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ABSTRACT
State-of-the-art machine learning methods exhibit limited compositional general-
ization. At the same time, there is a lack of realistic benchmarks that comprehen-
sively measure this ability, which makes it challenging to find and evaluate im-
provements. We introduce a novel method to systematically construct such bench-
marks by maximizing compound divergence while guaranteeing a small atom di-
vergence between train and test sets, and we quantitatively compare this method
to other approaches for creating compositional generalization benchmarks. We
present a large and realistic natural language question answering dataset that is
constructed according to this method, and we use it to analyze the compositional
generalization ability of three machine learning architectures. We find that they
fail to generalize compositionally and that there is a surprisingly strong nega-
tive correlation between compound divergence and accuracy. We also demonstrate
how our method can be used to create new compositionality benchmarks on top
of the existing SCAN dataset, which confirms these findings.

1 INTRODUCTION
Human intelligence exhibits systematic compositionality (Fodor & Pylyshyn, 1988), the capacity to
understand and produce a potentially infinite number of novel combinations of known components,
i.e., to make “infinite use of finite means” (Chomsky, 1965). In the context of learning from a set of
training examples, we can observe compositionality as compositional generalization, which we take
to mean the ability to systematically generalize to composed test examples of a certain distribution
after being exposed to the necessary components during training on a different distribution.

Humans demonstrate this ability in many different domains, such as natural language understanding
(NLU) and visual scene understanding. For example, we can learn the meaning of a new word and
then apply it to other language contexts. As Lake & Baroni (2018) put it: “Once a person learns the
meaning of a new verb ‘dax’, he or she can immediately understand the meaning of ‘dax twice’ and
‘sing and dax’.” Similarly, we can learn a new object shape and then understand its compositions
with previously learned colors or materials (Johnson et al., 2017; Higgins et al., 2018).

In contrast, state-of-the-art machine learning (ML) methods often fail to capture the compositional
structure that is underlying the problem domain and thus fail to generalize compositionally (Lake &
Baroni, 2018; Bastings et al., 2018; Loula et al., 2018; Russin et al., 2019; Johnson et al., 2017). We
believe that part of the reason for this shortcoming is a lack of realistic benchmarks that comprehen-
sively measure this aspect of learning in realistic scenarios.

As others have proposed, compositional generalization can be assessed using a train-test split based
on observable properties of the examples that intuitively correlate with their underlying composi-
tional structure. Finegan-Dollak et al. (2018), for example, propose to test on different output pat-
terns than are in the train set, while Lake & Baroni (2018) propose, among others, to split examples
by output length or to test on examples containing primitives that are rarely shown during training.
In this paper, we formalize and generalize this intuition and make these contributions:

• We introduce distribution-based compositionality assessment (DBCA), which is a novel
method to quantitatively assess the adequacy of a particular dataset split for measuring
compositional generalization and to construct splits that are ideally suited for this purpose
(Section 2).
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• We present the Compositional Freebase Questions (CFQ)1, a simple yet realistic and large
NLU dataset that is specifically designed to measure compositional generalization using
the DBCA method, and we describe how to construct such a dataset (Section 3).

• We use the DBCA method to construct a series of experiments for measuring composi-
tionality on CFQ and SCAN (Lake & Baroni, 2018) and to quantitatively compare these
experiments to other compositionality experiments (Section 4).

• We analyze the performance of three baseline ML architectures on these experiments and
show that these architectures fail to generalize compositionally, and perhaps more surpris-
ingly, that compound divergence between train and test sets is a good predictor of the test
accuracy (Section 5).

2 DISTRIBUTION-BASED COMPOSITIONALITY ASSESSMENT (DBCA)

Like other authors, we propose to measure a learner’s ability to generalize compositionally by using
a setup where the train and test sets come from different distributions. More specifically, we propose
a setup where each example is obtained by composing primitive elements (atoms), and where these
atoms are similarly represented in the train and test sets while the test set contains novel compounds,
i.e., new ways of composing the atoms of the train set.

As a simple illustrative scenario, consider the task of answering simple questions such as “Who
directed Inception?” and “Did Christopher Nolan produce Goldfinger?”. In this scenario, the atoms
intuitively correspond to the primitive elements that are used to compose those questions, such as
the predicates “direct(ed)” and “produce(d)”, the question patterns “Who [predicate] [entity]” and
“Did [entity1] [predicate] [entity2]”, and the entities “Inception”, “Christopher Nolan”, etc. The
compounds on the other hand correspond to the combinations of these atoms that appear in the
various examples: "Who directed [entity]?", "Did Christopher Nolan [predicate] Inception?", etc.

To measure compositional generalization on such a task, one might therefore use the questions “Who
directed Inception?” and “Did Christopher Nolan produce Goldfinger?” as training examples while
testing on questions such as “Did Christopher Nolan direct Goldfinger?” and "Who produced Incep-
tion?" because the atoms are identically represented in the train and test sets while the compounds
differ.

To make this intuition more precise, we focus on datasets such as CFQ (introduced in Section 3)
and SCAN (Lake & Baroni, 2018), where each example can be created from a formal set of rules by
successively applying a number of these rules. In this case, the atoms are the individual rules, while
the compounds are the subgraphs of the directed acyclic graphs (DAGs) that correspond to the rule
applications. (See Sections 3 and 4 for more details.)

2.1 PRINCIPLES FOR MEASURING COMPOSITIONALITY

We use the term compositionality experiment to mean a particular way of splitting the data into train
and test sets with the goal of measuring compositional generalization. Based on the notions of atoms
and compounds described above, we say that an ideal compositionality experiment should adhere to
the following two principles:

1. Similar atom distribution: All atoms present in the test set are also present in the train set,
and the distribution of atoms in the train set is as similar as possible to their distribution in
the test set.

2. Different compound distribution: The distribution of compounds in the train set is as differ-
ent as possible from the distribution in the test set.

The second principle guarantees that the experiment is compositionally challenging in the sense that
it tests the learner on compounds that are as different as possible from the compounds used during
training. The first principle aims to guarantee that the experiment is exclusively measuring the effect
of the difference in the way atoms are composed to form compounds (rather than some related but
different property such as domain adaptation on the distribution of the atoms).

To determine to which degree a certain experiment adheres to these principles, we use the following
formalization. For a sample set T , we use FA(T ) to denote the frequency distribution of atoms

1Available at https://github.com/google-research/google-research/tree/master/cfq
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in T and FC(T ) for the weighted frequency distribution of compounds in T , which correspond to
the subgraphs of the rule application DAGs. For practicality, we do not consider all subgraphs of
rule application DAGs when computing the compound divergence. Instead, we first generate a large
subset G of subgraphs, then weight them in context of their occurrence, and keep only the ones
with highest sum of weights. The purpose of the weighting is to avoid double-counting compounds
that are highly correlated with some of their super-compounds. We achieve this by calculating the
weight of G ∈ G in a sample as w(G) = maxg∈occ(G)(1 − maxG′:g≺g′∈occ(G′) P (G

′|G)), where
occ(G) is the set of all occurrences of G in the sample, ≺ denotes the strict subgraph relation, and
P (G′|G) is the empirical probability of G′ occurring as a supergraph of G over the full sample set.
See Appendix L.4 for example subgraphs and more details on the weighting.

We measure divergence (or similarity) of the weighted distributions using the Chernoff coefficient
Cα(P‖Q) =

∑
k p

α
k q

1−α
k ∈ [0, 1] (Chung et al., 1989). For the atom divergence, we use α =

0.5, which corresponds to the Bhattacharyya coefficient and reflects the desire of making the atom
distributions in train and test as similar as possible. For the compound divergence, we use α =
0.1, which reflects the intuition that it is more important whether a certain compound occurs in
P (train) than whether the probabilities in P (train) and Q (test) match exactly. This allows us to
formally define as follows the notions of compound divergence DC and atom divergence DA of a
compositionality experiment consisting of a train set V and a test set W :

DC(V ‖W ) = 1 − C0.1(FC(V ) ‖FC(W ))

DA(V ‖W ) = 1 − C0.5(FA(V ) ‖FA(W ))

Based on these principles, we suggest to use as a preferred compositionality benchmark for a given
dataset the accuracy obtained by a learner on splits with maximum compound divergence and low
atom divergence (we use DA ≤ 0.02). See Section 4 for details about how to construct such splits.

3 THE CFQ DATASET

We present the Compositional Freebase Questions (CFQ) as an example of how to construct a da-
taset that is specifically designed to measure compositional generalization using the DBCA method
introduced above. CFQ is a simple yet realistic, large dataset of natural language questions and
answers that also provides for each question a corresponding SPARQL query against the Freebase
knowledge base (Bollacker et al., 2008). This means that CFQ can be used for semantic parsing (Be-
rant et al., 2013; Yao & Van Durme, 2014), which is the task that we focus on in this paper.

3.1 AUTOMATIC, RULE-BASED GENERATION

Saxton et al. (2019) describe a number of benefits for automated rule-based dataset generation, in-
cluding scalability, control of scope, and avoidance of human errors. Beyond these benefits, however,
such an approach is particularly attractive in the context of measuring compositional generalization
using the DBCA method, as it allows us to precisely track the atoms (rules) and compounds (rule
applications) of each example by recording the sequence of rule applications used to generate it.

Since the way we measure compositionality depends on how the examples can be broken down into
atoms and compounds, we design the generation rules so as to have few and meaningful atoms. More
precisely, we aim to have as few rules as possible so that the richness of the examples comes from
composing them, which yields a large variety of compounds (enabling a large range of different
compound divergences) while making it easy to obtain similar distributions of atoms. Also, we aim
to make our rules truly “atomic” in the sense that the behavior of any rule is independent of the
context where it is applied (e.g., rules may not contain “if-then-else” constructs).

In order to minimize the number of rules, we use an intermediate logical form that serves as a
uniform semantic representation with relatively direct mappings to natural language and SPARQL.
Our rules thus fall into the following four categories (a selection of rules is provided in Appendix M):

1. Grammar rules that generate natural language constructs and corresponding logical forms.
2. Inference rules that describe transformations on logical forms, allowing us to factor out

transformations that are independent of specific linguistic and SPARQL constructs.
3. Resolution rules that map constructs of the logical form to SPARQL constructs.
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Figure 1: Generating a natural language question together with its SPARQL query using four types
of rules. One (of potentially many) intermediate logical forms is also shown.

4. Knowledge rules that supply logical form expressions that are universally applicable. Other
rules can be kept more generic by parameterizing them on knowledge.

These rules define a language of triples of the form 〈question, logical form, SPARQL query〉. Our
generation algorithm produces such triples in a mixed top-down and bottom-up fashion. We first ap-
ply grammar rules and inference rules to produce the natural language questions and their semantics
in our logical form. Then we apply resolution rules to obtain the SPARQL query. See Figure 1 for
an illustration. In addition, the generator produces a normalized, directed acyclic graph (DAG) of
rule applications that corresponds to the normalized program that generated the triple. (Appendix L
shows an example.) Edges of this DAG represent dependencies among the rule applications, and the
normalization ensures that a certain rule combination is represented using the same DAG across all
the examples where it occurs.

The described approach can generate a potentially infinite set of questions, from which we first
sample randomly and then subsample (to maximize the overall diversity of rule combinations while
keeping a uniform distribution over complexity). We measure the diversity of rule combinations
using the empirical entropy of a weighted subset of the rule application DAGs, and we use the num-
ber of rule applications as a measure of the complexity of an example. We also limit the maximum
example complexity such that the questions remain relatively natural. Table 1 shows examples of
generated questions at varying levels of complexity. An example of a complete data item is shown
in Appendix A, a more detailed data quality analysis is presented in Appendix B, and the generation
algorithm is discussed in more detail in Appendix K.

