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ABSTRACT

Data Interpretation is an important part of Quantitative Aptitude exams and re-
quires an individual to answer questions grounded in plots such as bar charts,
line graphs, scatter plots, etc. Recently, there has been an increasing interest in
building models which can perform this task by learning from datasets containing
triplets of the form {plot, question, answer}. Two such datasets have been pro-
posed in the recent past which contain plots generated from synthetic data with
limited (i) x− y axes variables (ii) question templates and (iii) answer vocabulary
and hence do not adequately capture the challenges posed by this task. To over-
come these limitations of existing datasets, we introduce a new dataset containing
9.7 million question-answer pairs grounded over 270, 000 plots with three main
differentiators. First, the plots in our dataset contain a wide variety of realistic
x-y variables such as CO2 emission, fertility rate, etc. extracted from real word
data sources such as World Bank, government sites, etc. Second, the questions
in our dataset are more complex as they are based on templates extracted from
interesting questions asked by a crowd of workers using a fraction of these plots.
Lastly, the answers in our dataset are not restricted to a small vocabulary and a
large fraction of the answers seen at test time are not present in the training vocab-
ulary. As a result, existing models for Visual Question Answering which largely
use end-to-end models in a multi-class classification framework cannot be used for
this task. We establish initial results on this dataset and emphasize the complexity
of the task using a multi-staged modular pipeline with various sub-components to
(i) extract relevant data from the plot and convert it to a semi-structured table (ii)
combine the question with this table and use compositional semantic parsing to
arrive at a logical form from which the answer can be derived. We believe that
such a modular framework is the best way to go forward as it would enable the
research community to independently make progress on all the sub-tasks involved
in plot question answering.

1 INTRODUCTION

Data plots such as bar charts, line graphs, scatter plots, etc. provide an efficient way of summariz-
ing numeric information and are frequently encountered in textbooks, research papers, professional
reports, newspaper articles, etc. Machine comprehension of these plots with the aim of answer-
ing questions grounded in them is an interesting research problem which lies at the intersection of
Language and Vision and has widespread applications. For example, such a system could enable fi-
nancial analysts to use natural language questions to access the information locked in a collection of
data plots within financial reports, journals, etc. Such a system could also serve as an important edu-
cational assistant for the visually impaired by helping them understand the information summarized
in a plot by asking a series of questions.

Recently, two datasets , viz., FigureQA(Kahou et al., 2017) and DVQA(Kafle et al., 2018) have
been released for this task which contain triplets of the form {plots, questions, answers}. These
datasets clearly show that despite its apparent similarity to Visual Question Answering (VQA), this
task has several additional challenges due to which existing state of the art VQA methods do not
perform well on this task. However, both FigureQA and DVQA themselves have some limitations
which warrants the creation of more challenging datasets which adequately capture a wider range of
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a) FigureQA b) DVQA c) DIP

Q: Is Light Green the minimum?
A: 1

Q: What is the value of mad in drop?
A: 7

Q: What is the difference between the

highest and the lowest percentage of

female labor force above age 50?

A: 60.49

Figure 1: A sample {plot, question, answer} triplet from FigureQA, DVQA and DIP datasets.

challenges posed by this task. With this motivation, we create a new dataset for Data Interpretation
over Plots (DIP) with three major differentiators from existing datasets as outlined below.

Figure 1 shows a sample triplet from FigureQA, DVQA and DIP (our dataset). First, we note
that FigureQA and DVQA contain plots created from synthetic data. In particular, note that the
label names (either x-axis or y-axis or legend names) in FigureQA and DVQA come from a limited
vocabulary (color names and top-1000 nouns from Brown corpus respectively). This clearly reduces
the vocabulary that a model needs to deal with. Further, the label names are not really meaningful
in the context of the plot leading to unnatural questions. In contrast, the plots in our dataset are
based on World Bank Open Data which contains realistic variable names such as mortality rate,
crop yield, country names, etc. The values associated with each plot are also realistic with different
scales including floating point numbers as opposed to DVQA which contains only integers in a fixed
range. Secondly, the questions in FigureQA and DVQA are based on a smaller number of templates
(15 and 25). Instead of hand designing a small number of templates, we first show a fraction of
the plots to crowdsourced workers and ask them to create natural language questions which can
be answered from these plots. We then analyze these questions and extract templates from them
which results in a richer question repository with more templates (74) and more complex questions.
Lastly, unlike FigureQA and DVQA the answers in our dataset do not come from a small fixed set of
vocabulary. For example, the answer to the question shown in Figure 1 is 60.49, which is not present
in the training data. More specifically, the answer vocabulary for the test data is 248, 878 words of
which 187, 688 are not seen in the training data. This is quite natural and expected when the plots
and questions are extracted from real world data. In addition to the above differentiators, we also
include an extra novel test set which contains plots based on data extracted from Open Government
Data as opposed to World Bank Data. This test set contains additional variable and legend names
which are not seen in the World Bank Data.

