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1 Introduction

Diplomacy is a strategic board game where different powers battle over control of supply centers in
Europe. The original authors [1] developed supervised learning and reinforcement learning models to
learn to play the No Press version of Diplomacy, beating the existing state of the art rule-based bots.

The original paper utilizes various different machine and reinforcement learning techniques, including
attention, encoder and decoder blocks, graph convolutional networks (GCN), LSTM, and FiLM [2].

Their implementation and code built off of extensive existing software frameworks like DAIDE [3],
developed by the Diplomacy research community for interfacing with other bots. Furthermore, the
authors have also developed a game engine that provides a simple interface for playing Diplomacy
games.

Because the authors of the paper released all their code for their models, the paper is not entirely
comprehensive with their implementation details. Without being able to refer to their code, these
ambiguities proved to make replication fairly difficult. We relied on communication with the paper
authors in order to resolve a variety of ambiguities.

2 Background

2.1 Diplomacy

Diplomacy is a strategic board game where two to seven powers battle for ownership of various
supply centers in Europe. The board consists of 75 provinces, which can be land, coast, or water. 37
of these 75 provinces are the supply centers. Each power has a number of units that are either fleets
or armies that can be ordered to move, support, hold, or convoy. Diplomacy progresses as a sequence
of phases, where each phase is either a movement, retreat, or adjustment phase; the allowed orders
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depend on the type of phase. During each phase, every player submits an order for each of their units,
and these orders are executed simultaneously. Additionally, given the set of submitted orders on a
given phase, the results of these orders is deterministic. While a submitted order may have a different
outcome based on an order submitted by another player, there is no randomness in the game itself.

A crucial part of Diplomacy is the negotiation and disagreements between human players. However,
there are variants of the game that are “No-Press", where no communication is allowed. Therefore,
alliances and agreements are created solely through actions on the board. The authors further
“propose Diplomacy as a new multi-agent benchmark for dynamic cooperation emergence in a rich
environment".

2.2 SL DipNet

The Supervised DipNet architecture is essentially a modified encoder-decoder architecture, with
multiple other features such as GCN and FiLM.

The encoder is meant to output a summary representation of the input board state and the orders
from the previous phase. The encoder architecture consists of blocks, which are a GCN layer, batch
normalization, a FILM layer, and ReLU. The GCN layer multiplies the inputs by an adjacency matrix
that encodes which provinces are adjacent to one another on the board and feeds the resulting graph
through a linear layer. Each encoder block then applies batch normalization.

The output of the GCN and batch normalization is passed to the FiLM layer, which creates parameters
to linearly shift the outputs, conditioned on the current season of the game and which power the agent
plays as. The encoder is N of these blocks in sequence (N=16 in the paper and in our code). There
are also residual connections between the encoder blocks, except for the case where one encoder
block might have a different output shape from another(e.g. differently sized dense layers), in which
case the residual connection is left out.

The decoder consists of an LSTM layer that sequentially receives a concatentation of the previous
taken order and the province embeddings that can receive orders from the agent’s power. The
outputs of the LSTM are passed through a linear layer and masked softmax to compute a probability
distribution over the possible valid orders. The paper implements teacher forcing and beam search to
improve the results of the decoder model.

In testing, against 6 RandomPlayer opponents, the SL DipNet model won 100% of the time (out of
1000 games). Against 6j the state-of-the-art Albert Level 0 bots, SL DipNet won 28.9% of the total
208 games.

2.3 RL DipNet

RL DipNet is based on an A2C architecture. Specifically, in this paper the A2C architecture uses
15-step returns for approximately 20,000 updates (approx. 1 million steps). The “actor" follows
the same model as SL DipNet (and uses SL DipNet for pretraining). The “critic" predicts the value
of each state and is briefly mentioned to be “pre-trained on human games by predicting the final
rewards". Paquette et al. construct a reward function that is “the average of (1) a local reward function
(+1/-1 when a supply center is gained or lost (updated every phase and not just in Winter)), and (2) a
terminal reward function (for a solo victory, the winner gets 34 points; for a draw, the 34 points are
divided proportionally to the number of supply centers)."

RL DipNet was only tested againt SL DipNet. In testing, against 6 SL DipNet opponents, the RL
DipNet model won 14% of the time (out of 1000 games).

3 Implementation Details

This section describes our replication attempt of the SL DipNet and RL DipNet models. Our code
can be found here.


https://github.com/danieldritter/replication_project

3.1 Data Processing

The authors provide their training dataset of 150,000 Diplomacy games as raw JSON files. We extract
the features of unit type, unit power, buildable, removable, dislodged unit type, dislodged unit power,
area type, and supply center owner and convert them into board states to pass into the first set of
blocks of our encoder architecture. We also convert the unit type, issuing power, order type, source
power, and destination power into our previous order into the second set of blocks of the encoder
architecture.