3.2 DATASET DETAILS AND STATISTICS

Input and output. While the primary focus of the dataset is semantic parsing (natural language
question to SPARQL query), we also provide natural language answers for each question. This allows
the dataset to be used in a text-in-text-out scenario as well (see Appendix A).

Ambiguity. We largely avoid ambiguity in the questions. In particular, we make sure each name is
used to refer to exactly one entity, and we avoid different possible parse trees, different interpreta-
tions of plurals, and the need for disambiguation that requires semantic knowledge.

Scope. We select the following language features as compositional building blocks: open ques-
tions and closed questions; subordinate clauses; active and passive voice; conjunctions of verb
phrases and of noun phrases; possessives with roles (“X’s parent”); adjectives; and type restrictions.
For knowledge base features, we select roles, verbs, types, and adjectives from domains that are
well-represented in Freebase and that can be combined easily. We start from the popular movie do-

Table 1: Examples of generated questions at varying levels (L) of complexity.
L Question 7→ Answer
10 What did [Commerzbank] acquire? 7→ Eurohypo; Dresdner Bank
15 Did [Dianna Rhodes]’s spouse produce [Soldier Blue]? 7→ No
20 Which costume designer of [E.T.] married [Mannequin]’s cinematographer? 7→ Deborah Lynn Scott
30 Who was influenced by and influenced [Steve Vai], [Marx Brothers], [Woody Allen], and [Steve Martin]?
7→ Brendon Small

40 Was [Weekend Cowgirls] produced, directed, and written by a film editor that [The Evergreen State Col-
lege] and [Fairway Pictures] employed? 7→ No

50 Were [It’s Not About the Shawerma], [The Fifth Wall], [Rick’s Canoe], [White Stork Is Coming], and
[Blues for the Avatar] executive produced, edited, directed, and written by a screenwriter’s parent? 7→ Yes
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Table 2: (a) CFQ dataset statistics. (b) CFQ complexity statistics in comparison to other semantic
parsing datasets. Datasets in the first section map text to SQL for various DBs, with numbers as
reported by Finegan-Dollak et al. (2018). Datasets in the second section map text to SPARQL for
Freebase. The number of query patterns is determined by anonymizing entities and properties.

(a)
CFQ Dataset Statistics Value
Unique questions 239,357
Question patterns (mod entities) 239,357
Question patterns (mod entities, verbs, etc.) 49,320
Unique queries 228,149
Query patterns (mod entities) 123,262
Query patterns (mod entities and properties) 34,921
Open questions 108,786
Closed questions (with answer “yes”) 65,092
Closed questions (with answer “no”) 65,479

(b) Query
Dataset Questions Queries patterns
Academic 196 185 92
Advising 4,570 211 174
AMDB 131 89 52
ATIS 5,280 947 751
GeoQuery 877 246 98
Restaurants 378 23 17
Scholar 817 193 146
WikiSQL 80,654 77,840 488
Yelp 128 110 89
WebQuestionsSP 4,737 3,750 240
ComplexWebQuestions 34,689 27,875 2,474
CFQ (this work) 239,357 228,149 34,921

main (e.g., directing, producing, editor, sequel) and extend this with personal relations (e.g., parent,
spouse, sibling), companies (e.g., founding, employer), and adjectives (e.g., gender, nationality).

Logical form and grammar. For the internal logical form, we adopt a variation of the description
logic EL (Baader et al., 2003; 2005), augmented with additional constructors (see Appendix I)
to more easily map to certain linguistic structures. For the grammar rules, we use a unification-
based grammar syntax similar to that used in the Prolog extension GULP 3.1 (Covington, 1994),
with addition of support for disjunction, negation, absence, and default inheritance of features for
compactness of representation.

Grounding in Freebase. Once an example is generated by the CFQ rules, it still contains entity
placeholders instead of Freebase machine ids (MIDs). For the task of semantic parsing, the examples
could theoretically be used as-is, as our avoidance of semantic ambiguity means that a learner should
not need knowledge of the specific entity in order to parse the question. To make the questions
natural, however, we apply an additional step of replacing the placeholders with appropriate specific
entities. To do this we first execute the generated SPARQL query against Freebase. This returns a
set of candidate MID combinations that satisfy the query and can be used as substitutes. If the
set is empty, we abandon the generated question candidate as unnatural. Otherwise, we pick one
combination at random to yield a question with positive answer. In the case of a closed question, we
also generate a variation that yields the answer “No”, which we do by mixing in MIDs from another
substitution (or a more generic replacement if that fails) to keep the question as plausible-sounding
as possible. We then randomly choose either the question with positive or with negative answer, to
avoid spurious correlations between question structure and yes/no answer.

Semantic and structural filtering. Even among the questions that can be satisfied in Freebase,
there are some that are meaningful but somewhat unnatural, such as “Was Strange Days directed
by a female person whose gender is female?”. We automatically filter out such unnatural questions
using semantic and structural rules. Note that since we do not require a learner to identify such
questions, we do not track these filtering rules.

Release and statistics. CFQ contains 239,357 English question-answer pairs that are answerable
using the public Freebase data. (The data URL is not yet provided for anonymous review.) We
include a list of MIDs such that their English names map unambiguously to a MID. Table 2(a) sum-
marizes the overall statistics of CFQ. Table 2(b) uses numbers from (Finegan-Dollak et al., 2018)
and from an analysis of WebQuestionsSP (Yih et al., 2016) and ComplexWebQuestions (Talmor &
Berant, 2018) to compare three key statistics of CFQ to other semantic parsing datasets (none of
which provide annotations of their compositional structure). CFQ contains the most query patterns
by an order of magnitude and also contains significantly more queries and questions than the other
datasets. Note that it would be easy to boost the raw number of questions in CFQ almost arbitrarily
by repeating the same question pattern with varying entities, but we use at most one entity substitu-
tion per question pattern. Appendix C contains more detailed analyses of the data distribution.
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Table 3: Comparison of relevant measurements for different split methods on CFQ / SCAN.

Split Method

DA

Atom
Divergence

DC

Compound
Divergence

Output
Pattern
Coverage

Input
Pattern
Coverage

Output
Length
Ratio

Input
Length
Ratio

C
FQ

Random 0.000 0.000 0.726 0.705 1.007 1.003
Output Length 0.033 0.176 0.000 0.004 0.486 0.648
Input Length 0.047 0.062 0.285 0.047 0.584 0.578
Output Pattern 0.000 0.008 0.000 0.516 0.977 0.984
Input Pattern 0.000 0.005 0.636 0.000 1.028 1.017
MCD1 0.020 0.694 0.079 0.032 0.732 0.871
MCD2 0.020 0.713 0.023 0.007 0.838 0.958
MCD3 0.020 0.704 0.034 0.027 0.807 0.896

SC
A

N

Random 0.000 0.047 1.000 1.000 0.998 0.994
Output Length 0.034 0.437 0.000 1.000 0.367 0.856
Input Length 0.106 0.380 0.278 0.000 0.501 0.771
Output Pattern 0.003 0.221 0.000 0.967 1.081 0.989
Input Pattern 0.005 0.240 0.951 0.000 0.993 0.967
MCD1 0.015 0.736 0.260 0.357 0.698 0.926
MCD2 0.020 0.734 0.259 0.010 0.757 0.837
MCD3 0.014 0.735 0.318 0.009 0.632 0.938

4 COMPOSITIONALITY EXPERIMENTS FOR CFQ AND SCAN

The DBCA principles described in Section 2.1 enable a generic and task-independent method for
constructing compositionality experiments. To construct such an experiment for a dataset U and a
desired combination of atom and compound divergences, we use an iterative greedy algorithm that
starts with empty sets V (train) and W (test), and then alternates between adding an example u ∈ U
to V orW (while maintaining the desired train/test ratio). At each iteration, the element u is selected
such thatDC(V ‖W ) andDA(V ‖W ) are kept as closely as possible to the desired values. To reduce
the risk of being stuck in a local optimum, we also allow removing examples at certain iterations.

In general, there are many different splits that satisfy a desired compound and atom divergence.
This reflects the fact that a certain compound may either occur exclusively in the train set or the
test set, or it may occur in both of them because the split may have achieved the desired compound
divergence by separating other (possibly orthogonal) compounds. Our greedy algorithm addresses
this by making random choices along the way, starting with picking the first example randomly.

For the goal of measuring compositional generalization as accurately as possible, it is particularly
interesting to construct maximum compound divergence (MCD) splits, which aim for a maximum
compound divergence at a low atom divergence (we use DA ≤ 0.02). Table 3 compares the com-
pound divergence DC and atom divergence DA of three MCD splits to a random split baseline as
well as to several previously suggested compositionality experiments for both CFQ and the existing
SCAN dataset (cf. Section 5.3). The split methods (beyond random split) are the following:

• Output length: Variation of the setup described by Lake & Baroni (2018) where the train set
consists of examples with output (SPARQL query or action sequence) length≤N , while the
test set consists of examples with output length >N . For CFQ, we use N = 7 constraints.
For SCAN, we use N = 22 actions.

• Input length: Variation of the above setup, in which the train set consists of examples with
input (question or command) length ≤ N , while test set consists of examples with input
length > N . For CFQ, we use N = 19 grammar leaves. For SCAN, we use N = 8 tokens.

• Output pattern: Variation of setup described by Finegan-Dollak et al. (2018), in which the
split is based on randomly assigning clusters of examples sharing the same output (query
or action sequence) pattern. Query patterns are determined by anonymizing entities and
properties; action sequence patterns collapse primitive actions and directions.

• Input pattern: Variation of the previous setup in which the split is based on randomly as-
signing clusters of examples sharing the same input (question or command) pattern. Ques-
tion patterns are determined by anonymizing entity and property names; command patterns
collapse verbs and the interchangeable pairs left/right, around/opposite, twice/thrice.
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All of these experiments are based on the same train and validation/test sizes of 40% and 10% of
the whole set, respectively. For CFQ, this corresponds to about 96k train and 12k validation and test
examples, whereas for SCAN, it corresponds to about 8k train and 1k validation and test examples.
We chose to use half of the full dataset for the train-test splits, as it led to an appropriate balance
between high compound divergence and high train set size in informal experiments.

The MCD splits achieve a significantly higher compound divergence at a similar atom divergence
when compared to the other experiments. The reason for this is that, instead of focusing on only one
intuitive but rather arbitrary aspect of compositional generalization, the MCD splits aim to optimize
divergence across all compounds directly.

Interestingly, the MCD splits still correlate with the aspects of compositional generalization that are
targeted by the other experiments in this table. As shown in the four right columns of Table 3, for
each MCD split, the train set V contains on average shorter examples than the test set W (measured
by the ratio of average lengths), and V also contains only a small fraction of the input and output
patterns used in W (measured by the fraction of patterns covered). However, these correlations
are less pronounced than for the experiments that specifically target these aspects, and they vary
significantly across the different MCD splits.

This illustrates that MCD splits are comprehensive in the sense that they cover many different aspects
of compositional generalization, especially when looking at multiple of them. It also means that
whether a certain example ends up in train or test is not determined solely by a single criterion that
is immediately observable when looking at the input and output (such as length). As we show in
Appendix D.1, this generally makes the examples in train and test look fairly similar.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 EXPERIMENT SETUP

We use three encoder-decoder neural architectures as baselines: (1) LSTM+attention as an LSTM
(Hochreiter & Schmidhuber, 1997) with attention mechanism (Bahdanau et al., 2015); (2) Trans-
former (Vaswani et al., 2017) and (3) Universal Transformer (Dehghani et al., 2018).

