally used for color preser-
vation, which we found to be crucial for maintaining the linguistic information during conversion of
speech. We trained the CycleGAN models using the Adam optimizer [41] with a batch size of 1. The
initial learning rates of the generator and the discriminator are 0.0002 and 0.0001, respectively. The
learning rates were decayed by a factor of 105 for each epoch.

4 Experiments and Results

Analysis is performed by considering two spontaneous speech datasets, namely, AMI meeting
corpus [42] and Buckeye corpus of conversational speech [43]. Both datasets consists of dedicated
annotations along with time-stamps for speech perturbed with emotions and voice-quality. In this
work, speech data collected from 40 female and 30 male speakers, in total from both datasets was
considered for training gender-dependent models. For each gender and for each class (i.e., normal,
laughter speech and creaky speech), 210 utterances (150 utterances for train and 60 utterances for
test) were considered. It is to be noted that all these utterances are non-parallel. Each utterances is of
1-2 sec in duration.

The WORLD vocoder system [44] is used to extract features from the speech signal. The speech
signals are sampled to 16 kHz, and then Mel filterbank (MFB) features, logarithmic fundamental
frequency (log F0) and aperiodic components (APs) [45] are extracted from the speech signal within
a window of length 20 msec for every 5 msec. 24-dimensional MFBs and 24-dimensional APs
are modeled by the proposed CycleGAN architecture to convert the features extracted from the
input perturbed speech into features corresponding to normal speech. In previous works for speaker
conversion [46, 34], only the spectral features (MFBs) were modeled. But for perturbed speech
conversion, we found that modeling both, spectral features (MFBs) and aperiodic components (APs)
resulted in better conversion to normal speech than considering only spectral features (MFBs).
Logarithm Gaussian normalized transformation [47] was used to convert the F0 values from the
source to the target speech.

Table 1 shows the performance of Google cloud ASR and Kaldi ASR (with ASpIRE models) [1, 48]
with and without our proposed front-end system, when tested with laughter speech (speech perturbed
with emotion) and creaky speech (speech perturbed with voice-quality). The performance is evaluated
in terms of % Word Error Rate (%WER) and % Sentence Error Rate (%SER). Lower these values,
better are the performances. It can be observed from Table 1 that modeling both, spectral and
aperiodic components (i.e., MFB + APs) performs better than modeling only MFBs with the proposed
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front-end. It can be observed that an absolute reduction of 14.9%, 21.0% in WER and 16.3% , 3.4%
in SER, is achieved for Google ASR and ASpIRE ASR, respectively, when our proposed front-end
(MFBs+APs) is used to convert laughter speech to normal speech. Similarly, an absolute reduction of
11.0%, 7.9% in WER and 22.2% , 11.1% in SER is obtained for Google ASR and ASpIRE ASR,
respectively, when our proposed front-end (MFBs+APs) is used to convert creaky speech to normal
speech. A demo and the source codes are made available at https://goo.gl/dEmKcz.

5 Analysis of the Learned Front-End Transformation

(a) Normal Speech (b) Laughter Perturbed Speech (c) Normal Transformed Speech

Figure 1: t-SNE projection of Mel filterbank output features.

Figure 1 shows a 2-dimensional t-SNE projection [49] of the Mel filterbank features for (a) normal
speech, (b) laughter perturbed speech and (c) laughter perturbed speech transformed to normal speech
by the proposed front-end. It can be observed that the filterbank features for normal speech and
normal transformed speech are quite similar to each other and that they differ significantly from the
filterbank features for laughter speech. Additionally, the spread of the filterbank features for laughter
speech is reduced in the 2-dimensional t-SNE space. We hypothesize that this may be due to the
reduction in vowel space of laughter speech [50].

(a) Normal Speech

(b) Laughter Perturbed Speech

(c) Normal Transformed Speech

Figure 2: Box plot of output from filters 1 to 24 of the Mel filterbank.

For a more detailed analysis, Figure 2 shows a box plot for each of the 24 Mel filterbank output
features, for (a) normal speech, (b) laughter perturbed speech and (c) laughter perturbed speech
transformed to normal speech. It can be observed that the feature values for normal speech and normal
transformed speech are very close and they exhibit similar variations. Interestingly, for filters 1 to 8
they differ significantly from the laughter speech. We hypothesize that our front-end transformation
mainly operates in this region.

4

https://goo.gl/dEmKcz


6 Conclusion

We proposed a novel front-end based on CycleGANs to transform naturally perturbed speech to normal
speech. Experiments on spontaneous laughter speech and creaky voice utterances show significant
improvements in performance of the Google ASR and Kaldi ASR with ASpIRE model. We found
that adding aperiodic components to spectral features gives a better performance. Visualization of
the laughter speech features and the converted speech features gives insights on the transformation
performed by our proposed front-end.
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(a) Blocks used in the generator and discriminator networks. Gated-C is gated convolution, I-Gated-C is instance
normalized gated convolution, Res-C is residual convolution block and SI-Gated-C is pixel shuffled I-Gated-C.
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(b) Generator block diagram. ’c’ refers to channels, ’k’ refers to convolution kernel size and ’s’ refers to stride.
’T’ denotes the number of frames in the input.
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Figure 3: Block diagram representation of the generator and the discriminator networks used in our
CycleGAN architecture.
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