3.2 SL DipNet reproduced architecture

The replication of SL DipNet includes all the components of the SL encoder architecture described
original paper. However, the decoder replication did not include teacher forcing or beam search to
improve the results. We were unsure how to incorporate teacher forcing and only found out that the
authors used beam search through email correspondence; it was not originally mentioned in their
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3.3 RL DipNet reproduced architecture

Our replication of RL DipNet has all of the components of the RL architecture described in the paper,
such as the value function trained on the supervised dataset and the encoder-decoder architecture
matching the SL model for the actor. However, due to memory overflow issues and time constraints,
we could not get the RL agent to successfully train.

3.4 Ambiguities

This section details methods that were ambiguous or unclear from the paper about implementing the
SL DipNet and RL DipNet models.

3.4.1 Decoder Architecture

In the paper’s experiments section, attention based on the location of current order increases perfor-
mance of the supervised model. However, the paper did not include details of implementation. We
originally thought that attention was a separate learnable layer, but we struggled to incorporate this
into the LSTMs of the decoder. We had to contact the authors, and they told us to compute attention
by indexing into the output of the encoder model by province.

The original authors use a special “GO" token as the original state of the decoder’s LSTM layer,
which is not mentioned in the paper.

The additional techniques of teacher forcing and beam search are not addressed in the paper. Teacher
forcing is mentioned, but there are no details for implementation. Furthermore, beam search is not
mentioned in the paper but is used in their implementation. In our correspondence with the original
authors, they directed us to a portion of their decoder which used Beam search. Since we are not using
any of the authors’ original code and only looking when necessary, we were unable to implement
Beam search as the authors originally have.

3.4.2 Dimensions

Because of ambiguities regarding how attention was implemented in the decoder, it was unclear what
sizes inputs to the LSTM Cells were supposed to be. Since the number of orderable locations changes
based on the power, the outputs of the LSTM don’t have the same size. Through correspondence
with the authors, it was clarified how the dimensions should be structured as including embedding of
valid orders, which would then be passed into the LSTM with the attention.

Furthermore, in several equations presented by the paper, subscripts are omitted, either throughout the
equation or in only one part of the equation. This creates confusion as to whether the subscript-less
constants presented are the same as the subscripted constants.



3.4.3 Value function

For the value function used as a critic in RL DipNet, the paper mentions that they “used a value
function pre-trained on human games by predicting the final rewards." Without more detail, we were
unsure as to the training data and labels for this network and had to clarify with the authors the exact
architecture of this value network.

3.4.4 Reward function

Section “6.2 Reinforcement Learning and Self-play” of the original paper describes a reward function
for training DipNet. A small ambiguity we ran into here was that the paper describes the reward
function as being “the average of (1) a local reward function (+1/-1 when a supply center is gained
or lost (updated every phase and not just in Winter)), and (2) a terminal reward function (for a solo
victory, the winner gets 34 points; for a draw, the 34 points are divided proportionally to the number
of supply centers)”. This was confusing since local rewards are received throughout the game, while
terminal reward is only received at the end of a game. It was not clear how to go about averaging the
two rewards because they were not received at the same time. Follow-up with the authors clarified
that the rewards are computed only after the game is completed, and that the the terminal reward is
considered to be O for all states other than the last.

In order to simplify implementation, we decided to omit the fact that the local reward should be
updated every phase and not just in Winter. In the game engine, powers receive new supply centers
in the Winter. Simply assigning reward based on this made the implementation simpler, which was
important given our time constraint. Given more time, we would divide up the reward over the other
seasons based on the results of the game, or as a simpler alternative, interpolate the reward gained in
the winter over the other seasons so that the reward in all the seasons are less sparse.

3.5 Implementation Difficulties

This section details difficulties faced when implementing and training the SL DipNet and RL DipNet
models.

3.5.1 Diplomacy Game Engine

Since there is no existing implementation of the Diplomacy game, the authors create their own
Diplomacy Game Engine. This is separate from the repository containing the implementations of
their SL DipNet and RL DipNet models. Since many aspects of the model architecture require
knowledge of the Diplomacy board game and rules, we incorporate parts of the Diplomacy Game
Engine into our replication.

Section 4.3 “Decoder” in the original paper describes a “top-left to bottom-right ordering based on
topological sorting, aiming to prevent jumping across the map during decoding”. This topological
ordering is not listed in the paper and no instructions for creating this ordering are present. For
consistency with the original implementation, we use a hardcoded ordering that is included in the
Diplomacy Game Engine.

Similarly, the decoder model uses a masked softmax based on the possible orders for a given board
state. The paper does not describe how to compute possible orders and no previous implementation
of the Diplomacy rules exist, so we use the authors’ Game objects to compute the masks.