We tune the hyperparameters using a CFQ random split, and we keep the hyperparameters fixed for
both CFQ and SCAN (listed in Appendix E). In particular the number of training steps is kept constant
to remove this factor of variation. We train a fresh model for each experiment, and we replicate each
experiment 5 times and report the resulting mean accuracy with 95% confidence intervals.

Note that while we construct test and validation sets from the same distribution, we suggest that
hyperparameter tuning should be done on a random split (or random subset of the train set) if one
wants to measure compositional generalization of a model with respect to an unknown test distribu-
tion as opposed to an architecture with respect to a known test distribution. Tuning on a validation
set that has the same distribution as the test set would amount to optimizing for a particular type of
compound divergence and thus measure the ability for a particular architecture to yield models that
can be made to generalize in one particular way (through leaking information about the test set in
the hyperparameters).

Similarly to Finegan-Dollak et al. (2018), we anonymize the Freebase names and MIDs in the textual
input and the SPARQL output, respectively, by replacing them with a placeholder (e.g., “M0” for
the first MID). This removes the need for two learning sub-tasks that are orthogonal to our focus:
named entity recognition and learning that the MIDs are patterns that need to be copied. An example
input-output (question-query) pair then looks like the following: ‘Was M0 a screenwriter’ 7→ ‘select
count(*) where {M0 a ns:film.writer}’.

The main relation we are interested in is the one between compound divergence of the data split
and accuracy. Specifically, we compute the accuracy of each model configuration on a series of
divergence-based splits that we produce with target compound divergences that span the range be-
tween zero and the maximum achievable in 0.1 increments (while ensuring that atom divergence
does not exceed the value of 0.02). For each target divergence, we produce at least 3 different splits
with different randomization parameters (compare Section 4). For comparison, we also compute
accuracies on the other splits shown in Table 3.
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(a) (b)

Figure 2: Accuracies of the three baseline systems on (a) CFQ and (b) SCAN vs. compound diver-
gence for different split methods and for different target compound divergences.

Table 4: Mean accuracies of the three baseline systems on CFQ and SCAN (in %).
Dataset CFQ SCAN
Split Method Random MCD Random MCD
LSTM+attention 97.4 ±0.3 14.9 ±1.1 99.9 ±2.7 6.1 ±2.2
Transformer 98.5 ±0.2 17.9 ±0.9 100.0 ±0.0 1.1 ±0.5
Universal Transformer 98.0 ±0.3 18.9 ±1.4 99.9 ±0.2 1.2 ±0.7

5.2 RESULTS AND ANALYSIS FOR CFQ

The mean accuracies of the three architectures on CFQ are shown in Figure 2(a) and Table 4. We
make three main observations:

• All models achieve an accuracy larger than 95% on a random split, and this is true even if
they are trained on 10 times fewer training instances (see Appendix H for a more detailed
analysis on the performance with varying training size).

• The mean accuracy on the MCD splits is below 20% for all architectures, which means that
even a large train set (about 96k instances) with a similar distribution of atoms between
train and test is not sufficient for these architectures to perform well on the test distribution.

• For all architectures, there is a strong negative correlation between the compound diver-
gence and the mean accuracy.

This suggests that the baseline models are able to capture the superficial structure of the dataset,
but fail to capture the compositional structure. We find it surprising that varying the compound
divergence gives direct control of the (mean) accuracy, even though the examples in train and test
look similar (see Appendix D.1). This means that compound divergence seems to capture the core
difficulty for these ML architectures to generalize compositionally.

Note that the experiment based on output-length exhibits a worse accuracy than what we would
expect based on its compositional divergence. One explanation for this is that the test distribution
varies from the training distribution in other ways than compound divergence (namely in output
length and a slightly higher atom divergence), which seems to make this split particularly difficult
for the baseline architectures. To analyze the influence of the length ratio further, we compute the
correlation between length ratios and accuracy of the baseline systems and compare it to the corre-
lation between compound divergence and accuracy. We observe R2 correlation coefficients between
0.11 and 0.22 for the input and output length ratios and between 0.81 and 0.88 for the compound
divergence. This shows that despite the known phenomenon that the baseline systems struggle to
generalize to longer lengths, the compound divergence seems to be a stronger explanation for the
accuracy on different splits than the lengths ratios.

Error analysis. We perform an analysis of the errors for the split MCD1 (the first MCD split that
we constructed, with more details provided in Appendix F). We observe accuracies between 29%
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and 37% on the test set of this particular split. Qualitatively, all three systems seem to make similar
errors at this point (68% of errors are on the same samples). They make more errors for longer
sequences and predict about 20% too short output when they make an error. The most common
category of error is the omission of a clause in the output (present in 43%-49% of the test samples),
e.g.: (1) Omitted conjunctions: for the input “What spouse of a film producer executive produced and
edited M0, M1, and M2?” the best system ignores “executive produced” in the output. (2) Omitted
adjectives: for the input “Which female Spanish film producer was M3’ s spouse?” the best system
ignores the adjective “female”.

5.3 RESULTS AND ANALYSIS FOR SCAN

To demonstrate the use of our analysis method on another dataset, we re-create the SCAN data-
set (Lake & Baroni, 2018), which consists of compositional navigation commands (e.g, ‘turn left
twice and jump’) mapped to corresponding action sequences (e.g., ‘LTURN LTURN JUMP’). We use
the original grammar while tracking the rule applications used for the construction of each input-
output pair. This enables us to compare the compositional generalization abilities of the baseline
systems on this dataset in a novel way.

Figure 2(b) shows the graphs for the SCAN data set in the same setup as Figure 2(a) does for CFQ.
We observe that the compound divergence again is a good predictor for the mean accuracy for all
three architectures. One difference is that for SCAN the systems are able to attain accuracies close to
100% for compound divergences up to around 0.2, which is not the case for CFQ. This seems to be
in line with the fact that overall CFQ is a more complex task than SCAN: the total number of rules
used in generating SCAN is only 38 in comparison to 443 rules in the construction of CFQ.

Appendix G provides a comparison to other experiments presented in previous work, including ex-
periments that have significantly different atom distributions. We observe that this generally causes
lower accuracies but does not break the correlation between accuracy and compound divergence.

6 RELATED WORK

To measure compositional generalization for semantic parsing to SQL, Finegan-Dollak et al. (2018)
propose to ensure that no SQL query pattern occurs in both the train and the test set (“query split”),
and they provide such splits for several data sets. By evaluating several ML architectures the authors
confirm that this query-pattern split is harder to learn than a conventional split.

Lake & Baroni (2018) introduce the SCAN dataset, and several publications provide interesting anal-
yses of compositional generalization using it (Bastings et al., 2018; Loula et al., 2018). Russin et al.
(2019) discuss a particular extension of a seq2seq model that is effective in handling difficult SCAN
sub-tasks by separating semantic and syntactic information during learning. Our contributions ex-
tend the analyses on the SCAN data in several ways: CFQ provides richer annotations and covers a
broader subset of English than the SCAN dataset, and we propose a comprehensive score for assess-
ing aggregate compositionality of a system on a given task.

The mathematics dataset (Saxton et al., 2019) is a large, automatically generated set of 112M sam-
ples in 56 separated sub-tasks. The authors present data and experiments that share common goals
with our approach, but focus on mathematical reasoning instead of natural language. Our breakdown
of generation rules per train sample is more fine-grained, which allows a more precise compositional
generalization analysis. Being automatically generated also links our approach to datasets such as
the bAbI tasks (Weston et al., 2016), which however do not focus on compositional generalization.

A dataset related to CFQ is ComplexWebQuestions (Talmor & Berant, 2018), which consists of
complex questions that are automatically generated from simpler sub-questions in WebQuestionsSP
(Yih et al., 2016) and then reworded manually. While these datasets can be used for semantic parsing,
we did not find them suitable for a thorough compositionality analysis because a consistent annota-
tion with the compositional structure would be hard to obtain. Other approaches to semi-automatic
dataset creation also use paraphrasing (Wang et al., 2015; Su et al., 2016).

Johnson et al. (2017) introduce the generated CLEVR dataset, which shares common goals with our
work applied in the area of visual reasoning. The dataset’s functional programs capture some of
the structural information of the questions and are linked one-to-many to the 423 question patterns
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used. The authors specifically investigate generalization to new combinations of visual attributes in
one experiment which uses a particular train-test split based on the colors used. Mao et al. (2019)
propose a neural-symbolic architecture and discuss promising results on additional specific splits of
the CLEVR data, e.g. based on object counts and program depth. Hudson & Manning (2018) describe
how the application of compositional attention networks to the CLEVR data leads to structured and
data-efficient learning. Hudson & Manning (2019a) present a large, compositional, generated visual
question answering data set with functional programs, on which neural state machines achieve good
performance (Hudson & Manning, 2019b). The use of specific splits between train and test data also
occurs in the context of visual data. E.g., Agrawal et al. (2018) propose a greedy split algorithm to
maximize the coverage of test concepts in the train set while keeping question-type/answer pairs dis-
joint and observe performance degradation of existing approaches. Bahdanau et al. (2019) introduce
a synthetic visual question answering dataset called SQOOP, which is used to test whether a learner
can answer questions about all possible object pairs after being trained on a subset.

While these datasets are very interesting, the additional annotation that we provide in CFQ indicating
the exact rule trees needed to link input and output makes additional analyses regarding composi-
tionality possible. Our analyses go beyond many of the presented discussions (that mostly focus on
accuracy regarding particular holdouts) in formalizing an approach that uses the atom and compound
divergences to measure compositionality.

A number of ML approaches have been developed for semantic parsing. Miller et al. (2016) propose
Key-Value Memory Networks – neural network-based architectures that internalize a knowledge
base into the network – and introduce the WikiMovies dataset. Zhang et al. (2018) develop an end-
to-end architecture that can handle noise in questions and learn multi-hop reasoning simultaneously.
They introduce the MetaQA benchmark that is based on WikiMovies but uses a set of only 511
question patterns (mod entities) shared between train and test.

With regards to studying compositionality in ML, Battaglia et al. (2018) argue that combinatorial
generalization should be a top priority to achieve human-like abilities. Andreas (2019) discusses
measuring the compositionality of a trained representation, e.g. of a learned embedding. The author
suggests to use a tree reconstruction error that is based on how well the oracle derivation of the input
matches the structure that can be derived on the representations. Higgins et al. (2018) discuss an
architecture that enables the learning of compositional concept operators on top of learned visual
abstractions. Chang et al. (2019) introduce the compositional recursive learner that “can generalize
to more complex problems than the learner has previously encountered”.

7 CONCLUSION AND OUTLOOK

In this paper we presented what is (to the best of our knowledge) the largest and most compre-
hensive benchmark for compositional generalization on a realistic NLU task. It is based on a new
dataset generated via a principled rule-based approach and a new method of splitting the dataset
by optimizing the divergence of atom and compound distributions between train and test sets. The
performance of three baselines indicates that in a simple but realistic NLU scenario, state-of-the-art
learning systems fail to generalize compositionally even if they are provided with large amounts of
training data and that the mean accuracy is strongly correlated with the compound divergence.

We hope our work will inspire others to use this benchmark as a yardstick to advance the composi-
tional generalization capabilities of learning systems and achieve high accuracy at high compound
divergence. Some specific directions that we consider promising include applying unsupervised pre-
training on the input language or output queries and the use of more diverse or more targeted learning
architectures, such as syntactic attention (Russin et al., 2019). We also believe it would be interest-
ing to apply the DBCA approach to other domains such as visual reasoning, e.g. based on CLEVR
(Johnson et al., 2017).

In the area of compositionality benchmarks, we are interested in determining the performance of
current architectures on the end-to-end task that expects a natural language answer given a natural
language question in CFQ. We would like also to extend our approach to broader subsets of language
understanding, including use of ambiguous constructs, negations, quantification, comparatives, ad-
ditional languages, and other vertical domains.
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APPENDIX

A EXAMPLE DATASET ITEM

The following shows an example data item including the question text in various forms, the answer,
the SPARQL query in various forms, some tracked statistics, and the set of used rules (atoms) and the
applied rule tree (compound). Some details are omitted, indicated by ellipses (‘...’).

"question": "Did Agustin Almodovar executive produce Deadfall",
"questionWithBrackets": "Did [Agustin Almodovar] executive produce [Deadfall]",
"questionWithMids": "Did m.04lhs01 executive produce m.0gx0plf",
"questionPatternModEntities": "Did M0 executive produce M1",
"questionTemplate": "Did [entity] [VP_SIMPLE] [entity]",
"expectedResponse": "No",
"sparql": "SELECT count(*) WHERE {\nns:m.04lhs01 ns:film.producer.films_executive_produced ns:

m.0gx0plf\n}",
"sparqlPatternModEntities": "SELECT count(*) WHERE {\nM0 ns:film.producer.

films_executive_produced M1\n}",
"sparqlPattern": "SELECT count(*) WHERE {\nM0 P0 M1\n}",
"complexityMeasures": {
"parseTreeLeafCount": 5,
"parseTreeRuleCount": 12
"sparqlMaximumChainLength": 2,
"sparqlMaximumDegree": 1,
"sparqlNumConstraints": 1,
"sparqlNumVariables": 0,
},
"aggregatedRuleInfo": {

"ruleId": [
{
"type": "SPARQL_GENERATION",
"stringValue": "ENTITY_MID"
},
{
"type": "SPARQL_GENERATION",
"stringValue": "GET_SET_TRUTH"
},
{
"type": "KNOWLEDGE",
"stringValue": "FreebasePropertyMapping(RolePair(Executive producer, Executive producee), ’

ns:film.producer.films_executive_produced’)"
},
{
"type": "GRAMMAR_RULE",
"stringValue": "YNQ=DID_DP_VP_INDIRECT"
},
{
"type": "GRAMMAR_RULE",
"stringValue": "ACTIVE_VP=VP_SIMPLE"
},
...

],
},
"ruleTree": {
"ruleId": {
"type": "SPARQL_GENERATION",
"stringValue": "CONCEPT_TO_SPARQL"

},
"subTree": [
{
"ruleId": {
"type": "GRAMMAR_RULE",
"stringValue": "S=YNQ"
},
"subTree": [
{
"ruleId": {
"type": "GRAMMAR_RULE",
"stringValue": "YNQ=DID_DP_VP_INDIRECT"

...
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B DATA QUALITY ANALYSIS

During the development of our data generation pipeline, we manually checked the generated exam-
ples for quality. Below is a random selection of 50 examples of the final CFQ dataset (no cherry-
picking was used). Brackets around [entity names] are provided just for ease of human reading. Man-
ual checking also indicated that all questions are associated with the semantically correct SPARQL
queries. However, because we rely on the data present in Freebase, there are three debatable ques-
tions which sound somewhat unnatural (3, 21, and 29, see further discussion below the list).

1. Who was a writer, star, and cinematographer of [Tetsuo: The Bullet Man], [Nightmare
Detective], and [Bullet Ballet]?

2. Which male person was a sibling of [Andrew Klavan]?

3. Did [Wallace Stevens] influence [Levi Seeley]’s spouse and parent?

4. Did a producer, writer, and art director of [Thelma & Luis] produce, direct, and write [Light
Girls]?

5. Were [Hangover Square], [Zack and Miri Make a Porno], and [Clerks II] edited by a
founder and employee of a film producer?

6. What American parent of [Charlie Sistovaris] was a British screenwriter’s sibling?

7. Did [Anne Williams Rubinstein] marry a person that influenced a screenwriter and influ-
enced [John Most]?

8. Was [Cachún cachún ra ra!]’s director a film director’s American child?

9. Did [Maisy’s Garden]’s executive producer write, edit, and executive produce [Pakalp-
pooram], [It’s Not About the Shawerma], [Rick’s Canoe], and [The Fifth Wall]?

10. Was [Holly Ellenson]’s child [Wally Ellenson]?

11. Did [Emerald Cities]’s cinematographer, writer, and editor edit, executive produce, and
direct [Blues for the Avatar] and [White Stork Is Coming]?

12. Was a film producer [Lilies of the Ghetto]’s distributor and producer?

13. Which child of [Mimi Iger] did a film producer employ and [The Walt Disney Company]
employ?

14. What Japanese spouse of [Hong Kong Paradise]’s star did [Ineko Arima] and [Nishiki Kô]
marry?

15. Who influenced and was influenced by [Black Dynamite]’s star?

16. What was written by, edited by, directed by, produced by, and executive produced by
[Pauline Collins]’s child’s sibling?

17. Which Swedish film director that [Théo Van Horn]’s actor influenced did [Egen ingȧng]
star?

18. Who was influenced by [Golden Yeggs]’s star, was influenced by [Richard Pryor], was
influenced by [Bill Murray], and married [Elaine Chappelle]?

19. What did [This Is My Show]’s director, cinematographer, and star direct, edit, produce, and
executive produce?

20. Who was a male costume designer and director of [Ene... due... like... fake...] and [The
Windmill Bar]?

21. Was [Kumudu Munasinghe] a Dutch film producer’s country of nationality’s employee?

22. Did an art director, editor, director, writer, cinematographer, and star of [Tetsuo II: Body
Hammer] produce [Nightmare Detective], [Tetsuo: The Iron Man], and [A Snake of June]?

23. Was [Alexandra Naoum] [Monsieur Verdoux]’s producer, writer, and star?

24. What film director founded [THX], was employed by [American Zoetrope], [LucasArts],
[Skywalker Sound], and [Lucasfilm], and founded [Industrial Light & Magic]?

25. What male employee of [Weta Workshop] was [Bad Taste]’s editor?
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26. Were [Weta Digital] and [Weta Workshop] founded by a cinematographer and founded by
a film editor?

27. What art director influenced [DreamWorks Animation]’s founder?
28. Did [Daisies] star [Fruit of Paradise]’s costume designer and writer, star [Jaromír

Vomácka], and star [Jirina Myskova]?
29. What character was influenced by a costume designer, influenced by [Pedro Calderón de la

Barca], influenced by [William Shakespeare] and [Luis Buñuel], and influenced by [Miguel
de Unamuno]?

30. What British costume designer of [The Love Letter] and [The Chamber] was a screen-
writer’s child?

31. Was [Eric Massa] a cinematographer’s parent’s sibling’s American sibling?
32. What art director of [Stepping Sisters 1932] was a parent of [Imre Sándorházi]?
33. What was executive produced by, written by, produced by, and edited by a director of

[V/H/S/2]’s sequel?
34. What did an editor and cinematographer of [Tongue Twister Variations] direct?
35. Who was a Canadian screenwriter that produced [Her Painted Hero] and [The Nick of Time

Baby]?
36. Which American parent of [Janet Friedman] did [Rose Friedman] influence and marry?
37. Did [George Carlin] influence [Louis C.K.: Shameless]’s executive producer and influence

[Joan Rivers]?
38. Who was a male writer, star, director, and costume designer of [The Wizard of Speed and

Time]?
39. Who was [Lost Boys: The Thirst]’s prequel’s sequel’s art director?
40. Did a cinematographer’s female parent executive produce, direct, and write [Hit Dat Shit

5]?
41. Who married [Siri von Essen], influenced [A Lesson in Love]’s director and art director,

influenced [Tennessee Williams], and influenced [Maxim Gorky]?
42. What Italian film director directed [Children of Hannibal]?
43. What film producer directed, wrote, edited, and produced [la estrella], [la ardilla], and [el

valiente]?
44. Were [Flames: The Movie] and [Soltera] directed by a male person and executive produced

by [Hilda Russoff]’s spouse?
45. Was a sibling of [Fawwaz bin Abdulaziz Al Saud] [Badr bin Abdulaziz Al Saud]’s sibling?
46. What did a sibling of [Louise Rohr] executive produce, produce, and edit?
47. Did a French cinematographer of [Le Volcan interdit] edit [The Last Bolshevik] and direct

[A.K.] and [Statues Also Die]?
48. Was [Mannai Thottu Kumbidanum] directed by and written by a Dutch male cinematogra-

pher?
49. Was a director, art director, executive producer, and costume designer of [But I’m a Gen-

derqueer] [Lauren Soldano]?
50. Was [When We Were Kings] produced by a film editor whose spouse was employed by

[Royal Academy of Dramatic Art] and distributed by [PolyGram Filmed Entertainment]?

Further discussion of the debatable questions:

3. Did [Wallace Stevens] influence [Levi Seeley]’s spouse and parent?
The occurrence of the seemingly implausible combination of roles “spouse and parent”
is due to incorrect data in Freebase, in which there are 502 entities asserted to be both
the spouse and parent of other entities. For instance, “Anne Dacre” is both the spouse
and parent of “Christopher Conyers”. We can also find occasional occurrences in CFQ of
other implausible role combinations, such as “parent and child”, “spouse and sibling” etc.,
triggered by similar Freebase data issues.
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Table 5: Most frequent answers in CFQ.
Frequency Answer

65479 No
65092 Yes

1581 Promises Written in Water
1037 Shinya Tsukamoto

907 Vincent Gallo
893 Metro-Goldwyn-Mayer
885 Agnès Varda
858 George Lucas
800 Jacques Demy
742 The ABCs of Death
709 Rick Schmidt
666 Ingmar Bergman
649 Garret Schuelke
622 Walt Disney
603 Darren Aronofsky

Frequency Answer
594 David Lynch
572 Richard Branson
551 Paris, je t’aime
547 Visions of Europe
484 Woody Allen
476 Charlie Chaplin
409 New York, I Love You
396 Universal Studios
392 Robert Santos
386 Andy Warhol
385 Georges Méliès
370 Chris Rock
369 Steven Spielberg
361 Jackie Chan
356 Orson Welles

Figure 3: Number of questions by complexity before (blue) and after (red) subsampling.

21. Was [Kumudu Munasinghe] a Dutch film producer’s country of nationality’s employee?
The somewhat unnatural phrasing of “country’s employee” occurs due to a modeling choice
in Freebase, in which the same entity is used to represent both a country and the government
of that country. This makes it possible for a country to employ a person.

29. What character was influenced by a costume designer, influenced by [Pedro Calderón de la
Barca], influenced by [William Shakespeare] and [Luis Buñuel], and influenced by [Miguel
de Unamuno]?
The somewhat unnatural phrasing of “a character was influenced by” occurs due to a mod-
eling choice in Freebase, in which when a film character is based on a real person, Freebase
commonly uses the same entity to represent both. This makes “person” and “character” ex-
changeable in the questions where the person is also a film character.

C DATA DISTRIBUTION ANALYSIS

C.1 ANSWER FREQUENCIES

Table 5 shows the most frequently occurring answers in CFQ. Not surprisingly, after the answers
“Yes” and “No”, entities related in Freebase to the domain of movies have highest frequency.

C.2 IMPACT OF SUBSAMPLING ON THE DISTRIBUTION OF COMPLEXITY LEVELS

Figure 3 illustrates how subsampling changes the distribution of questions in CFQ with different
levels of complexity to become more even.