3.5.2 Other Players

Section 6.2 “Reinforcement Learning and Self-play" of the paper mentions the different opponents
used to test the agents. These agents are briefly listed in the paper. We used the implementations
of other agent types provided in the same repository as the SL DipNet and the RL DipNet models.
We did not use the bot that incorporated these models and instead used the bots that were based on
rulesets like random/greedy/dumb play.

3.5.3 Training time

The authors do not mention the training times and required computing resources for the SL DipNet
and RL DipNet models in their paper. When contacted through email, they state their implementation


https://github.com/Diplomacy/Diplomacy

of SL DipNet requires 24 hours on 1 GPU to train. Their RL DipNet model requires roughly 30
days on 4 GPUs; therefore, their RL. DipNet model is very difficult to reproduce without access to a
company or a university’s computing resources.

Our implementation of SL DipNet struggles with efficiency and long training times because it
interacts with the game engine to create the masks for the decoder model. This forces our model
to train with eager execution, which is the bottleneck of our training process. We were unable to
switch to graph execution, which significantly slowed our training time. We originally trained the
replicated SL DipNet model 36 hours, which equates to roughly 8000 Diplomacy games; however, we
encountered an error in a training that required us to discard those weights. Therefore, a combination
of training errors and efficiency issues causes us to training our model on roughly 1500 games, which
is 1% of the total data.

3.5.4 RL DipNet memory overflows and training time

Two main issues prevented us from training the RL DipNet: memory overflows and infeasibly long
training times.

1. Memory overflows: even on a machine with 52 gigabytes of memory, the machine would
run out of memory while self-playing games. We believe that the amount of memory used
increases drastically with the length of the game, and experienced memory overflow after
100-200 phases (time-steps). As we are using Google Cloud Platform for compute 1, we
upgraded to using a machine with 160gb of memory. Under our GCP constraints, however,
this meant we could not use a machine with a GPU.

2. Training time: since one phase of self-play requires calling the actor 7 times (one for each
player), self-playing even one game is estimated to take between 5-30 minutes, depending
on the length of the game. As the authors trained for approximately 1 million time steps,
this would take an unreasonably long time to train.

4 Results

The following table demonstrates our model’s performance against 6 Random bots. Due to our time
constraint, the sample size is 15 games.

4.1 Figures

Agent A (1x) | Agent B (6x) | % Win | % Most SC | % Survived | % Defeated | # Games
SL DipNet Random 6.7% 6.7% 60.0% 26.7% 15

Table 1: Evaluating Reproduced SL DipNet against RandomBot

5 Discussion/Conclusion

Overall, the paper makes good use of diagrams for explaining the overall architecture of the models.
Though the paper doesn’t describe all the minute details of the implementation, it does lay out the
general architecture while providing intuition for the design decisions.

The majority of the ambiguities we faced in reproducing the models were due to underspecification
in the paper. Details like the type of attention used in the decoder and the dimension of the decoder’s
output were left unspecified, making it difficult to determine what choices to make in replication.

However, this is understandable given that all of the code is published. As such, it is likely intended
that readers be able to refer to the code in order to fill in gaps in the paper itself. Being part of
a complex software project, it cannot be expected that the paper describe all the intricacies of the
functionality. As part of the replication challenge, we were not able to view the code, though it is
clear that the paper was written with the availability of the code in mind. As such, it may have been a
poor choice of paper for a replication challenge.



Additionally, while the game engine/environment is developed very well, due to the very expensive
training times and resources required (e.g. 30 days on 4 GPUs), Diplomacy may be difficult as a
research benchmark.

6 Future Work

Future work would follow in a number of directions:

1. We only trained our SL DipNet model for 1500 games, which is a very small portion of the
training dataset. We would like to improve the efficiency of our model and the integration
with the original authors’ game engine so that we can train on the full dataset of roughly
150000 games to achieve better results. We would also like to train our RL DipNet model
for 30 days, as the original authors’ have, to better evaluate the RL results.

2. Since we were unable to incorporate teacher forcing and beam search into our decoder
model, we would like to see how these added techniques affect the SL DipNet results.

3. Although the original paper performed ablation studies, we would have also liked to perform
our own ablation studies (e.g. the number of blocks in the encoder).

4. With fully trained SL DipNet and RL DipNet, we would like to also try reproducing the
coalition analysis described in section 6.3 of the original paper. While we wrote code to
compute the X -support-ratio, we did not include the results here as the main purpose is to
use it to support the claim that “the supervised agent was able to learn to coordinate support
orders while this behaviour appears to deteriorate during self-play training." In the future,
with a trained RL DipNet, it would be interesting to see how the results hold up.

5. As deep reinforcement learning is known to be very unstable, with more time, we would try
training with different hyperparameters (e.g. discount rate gamma, the n-step return for the
A2C agent, etc.).
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