C.3 IMPACT OF SUBSAMPLING ON THE FREQUENCY OF RULES AND RULE COMBINATIONS

Subsampling increases the frequency of rarely used rules and rule combinations and decreases the
frequency of commonly used ones. For rules, this is illustrated by Figure 4 which shows the ratio of
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Figure 4: Ratio of examples in which a given rule appears, before (blue) and after (red) subsampling.

Figure 5: Ratio of examples in which a given rule combination appears, before (blue) and after (red)
subsampling.

examples each rule appears in, before and after subsampling, in the order of their frequency. Figure 5
shows the same comparison for rule combinations.

D DIVERGENCE-BASED SPLIT ANALYSIS

D.1 QUALITATIVE ANALYSIS OF MCD1

Traditional compositionality experiments often use train-test splits based on observable properties
of the input and output (e.g., input/output complexity, input/output patterns, and input/output feature
holdouts). One consequence of this is that the difference between train and test examples is relatively
easily observable “with the naked eye”. The lists below illustrate that this is not usually the case for
divergence-based splits. Similar to the random sample of the general data in Appendix B we provide
a random sample of size 20 from both the train and test set here. Indeed, even for the MCD1 split
with a high divergence of 0.694, the 20 random samples of train and test questions shown below
cannot easily be distinguished as they both contain the same kind of questions of different sizes.

Train samples from MCD1:

1. What was founded by a costume designer, founded by [Forgotten Silver]’s star, and founded
by [Jamie Selkirk]?

2. Which male person influenced and was influenced by [William Dean Howells]?
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3. Did [Marco Bellocchio] produce, write, and direct [Greek Pete]?

4. What did [Rick Schmidt] edit, [Philip Rashkovetsky] edit, and a cinematographer edit?

5. Were [The Living Playing Cards] and [The Haunted Castle] edited by, directed by, and
produced by a French writer of [Le cauchemar de Méliès]?

6. What did a spouse of [Shorts]’s producer’s spouse executive produce and direct?

7. Did [P. G. Wodehouse], [Raymond Chandler], [Edward Bunker], [Pauline Kael], and
[Michael Cimino] influence [Grindhouse]’s cinematographer and star?

8. What Mexican person did a film producer employ?

9. Did [The Midnight After]’s Chinese executive producer edit [Perfect Life] and
[Dumplings]?

10. Who did [For the Secret Service]’s director’s female spouse influence?

11. Who married, was influenced by, and influenced a company’s founder?

12. Was [MAN SE]’s French male German employee’s employer [Sulzer]?

13. Who influenced an actor that [Robin Santana] was influenced by and [K. J. Stevens] was
influenced by and was influenced by [Virgil]?

14. Did [Pirates of Malaysia] star [Giuseppe Addobbati] and star a Spanish screenwriter?

15. Was [The Silence of the Sea] written by, produced by, executive produced by, directed by,
and edited by [The Red Circle]’s French editor?

16. Did [Chanel] employ a German costume designer, employ [Gaspard Ulliel] and [Maureen
Chiquet], and employ [Jacques Polge]?

17. Who was influenced by [Adam Sandler] and married a film producer?

18. Did a Spanish screenwriter’s child direct and edit [Bakuchi-uchi: Nagaremono]?

19. Was a founder of [IG Port] employed by a film producer?

20. Was [Orizzonti Orizzonti!] executive produced by and written by an art director’s sibling?

Test samples from MCD1:

1. What sequel of [Paranormal Activity 2] was edited by and written by a film director?

2. What spouse of a film producer founded [Grand Hustle Records] and was employed by
[40/40 Club], [Roc-A-Fella Records], and [Def Jam Recordings]?

3. Did [Pixar] employ an art director and employ [Susham Bedi]?

4. Was a sibling of [David Lindbland] [Dynamit Nobel]’s Swedish founder?

5. What prequel of [Charlie the Unicorn 2] starred, was edited by, was produced by, was
written by, and was directed by [Jason Steele]?

6. Did [Rick Schmidt] direct, produce, executive produce, and edit [Blues for the Avatar],
[White Stork Is Coming], [The Fifth Wall], and [It’s Not About the Shawerma]?

7. Was [Luke Larkin Music] an art director’s employer?

8. What prequel of [Goat Story 2] was executive produced, written, directed, edited, and pro-
duced by [Jan Tománek]?

9. Was [Bullet Ballet]’s editor, star, director, and cinematographer [Promises Written in Wa-
ter]’s star, director, writer, executive producer, and art director?

10. What was edited by, produced by, directed by, and written by [Ellis Kaan Ozen], [Thaw
Bwe], [Jeffrey Malkofsky-Berger], and [Leslie Berkley]?

11. Was a person’s female sibling [Reggae in a Babylon]’s producer?

12. Who was a director, cinematographer, executive producer, art director, producer, star, and
writer of [The Man Who Killed God]?

13. Was [My Sweet Home]’s director, editor, writer, art director, producer, cinematographer,
and costume designer a person?
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Figure 6: Frequency of atoms resp. compounds in the train vs. test set

14. Which art director, star, and editor of [The Brown Bunny] and [Promises Written in Water]
did [Cord] star?

15. Did an employee and founder of [Virgin Mobile Australia], [Virgin Mobile USA], and
[Virgin Mobile France] found [Virgin America] and found [V2 Records]?

16. Was a Chinese executive producer and star of [Happy Ghost II] and [All’s Well, Ends Well
2010] a film director?

17. Was [The Voyeur]’s executive producer an actor’s parent?

18. Did [Erasable Cities]’s writer, producer, editor, art director, cinematographer, and director
produce and executive produce [Promises Written in Water]?

19. Who was an editor, star, and cinematographer of [Tetsuo: The Iron Man], [A Snake of
June], and [Bullet Ballet]?

20. Was a costume designer’s employer [Philips High School]?

D.2 QUANTITATIVE ANALYSIS OF MCD1

Figure 6 shows the frequency of atoms (upper graph) and compounds (lower graph) in the train
and test sets of the maximum compound divergence split for the CFQ data. As the frequency of an
atom resp. compound we use the fraction of examples it appears in. Both atoms and compounds are
indexed primarily by their frequency in the train set, secondarily by their frequency in the test set,
in decreasing order. For practical reasons we only look at a small subset of compounds here but we
believe the analysis is representative.

We can see that the frequency of atoms in the two sets is very aligned and that all atoms from the
test set appear in the train set. The frequency of compounds however is wildly different: While some
invariably occur in both sets, the frequencies are often not aligned and most compounds appear only
in either the train or the test set.
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Table 6: Summary of hyperparameters that deviate from the defaults. Default hyperparameter
sets are: lstm_bahdanau_attention_multi, transformer_base, and universal_transformer_tiny, respec-
tively.

LSTM+attention Transformer Universal Transformer
train steps 35,000 35,000 35,000
batch size 2,048 4,096 2,048
hidden size 512 128 256
num hidden layers 2 2 6
num heads – 16 4
learning rate schedule – constant*linear_warmup*rsqrt_decay
learning rate {,constant} 0.03 0.08 0.14
learning rate warmup steps – 4,000 8,000
dropout 0.4 – –

Table 7: Examples with a given error (in %) of total test set size. See text for details.
Error type

Clause error Filter error Malformed
outputsum ins del sub sum ins del subSystem prop node both

LSTM+Attention 71.7 9.0 49.2 23.3 33.1 27.6 8.6 2.1 3.2 4.1 0.2
Transformer 63.9 8.0 49.2 13.3 28.2 15.4 7.0 2.1 1.7 4.2 3.0
Universal Transformer 59.9 9.8 43.1 12.1 22.9 14.5 5.0 1.7 1.1 2.7 0.8

E HYPERPARAMETERS

The experiments were run using the tensor2tensor framework (Vaswani et al., 2018) with some
of the hyperparameters tuned using a random split of a previous, smaller version of the data set
during development. We use the default hyperparameter sets publicly available in the tensor2tensor
implementation (obtained from https://github.com/tensorflow/tensor2tensor) and override the tuned
hyperparameters. The hyperparameters used are summarized in Table 6.

F DETAILED ERROR ANALYSIS

F.1 BREAKDOWN OF ERROR TYPES

Table 7 shows a more detailed analysis of the errors that the baseline models make on CFQ for MCD1

(compare Section 5.2). The reported errors are bucketized into three main types: SPARQL property
clause error, SPARQL filter clause error and malformed SPARQL query in the model’s output. The
total number of test set examples exhibiting any clause or filter error is reported (sum column), as
well as the number of insertions (ins), deletions (del), and substitutions (sub) in the model’s output
with respect to the correct query. Property clause substitution errors are further subdivided into those
where only the property itself is wrong while subject and object are correct (prop), those where the
property is correct but either subject or object is wrong (node) and those where both the property
and the subject or the object are wrong (both).

The accuracy metric requires the model response and the golden (correct) answer to be exactly equal
to each other. Thus, a SPARQL query with the same clauses as the golden answer but in a different
order or with some of the clauses appearing multiple times is also considered to be an error despite
being equivalent to the golden answer in its meaning. The amount of such errors is relatively small
though, accounting for 1.8%, 0.6% and 1.5% of total test set size for LSTM+Attention, Transformer
and Universal Transformer respectively.

F.2 QUALITATIVE ERROR ANALYSIS

Below we qualitatively analyze a number of instances the models fail on. We anonymize the MIDs in
the same way as the data is provided to the models (see Section 5). We first select queries on which
all machine learning systems fail in all replicated runs (about 5k instances out of a total of about
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Subquery Count
What. . . ? 23,695
. . . sibling of Mx . . . 2,331
. . . Mx’s parent . . . 1,222
What [entity] was. . . ? 1,066
What sibling . . . ? 0
. . . [DetNP]’s [NP]. . . 51,600
. . . [NP] of [NP]. . . 20,038
What [NP] was [DetNP]? 416
What [NP] was [DetNP]’s [NP]? 0

Table 8: Subqueries of “What sibling of M0 was M1’ s parent?” and their occurrences in training.

12k), and then randomly select queries from this list. In the following we discuss a few cases in
more detail. Note that, for readability, we use the following abbreviations for the SPARQL properties
in Query 1:

• ns:people.person.child = ns:people.person.children|
ns:fictional_universe.fictional_character.children|
ns:organization.organization.child/
ns:organization.organization_relationship.child

• ns:people.person.sibling = ns:people.person.sibling_s/
ns:people.sibling_relationship.sibling|
ns:fictional_universe.fictional_character.siblings/
ns:fictional_universe.
sibling_relationship_of_fictional_characters.siblings

Query 1: “What sibling of M0 was M1’ s parent?”

Golden (correct) SPARQL query:

SELECT DISTINCT ?x0 WHERE {
?x0 ns:people.person.child M1 .
?x0 ns:people.person.sibling M0 .
FILTER ( ?x0 != M0 )

}

Inferred (system) SPARQL query:

SELECT DISTINCT ?x0 WHERE {
?x0 ns:people.person.sibling ?x1 .
?x0 ns:people.person.sibling M0 .
?x1 ns:people.person.child M1 .
FILTER ( ?x0 != ?x1 )

}

Analysis. The meaning of the SPARQL query generated by the system is “What sibling of M0 was
a sibling of M1’s parent?”, which is incorrect. We next analyze the train set, in order to show that
we believe enough information has been provided in the train set for the question to be answered
correctly.

Some subqueries of the query and their occurrences are shown in Table 8. While the exact sub-
query “What sibling” does not occur at training, the two words have been shown separately in
many instances: the subqueries “sibling of Mx”, and “Mx’s parent” occur 2,331 and 1,222 times,
respectively. We can analyze this example in more detail by comparing parts of the rule tree of this
example with those shown at training. As can be read from the table, similar sentences have been
shown during training. Some examples are:

• What was executive produced by and written by a sibling of M0?
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Subquery Count
. . . direct. . . 40,616
. . . edit. . . 31,776
Did. . . ? 17,464
. . . film director . . . 5,603
. . . male film director . . . 121
. . . . . . edit and direct . . . 93
Did [DetNP] [VP] [DetNP]? 17,464
Did [DetNP] [VP] and [VP] [DetNP]? 1,432
Did [DetNP] [VP] [DetNP] and [DetNP]? 909
Did [DetNP] [VP] and [VP] [DetNP] and [DetNP]? 0

Table 9: Subqueries of “Did a male film director edit and direct M0 and M1?” and their occurrences
in training.

• What costume designer did M1’s parent employ?

• What cinematographer was a film editor that M2 and M3 married?

• What film director was a character influenced by M2?

Query 2: “Did a male film director edit and direct M0 and M1?”

Golden (correct) SPARQL query:

SELECT count ( * ) WHERE {
?x0 ns:film.director.film M0 .
?x0 ns:film.director.film M1 .
?x0 ns:film.editor.film M0 .
?x0 ns:film.editor.film M1 .
?x0 ns:people.person.gender m_05zppz

}

Inferred (system) SPARQL query:

SELECT count ( * ) WHERE {
?x0 ns:film.director.film M0 .
?x0 ns:film.director.film M1 .
?x0 ns:film.editor.film M0 .
?x0 ns:people.person.gender m_05zppz

}

Analysis. The meaning of the inferred SPARQL query is “Did a male film director edit M0 and
direct M0 and M1?”. It thus seems the model ‘forgets’ to include the relation between the director
and movie M1.

Looking at subqueries and their occurrence count (Table 9), we see again that various subqueries
occur often during training. However, “edit and direct” have not been shown often together. When
looking at the rule trees, we see that both conjunctions in the query occur often at training sepa-
rately: “Did [DetNP] [VP] and [VP] [DetNP]” occurs 1,432 times, and “Did [DetNP] [VP] [Entity]
and [Entity]” occurs 909 times. However, they never occur together: “Did [DetNP] [VP] and [VP]
[DetNP] and [DetNP]” does not occur at training. This may be the reason why all systems fail on
this example, but at the same time we believe a compositional learner should be able to generalize
correctly given the training instances. Some examples are:

• Did a male film director that M3’s parent married influence an art director?

• Did a film producer that played M2 edit and direct M1?

• Did a screenwriter edit and direct a sequel of M1

• Did a Chinese male film director edit M1 and M2?

23



Published as a conference paper at ICLR 2020

Figure 7: Accuracy and divergence measurements for splits of SCAN as used in other work (see text
for details). The numbers in brackets show the train / full data-set ratio, and the atom divergence.

G ADDITIONAL EXPERIMENTAL RESULTS ON SCAN

Figure 7 shows a scatter plot of accuracy vs. compound divergence for the three baseline archi-
tectures (see Section 5) on existing splits of the SCAN data. These splits are discussed in (Lake &
Baroni, 2018) and (Loula et al., 2018), and the exact split data is available. (Data splits obtained
from https://github.com/brendenlake/SCAN). We map these splits onto the re-created SCAN data,
which enables us to measure the atom and compound divergences. The authors present a total of six
split experiments (some with several sub-experiments):

• (Lake & Baroni, 2018):

– simple (random)
– by action sequence length
– adding a primitive and adding a primitive along with complex combinations

• (Loula et al., 2018):

– adding a template
– adding template fillers
– adding more training examples of fillers (fewshot)

In the plot, we omit some data points that are too close to be distinguished easily. The point la-
bels have the form ‘(abbreviated experiment name)<(parameter)>@(number of samples) (baseline
system abbreviation) [(train set size fraction), (split atom divergence)]’. The train set size fraction
is given as a percentage of the overall data size. The baseline system abbreviations are LSTM, T
for Transformer, UT for Universal Transformer, T/UT where both transformer models are indistin-
guishable, and empty where all three systems perform indistinguishably. The abbreviated experiment
name is one of the names in italics above.

We can observe a strong dependency of the accuracies on the compound divergence of the data
split. Again, this seems to indicate that the compound divergence is correlated with accuracy for
these baseline architectures. One difference to the data shown in Figure 2(b) is that for this set of
experiments the accuracy drops faster with increasing compound divergence. One explanation for
this effect is that the experiments are directly aimed at highlighting one specific potentially prob-
lematic scenario for learning. E.g. in the experiment ‘primitive<jump>’ (with very low accuracies
for all three systems) the jump command is shown exactly in one combination (namely alone) in the
training data while it occurs in all test examples in arbitrary combinations.
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This is reflected in the higher atom divergence value of 0.08 for this split, as well as in all other
splits that exhibit a low accuracy at a low compound divergence in Figure 7. Note that Lake &
Baroni (2018) already compare the experiment ‘primitive<jump>’ to the experiment ‘primitive<turn
left>’ for which all three systems achieve a much higher accuracy. In their interpretation of this
phenomenon, they mainly focus on the fact that in contrast to ’jump’, the action ’turn left’ is also
generated by other inputs. We additionally observe that the latter experiment also has a slightly lower
atom divergence of 0.07, a lower compound divergence, and it covers a much larger part of the data
in the train set (94% vs. 63%).

While the accuracies we observe for the ‘primitive’ experiments are very much in line with the
results reported by Lake & Baroni (2018), we noticed a few interesting differences for other exper-
iments: All three systems go to 100% accuracy on the fewshot task even for one example (while
Loula et al. (2018) report a slowly increasing accuracy for the architecture they evaluate). On the
other hand, both transformer models only reach 0% accuracy on the length split, while the LSTM
obtains around 14% (which is in line with what previous work reports).

H ANALYSIS OF RELATIONS BETWEEN ACCURACY, COMPOUND
DIVERGENCE, AND TRAINING SIZE

Figure 2 shows for all baseline systems a strong correlation between accuracy and compound di-
vergence for the chosen training sizes (96k for CFQ and 8k for SCAN). One interesting question
is whether and how this correlation is changed for different training sizes. Figures 8 and 9 show
that this correlation holds also for smaller training sizes but that the accuracy is generally somewhat
lower for smaller training sizes.

At the same time, we observe that the difference between accuracies of various training sizes gets
smaller as the training size increases. This can be seen even more clearly in Figures 10 and 11, which
plot the training size rather than the compound divergence on the x-axis. These figures show that the
increase in accuracy flattens out significantly as we reach training size of about 80k for CFQ and
about 6k for SCAN. This indicates that further increasing train set size may not be sufficient to do
well on these compositionality experiments.

I LOGICAL FORM

To represent our logical form we use syntax of the description logic EL (Baader et al., 2003; 2005)
with additional concept and role constructors. These constructors do not have description logic se-
mantics; instead, their meaning is completely determined by the set of generation rules of the CFQ
dataset.

Let A be a concept name, C,C1, C2 be concepts, R,R1, R2 be roles, and v be a raw string. Then
the following would be concepts:

C ::= >
| A
| C1 u C2

| ∃R.C
| And(C1, C2)
| DropDependency(C)
| Entity(v)
| PredicateWithBoundRolePairs(R1, R2)
| ProjectedRole(C1, C2)
| TypeInstance(C, v)

and the following would be roles:

R ::= RolePair(C1, C2)

Note that our logical form does not have roles other than those in a form of RolePair(C1, C2).
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Figure 8: Accuracies of the three baseline systems on CFQ as a function of compound divergence at
different training sizes.

Figure 9: Accuracies of the three baseline systems on SCAN as a function of compound divergence
at different training sizes.

Figure 10: Accuracies of the three baseline systems on CFQ at different divergence levels as a
function of training size.

Figure 11: Accuracies of the three baseline systems on SCAN at different divergence levels as a
function of training size.
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New strings are generated by using a special function new_var($S). This function generates a
unique string of the form ?x<N>, where N is a unique number, and assigns that string to variable
$S. This string can later be used as a variable in a SPARQL constraint.

J RULE FORMAT

This section describes the format of each of the rule types we use for generating the CFQ dataset, in
the form in which they appear in the rules index in Appendix M.

General formatting conventions shared across all rule types:

• Variable names are prefixed by ‘$’. Example: $X.
(Exception: In grammar rules, while variables standing for constants are prefixed by ‘$’,
variables standing for logical forms are prefixed by ‘_’. Example: _action.)

• Concept names are written in camel case. Example: FilmProducer.
• Names of functions that output logical forms (concepts, roles, or knowledge) are also writ-

ten in camel case. Examples: DropDependency, BoundRolePairs, RolePair.
• Names of functions that output string literals or which are used for converting logical

forms to SPARQL are written in lowercase with underscores. Examples: def2sparql,
get_specializations, new_var.

• String literals are enclosed in single quotes. Example: ’ns:film:director’.

J.1 GRAMMAR RULE FORMAT

The CFQ grammar is a unification-based grammar of recursive rewriting rules used to generate pairs
of strings and their corresponding logical form. For an introductory overview of unification-based
grammars including several popular variations, see Shieber (2003). The rules in the CFQ grammar
follow a similar syntax in particular to that used in the Prolog extension GULP 3.1 (Covington,
1994), with the addition of support for disjunction, negation, absence, and default inheritance of
features, and with minor differences in formatting described below.

Properties shared between the CFQ grammar syntax and that of (Covington, 1994) include the fol-
lowing:

• Grammar rules are notated as variations of context-free phrase-structure rules of the form
T0 → T1 ... Tn, where each of the syntactic non-terminals and terminals T0 ... Tn are
augmented with feature lists in parentheses.

• Each grammar rule can be interpreted as specifying how a feature structure (with logical
form) that is unifiable with the lefthand side can be re-written to the sequence of features
structures (with logical form) indicated on the righthand side.

• Features are represented as attribute-value pairs separated by a colon (i.e.,
attribute:value).

• Shared values in feature structures are represented through the use of variables.

Specifically, in the rules index, CFQ grammar rules are described in the format

T0(F0)[H]/L0 → T1(F1)/L1 ... Tn(Fn)/Ln

where:

• Each Ti is a syntactic category (syntactic nonterminal) or a string literal (syntactic termi-
nal).

• Each Li for i ∈ [1, n] is either a variable representing a logical form or an empty string.
In the case when Li is an empty string, we allow dropping the trailing slash from the
Ti(Fi)/Li expression, resulting in just Ti(Fi).

• L0 is a logical form expressed in terms of L1...Ln.
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• Each Fi is a comma-separated feature list of the form (attribute1:value1, ...,
attributek:valuek). In the case where Fi is empty, we allow dropping the parentheses
from the Ti(Fi) expression, resulting in just Ti.

• H is either an empty string or one of the variables Li for i ∈ [1, n], indicating that F0

default inherits the features of Fi (the syntactic “head”). In the case where H is an empty
string, we allow dropping the brackets from the T0(F0)[H] expression, resulting in just
T0(F0).

Note that while the above notation adopts the convention of splitting out the syntactic category
and logical form from the feature list for visual prominence and to highlight the relationship to its
context-free phrase-structure rule core, behaviorally it is identical to adding two more features to
the feature list (we can call them, for example, cat and sem) to represent the syntactic category and
logical form.

This means that, for example, the rule

ACTIVE_VP[_head]/_head
→ VP_SIMPLE(form:infinitive)/_head

can be considered a notational shorthand for the following rule expressed purely using feature lists:

(cat:ACTIVE_VP, sem:_head)[_head]
→ (cat:VP_SIMPLE, sem:_head, form:infinitive)

Disjunction of features. Similarly to (Karttunen, 1984), we allow disjunctive feature specifica-
tions, which we denote by separating the alternative values with a pipe (‘|’). The feature spec-
ification (form:gerund|infinitive) would thus unify with either (form:gerund) or
(form:infinitive), but not with (form:past_participle).

Absence of features. We use a special atomic value _none_ to indicate that a given fea-
ture must either be absent or else explicitly set to the value _none_. The feature specifica-
tion (subject:_none_, object:yes) would thus unify with either (object:yes) or
(subject:_none_, object:yes), but not with (subject:yes, object:yes).

Negation of features. Similarly to (Karttunen, 1984), we allow negated feature specifications,
which we denote by prefixing the attribute with a minus sign (‘-’). The feature specification
(-form:gerund|infinitive) would thus unify with (form:past_participle) or
(form:_none_), but not with (form:gerund) or (form:infinitive). In general, a fea-
ture specification of the form (-attribute:v1|...|vj) can be considered a notational short-
hand for (attribute:vj+1|...|vk|_none_), where vj+1|...|vk is an enumeration of
all possible values of the feature attribute other than v1|...|vj .

Default inheritance of features. If the lefthand side term is notated as T0(F0)[H], with H equal to
one of the variables Li for i ∈ [1, n], then this is interpreted as a notational shorthand for augmenting
both F0 and Fi with an additional list of attribute-value pairs (a1:$v1, ..., ak:$vk), where a1...ak are
all of the attributes listed in Fi that were not originally listed in F0.

Unification of logical forms. As described in Appendix I, we represent logical forms us-
ing a variation of description logic, rather than using feature structures. In the context of
unification, we consider logical forms to unify if and only they achieve structural concept
equality after variable replacement (using the same variable replacements applied during
unification of the corresponding feature lists), while taking into account the commutativ-
ity and associativity of u. For example, under this criterion, the logical form GenderRel
u ∃RolePair(Predicate, Gender)._head would unify with either GenderRel
u ∃RolePair(Predicate, Gender).Male or with (∃RolePair(Predicate,
Gender).Male) u GenderRel under a variable replacement mapping _head to Male,
but would not unify with GenderRel u ∃RolePair(Predicate, Gender).Male u
∃RolePair(Predicate, GenderHaver).FilmProducer.
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J.2 KNOWLEDGE RULE FORMAT

CFQ knowledge rules output expressions representing facts that are known to be true. They have
no direct effect on text, logical forms, or SPARQL, but the generated knowledge can be used as
preconditions to other rules. In the rules index, they are described in the following format:

→ K, where K is knowledge that is output.

By convention, we define the rule name of a knowledge rule to be simply the string representing the
knowledge that the rule outputs, and we omit the rule name in the rules index for brevity.

The union of those rules defines a knowledge base which we denote with KBCFQ.

All knowledge in CFQ is represented in the form P (X1, ..., Xn), where P is a predicate from the
list below, and X1, ..., Xn are either logical forms or else raw strings. Knowledge rules do not use
variable-based expressions.

Supported knowledge predicates:

• BoundRolePairs

• ExclusiveRolePair

• FreebaseEntityMapping

• FreebasePropertyMapping

• FreebaseTypeMapping

• NonExclusiveRolePair

• Role

J.3 INFERENCE RULE FORMAT

CFQ inference rules transform logical forms and may be conditioned on knowledge. In the rules
index, they are described in the following format:

K : L0 → L1

where K represents a comma-separated list of knowledge preconditions, and L0 and L1 represent
the input and output logical forms, all expressed in terms of a shared set of variables v1, ..., vm.

These rules are interpreted as stating that if there exists a variable replacement r() replacing
v1, ..., vm with some logical forms l1, ..., lm respectively, such that r(K) ⊆ KBCFQ, then we
can apply the inference rule by rewriting r(L0) to r(L1).

J.4 RESOLUTION RULE FORMAT

CFQ resolution rules transform SPARQL expressions and may be conditioned on knowledge. They
do not affect text or logical forms.

In the rules index, they are described in the following format:

K : S0 → S1 ... Sn

where K represents a comma-separated list of knowledge preconditions, S0 is a variable-based
expression and S1 ... Sn are either raw SPARQL strings or else expressions described in terms of the
same variables used in S0 and K.

These rules are interpreted as stating that if there exists a variable replacement r() replacing
v1, ..., vm with some logical forms, strings, or expressions l1, ..., lm respectively, such that r(K) ⊆
KBCFQ, then we can apply the resolution rule by rewriting r(S0) to the sequence of terms
r(S1) ... r(Sn).
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K GENERATION ALGORITHM

Our generation algorithm produces triples of the form 〈question, logical form, SPARQL query〉 in a
mixed top-down and bottom-up fashion, with the final program of rule applications output alongside
each triple in the form of a rule application DAG. The top-down portion of generation is responsible
for efficiently searching for rules that can be applied to produce a meaningful example, while the
bottom-up portion is responsible for actually applying the rules (i.e., performing the composition)
and for producing the DAG.

The generation process proceeds in two phases, each involving a top-down as well as bottom-up
aspect. In the first phase, we apply grammar rules interleaved with inference rules to produce a pair
of 〈question, logical form〉. Specifically, we apply a recursive top-down algorithm which starts with
the S nonterminal and at every step performs a random search over the rules in the grammar which
could produce the target nonterminal with accompanying feature structure. This top-down process
proceeds until a candidate syntactic parse tree is attained whose leaves consist purely of syntactic
terminals (i.e., string literals or entity placeholders). The grammar rules from this candidate parse
tree are then applied in a bottom-up fashion beginning with the syntactic terminals to yield a tree
of 〈text, logical form〉 pairs. After each such bottom-up grammar rule application, we then greedily
apply all possible inference rules on the resulting logical forms, applying an arbitrary deterministic
ordering to the inference rules in cases where rules could be applied in multiple valid orderings.
This ensures that inference rules and grammar rules are executed in an interleaved manner and each
inference rule is applied at the earliest possible occasion.

When a 〈question, logical form〉 pair is generated for the S nonterminal, we proceed to the sec-
ond phase of the algorithm, in which resolution rules are applied to generate a corresponding
SPARQL query to make up the third element of the desired 〈question, logical form, SPARQL query〉
triple. In practice, the bulk of the work in this phase is performed in a top-down fashion, in
which resolution rules are recursively applied to transform a starting expression of the form
get_specializations($L) (where $L represents the logical form output from the grammar
phase) into a sequence of text literals representing the SPARQL query. This is followed nominally
by a bottom-up process to construct the rule application DAG, yielding a tree of resolution rule
applications of a similar form to the tree of interleaved grammar and inference rules output from
the grammar phase. Note that while the grammar phase involves a large degree of random choice,
the resolution phase proceeds much more deterministically, as the CFQ resolution rules have been
designed such that any given question can yield only one possible SPARQL query, modulo commu-
tativity and associativity of u. In cases where resolution rules could be applied in multiple valid
orderings, we again apply an arbitrary deterministic ordering to the resolution rules so as to yield as
consistent as possible a rule application DAG and 〈question, logical form, SPARQL query〉 triple for
any given question.

Finally, to ease the task of tracking unique query patterns and to minimize the impact on the learn-
ing task of implementation details regarding choice of variable names or ordering of clauses, we
normalize the final SPARQL query by alphabetically sorting the query clauses and re-numbering the
variables to follow a standard increasing order.

The resulting 〈question, logical form, SPARQL query〉 triple is then appended to the CFQ dataset.

K.1 JOIN BY LOGICAL FORM

In general, we do not explicitly track rules to represent the example-independent behaviors of the
generation algorithm, as the universal applicability of these rules mean that the complete behavior
of the generator should be observable on any reasonably-sized train set. The same applies to certain
core behaviors of the description logic EL, such as commutativity and associativity of u, which we
omit tracking as explicit rules due to their similar ubiquity of application.

One example-independent rule, however, that we do explicitly track is the rule that describes the
handover process between the grammar phase and the resolution phase – or in terms of the rule
application DAG, the rule that joins the tree of interleaved grammar and inference rule applications
with the tree of resolution rule applications. We call this rule JOIN_BY_LOGICAL_FORM. It is
included in the rules list for every example in CFQ and appears as the head of the rule application
tree for each example.
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K.2 RELATIONSHIP BETWEEN GENERATION AND PARSING

Note that conceptually a similar approach for combining the different rule types could be applied to
the semantic parsing task. The main difference would be that, instead of performing random search
over the grammar, the semantic parsing task would need to find the set of rules which produce the
desired input text.

K.3 SELECTING AN APPROPRIATE SAMPLE SET

For many domains, the set of examples generated by exhaustively combining rules is infinite or
prohibitively large. For example, the CFQ grammar generates an infinite set of questions, and even
when restricted to a reasonable complexity, the set is still too large for practical use. This means that
we need to choose which subset of examples we want to include in our dataset. Given our goal of
comprehensively measuring compositional generalization, we do this by:

1. maximizing the overall diversity of rule combinations (allowing us to test as many rule
combinations as possible)

2. while using a uniform distribution from simple examples to increasingly more complex
examples.

We measure the diversity of rule combinations of a dataset using the empirical entropy over the fre-
quency distribution of the subgraphs of the rule application DAGs, and we measure the complexity
of an example using the number of rule applications used to generate it.

For CFQ, we choose the following practical trade-off between these two criteria. We first generate
a sufficiently large sample set by performing random rule applications. We then subsample from it
to select a subset that maximizes the entropy of the subgraph distribution (while only taking into
account subgraphs with a limited number of nodes for practicality). We use a greedy algorithm that
incrementally assigns elements to the subsampled set while maximizing entropy at each step.

The subsampling is initially limited to examples with the smallest complexity level and continues
with increasingly larger complexity levels. We cap the maximum number of examples per level to
achieve a uniform distribution across levels, and we limit the maximum complexity level such that
the questions remain relatively natural. Table 1 shows examples of generated questions at varying
levels of complexity.

L EXAMPLE OF A RULE APPLICATION DAG

Figures 12 through 14 show the rule application DAG that was produced when generating the ques-
tion “Who directed [entity]?”. They illustrate how grammar, inference, and knowledge rules are
combined to generate a pair of text and logical form, and how resolution rules are used to generate
the SPARQL query for the resulting logical form.

L.1 DAG NORMALIZATION

As discussed in Section 3, nodes of this DAG represent rule applications while edges represent de-
pendencies among the rules; i.e., an edge A → B means that rule B strictly depends on rule A in
the sense that the generator cannot apply rule B before applying rule A. The DAG is normalized
to ensure that a certain rule combination is represented using the same DAG across all the exam-
ples where it occurs. This is important for meaningfully comparing measures such as entropy and
divergence across subgraphs of different examples.

Specifically, together with adopting the measures described above to ensure that rules are applied
in a deterministic order, we achieve the normalization of the DAG by only producing edges that
represent “minimal dependencies”. This means that if a rule A can be applied after rule B, but it
could also be applied after rule B′ with B → B′ (i.e., B′ depends on B), we don’t produce the edge
B′ → A.
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Figure 12: The normalized rule application DAG that was produced for “Who directed [entity]?”
(grammar/inference rules portion, continued in Figures 13 and 14).
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Figure 13: The normalized rule application DAG that was produced for “Who directed [entity]?”
(resolution rules portion, continued from Figure 12).
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Figure 14: The normalized rule application DAG that was produced for “Who directed [entity]?”
(inference rules portion, continued from Figure 12).

L.2 CONCEPT ABBREVIATIONS

For brevity, in the rule application DAG figures we have applied the following abbreviations for
several lengthy concept names:

• Director = FilmDirector

• Directee = DirectedFilm

• Directing = DirectingAFilm

• SubjectAgentVerb = PredicateWithBoundRolePairs(RolePair(
SubjectHaver, Subject), RolePair(Predicate, Agent))
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• ObjectUndergoerVerb = PredicateWithBoundRolePairs(RolePair(
ObjectHaver, Object), RolePair(Predicate, Undergoer))

• E1 = Entity(’?E1’)

L.3 ENTITY PLACEHOLDERS

As described in Section 3.2, during generation we initially generate a
〈question, logical form, SPARQL query〉 triple containing entity placeholders, and then re-
place those placeholders with specific entities as a post-processing step. Conceptually,
one could construct a rule application DAG describing either the process by which
the original 〈question, logical form, SPARQL query〉 triple with entity placeholders was
generated, or alternatively the rules that would need to be applied if constructing the
〈question, logical form, SPARQL query〉 triple containing the final entity MIDs directly. Struc-
turally, these two DAGs are identical, differing only in the definition of two entity-related rules
described below. The rule application DAG shown in the accompanying figures is the version using
entity placeholders.

Versions of entity rules applicable when using entity placeholders:

ENTITY=[ENTITY]_HSz7QrdGdsX:
ENTITY(number:singular)/Entity(new_var(V1))
→ ’[entity]’

ENTITY_MID:
ent2sparql(Entity($X)) → $X

Versions of entity rules applicable when using actual entity MIDs:

ENTITY=[ENTITY]_HSz7QrdGdsX:
ENTITY(number:singular)/’m.’$X
→ ’m.’$X

ENTITY_MID:
ent2sparql(’m.’$X) → ’ns:m.’$X

L.4 SUBGRAPHS AND THEIR WEIGHTS

Figure 15 shows an example of subgraphs in order to provide more details on the sampling and
weighting of compounds. An example non-linear subgraph is highlighted by the red area, and two
linear subgraphs are highlighted by the blue and the yellow areas, respectively.

As described in Section 2.1, given a large subset G of subgraphs from the sample set as a whole, we
calculate for each sample the weight of each subgraph G ∈ G that occurs in that sample as:

w(G) = max
g∈occ(G)

(1− max
G′:g≺g′∈occ(G′)

P (G′|G)),

where occ(G) is the set of all occurrences ofG in the sample,≺ denotes the strict subgraph relation,
and P (G′|G) is the empirical probability of G′ occurring as a supergraph of G over the full sample
set.

Intuitively, we are trying to estimate how interesting the subgraphG is in the sample. First, for every
occurrence g of a subgraph G, we look for the supergraph G′ of g that co-occurs most often with G
in the full sample set. The empirical probability of having G′ as a supergraph of G determines how
interesting the occurrence g is – the higher this probability, the less interesting the occurrence. Thus
we compute the weight of the occurrence as the complement of this maximum empirical probability.
Then we take the weight of G to be the weight of the most interesting occurrence g of G in the
sample.

E.g. in the extreme case thatG only occurs within the contextG′, the weight ofGwill be 0 in all sam-
ples. Conversely, if G occurs in many different contexts, such that there is no single other subgraph
G′ that subsumes it in many cases, then w(G) will be high in all samples in which it occurs. This
ensures that when calculating compound divergence based on a weighted subset of compounds, the
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Figure 15: Examples subgraphs in the grammar/inference rules portion for “Who directed [entity]?”
(from Figure 12): non-linear subgraph (red area), and two linear subgraphs (yellow and blue areas),
of which one (yellow area) is a subgraph of the other (blue area).

most representative compounds are taken into account, while avoiding double-counting compounds
whose frequency of occurrence is already largely explainable by the frequency of occurrence of one
of its super-compounds.

Returning to our example in Figure 15, suppose that G represents the smallest linear subgraph (yel-
low area), and suppose that the weight of G in this sample is 0.4. Then this means that there exists
some other subgraph G′ (for instance, the linear subgraph highlighted by the blue area) that is a
supergraph of G in 60% of the occurrences of G across the sample set.

M RULES INDEX

Below is a selection of the rules used in the generation of CFQ. Specifically, this includes all rules
involved in generating the question “Who directed [entity]?” (the same example illustrated in the
rule application DAG in Appendix L). The format of the rules is discussed in Appendix J.

M.1 GRAMMAR RULES

S=WHQ_F6E9egkQqxj:
S/_x
→ WHQ/_x

WHQ=NPQ_INDIRECT_VP_INDIRECT_TXCca9URgVm:
WHQ[_subject]/DropDependency(_subject) u

DropDependency(∃RolePair(Subject, SubjectHaver)._action)
→ NPQ_INDIRECT(is_what:_none_, number:$n)/_subject

VP_INDIRECT(form:past, number:$n, object:yes, subject:_none_)/_action

NPQ_INDIRECT=WHO_5ptbPXXbuLZ:
NPQ_INDIRECT(number:singular)/Person
→ ’who’

VP_INDIRECT=VP_INDIRECT_DP_ZJH4NhRkByc:

36



Published as a conference paper at ICLR 2020

VP_INDIRECT(object:yes)[_action]/_action u ∃RolePair(ObjectHaver,
Object)._object
→ VP_INDIRECT(object:_none_, subject:_none_)/_action

DP/_object

VP_INDIRECT=ACTIVE_VP_RX51Tm7RXPe:
VP_INDIRECT(object_type:$ut, subject_type:$at)[_head]/_head u

PredicateWithBoundRolePairs(RolePair(SubjectHaver, Subject),
RolePair(Predicate, Agent)) u
PredicateWithBoundRolePairs(RolePair(ObjectHaver, Object),
RolePair(Predicate, Undergoer))
→ ACTIVE_VP(agent_type:$at, undergoer_type:$ut)/_head

ACTIVE_VP=VP_SIMPLE_hJqAyjRUYJp:
ACTIVE_VP(number:singular)[_head]/_head
→ VP_SIMPLE(form:past)/_head

VP_SIMPLE=VP_GHWf3fcVRZg:
VP_SIMPLE(agent_type:person, undergoer_type:movie)[_head]/_head
→ VP(concept_id:DirectingAFilm)/_head

VP=DIRECTED_JkYzNbQyXtv:
VP(concept_id:DirectingAFilm, form:past)/DirectingAFilm
→ ’directed’

DP=ENTITY_M6fSP5GvRaN:
DP(is_proper_noun:yes, number:singular)[_head]/_head
→ ENTITY/_head

ENTITY=[ENTITY]_HSz7QrdGdsX:
ENTITY(number:singular)/Entity(new_var(V1))
→ ’[entity]’

... (211 grammar rules total)

M.2 INFERENCE RULES

BOUND_ROLES_WITH_PREDICATE_OBJECT:
BoundRolePairs($A, RolePair($R, $Q), RolePair($T, $S)):
∃RolePair($Q, $R).($A u $B) → ∃RolePair($S, $T).($A u $B)

BOUND_ROLES_WITH_PREDICATE_SUBJECT:
BoundRolePairs($B, RolePair($Q, $R), RolePair($S, $T)):

$B u ∃RolePair($Q, $R).$A → $B u ∃RolePair($S, $T).$A

IGNORE_BOUND_ROLE_PAIRS:
$A u PredicateWithBoundRolePairs($X, $Y) → $A

IGNORE_DEPENDENCY_DROPPING:
DropDependency($X) → $X

PREDICATE_UNREIFICATION:
Role($Q, $P), Role($R, $P):
∃RolePair($Q, Predicate).($P u ∃RolePair(Predicate, $R).$A) →
∃RolePair($Q, $R).$A

... (17 inference rules total)

M.3 RESOLUTION RULES

CONJUNCTION_WITHOUT_ENTITY:
def2sparql($X u $Y, $V1) → def2sparql($X, $V1) ’ . ’ def2sparql($Y,

$V1)

37



Published as a conference paper at ICLR 2020

ENTITY_MID:
ent2sparql(Entity($X)) → $X

GET_SPECIALIZATIONS:
get_specializations($X) → ’SELECT DISTINCT ’ get_var($X, new_var($V0))

’ WHERE { ’ def2sparql($X, get_var($X, $V0)) ’}’

GET_VAR_CONJUNCTION:
get_var($X u $Y, $V1) → shared_var(get_var($X, get_var($Y, $V1)),

get_var($Y, get_var($X, $V1)))

GET_VAR_RELATION:
get_var(∃$R.$X, $V1) → $V1

GET_VAR_TYPE:
FreebaseTypeMapping($X, $F):

get_var($X, $V1) → $V1

PROPERTY_MAPPING:
FreebasePropertyMapping($R, $F):

role2sparql($R) → $F

RELATION_MAPPING_WITHOUT_EXCLUSION:
NonExclusiveRolePair($R):

rel2sparql($X, $R, $Y) → $X role2sparql($R) $Y

RELATION_TO_ENTITY:
def2sparql(∃$R.$X, $V1) → rel2sparql($V1, $R, ent2sparql($X))

SHARED_VAR:
shared_var($X, $X) → $X

SPECIALIZATION_OF_TYPE:
def2sparql($X, $V1) → $V1 ’ a ’ type2sparql($X)

TYPE_MAPPING:
FreebaseTypeMapping($X, $F):

type2sparql($X) → $F

... (21 resolution rules total)

M.4 KNOWLEDGE RULES

→ BoundRolePairs(DirectingFilm, RolePair(Predicate, Agent),
RolePair(Predicate, FilmDirector))
→ BoundRolePairs(DirectingFilm, RolePair(Predicate, Undergoer),

RolePair(Predicate, DirectedFilm))
→ BoundRolePairs(PredicateWithBoundRolePairs(RolePair(ObjectHaver,

Object), RolePair(Predicate, Undergoer)), RolePair(ObjectHaver, Object),
RolePair(Predicate, Undergoer))
→ BoundRolePairs(PredicateWithBoundRolePairs(RolePair(Subject,

SubjectHaver), RolePair(Agent, Predicate)), RolePair(Subject,
SubjectHaver), RolePair(Agent, Predicate))
→ FreebasePropertyMapping(RolePair(FilmDirector, DirectedFilm),

’ns:film.director.film’)
→ FreebaseTypeMapping(Person, ’ns:people.person’)
→ NonExclusiveRolePair(FilmDirector, DirectedFilm)
→ Role(DirectedFilm, DirectingFilm)
→ Role(FilmDirector, DirectingFilm)

... (194 knowledge rules total)

38


	Introduction
	Distribution-Based Compositionality Assessment (DBCA)
	Principles for measuring compositionality

	The CFQ Dataset
	Automatic, rule-based generation
	Dataset details and statistics

	Compositionality Experiments for CFQ and scan
	Experimental Results and Analysis
	Experiment Setup
	Results and analysis for CFQ
	Results and analysis for scan

	Related Work
	Conclusion and Outlook
	Example Dataset Item
	Data Quality Analysis
	Data Distribution Analysis
	Answer frequencies
	Impact of subsampling on the distribution of complexity levels
	Impact of subsampling on the frequency of rules and rule combinations

	Divergence-Based Split Analysis
	Qualitative analysis of MCD1
	Quantitative analysis of MCD1

	Hyperparameters
	Detailed error analysis
	Breakdown of error types
	Qualitative error analysis

	Additional experimental results on scan
	Analysis of relations between accuracy, compound divergence, and training size
	Logical Form
	Rule Format
	Grammar rule format
	Knowledge rule format
	Inference rule format
	Resolution rule format

	Generation Algorithm
	Join by Logical Form
	Relationship between Generation and Parsing
	Selecting an appropriate sample set

	Example of a rule application DAG
	DAG normalization
	Concept abbreviations
	Entity placeholders
	Subgraphs and their weights

	Rules Index
	Grammar rules
	Inference rules
	Resolution rules
	Knowledge rules