Given the large answer vocabulary, it is infeasible to use any of the existing VQA models on our
dataset as they largely treat VQA as a multi-class classification problem where the task is to select
the right answer from a fixed vocabulary. Even the recent models proposed on DVQA take a similar
multi-class classification approach. Further, we believe that given the various sub-tasks involved
in this problem it is not prudent to use a single end-to-end system which simply takes the plot and
question as input and generates as answer. Instead, as a baseline we propose a modular multi-staged
pipeline wherein the first stage in the pipeline extracts (i) data objects in the plot such as bars, lines,
etc. (ii) text objects in the plot such as titles, legend names, x-y axes names, etc. (iii) the numeric
objects in the plot such as tick values, scales, etc. At the end of this stage, the plot is converted to a
semi-structured table. We then use a method (Pasupat & Liang, 2015) which combines the question
with this table and uses compositional semantic parsing to arrive at a logical form from which
the answer can be derived. The key point here is that the output is neither selected from a fixed
vocabulary nor generated using a decoder but it is derived from a logical form. Our experiments
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using this model suggest that this dataset is indeed very challenging and requires the community to
look beyond existing end-to-end models.

2 RELATED WORK

In this section, we review existing datasets and models for Visual QA.

Datasets: Over the past few years several large scale datasets for Visual Question Answering have
been released. These include datasets such as COCO-QA (Ren et al., 2015), DAQUAR (Malinowski
& Fritz, 2014), VQA (Antol et al., 2015; Goyal et al., 2017) which contain questions asked over
natural images. On the other hand, datasets such as CLEVR (Johnson et al., 2017) and NVLR (Suhr
et al., 2017) contain complex reasoning based questions on synthetic images having 2D and 3D
geometric objects. There are some datasets (Kembhavi et al., 2016; 2017) which contain questions
asked over diagrams found in text books but these datasets are smaller and contain multiple-choice
questions. Another dataset worth mentioning is the FigureSeer dataset (Siegel et al., 2016) which
contains images extracted from research papers but this is also a relatively smaller dataset (60,000
images). Further, their focus is on extracting information and answering questions based on line
plots as opposed to other types of plots such as bar charts, scatter plots, etc. as seen in two recently
released datasets, viz., FigureQA (Kahou et al., 2017) and DVQA (Kafle et al., 2018). However,
these two datasets also have some limitations which we try to overcome by proposing a new dataset
in this work. To the best of our knowledge, ours is the first work which introduces plots created from
real-world data containing natural x-y axes variables, real data values, a huge answer vocabulary and
richer question templates.

Models: The availability of the above mentioned datasets has facilitated the development of complex
end-to-end neural network based models (Lu et al. (2016), Yang et al. (2016), Noh & Han (2016),
Santoro et al.), which typically contain (i) encoders to compute a representation for the image and
the question (ii) attention mechanisms to focus on important parts of the question and image (iii)
interaction components to capture the interactions between the question and the image and finally
(iv) a classification layer for selecting the answer from a fixed vocabulary. While these algorithms
have shown reasonable success on the original VQA tasks that they were proposed for, they fail to
perform well on datasets where the questions involve more complex numeric reasoning over images.
A case in point is the performance of the models on the recently released datasets for plot QA, viz.,
FigureQA (Kahou et al., 2017) and DVQA (Kafle et al., 2018). One crucial difference is that when
dealing with plots such as bar charts, scatter plots, etc. the numeric information in the image needs to
be accurately inferred based on the position of the axes, relative position of legends, bars, lines etc.
in the figure. Such structure is typically not present in natural images and the resulting questions
are also more complex and quantitative in nature. An additional challenge in our dataset is that
the answer vocabulary is not fixed and can range from floating point numerical answers to textual
answers containing multiple words. As a result, existing end-to-end models which treat VQA as a
multi-class classification problem cannot be used. We propose that instead of using a single end-to-
end model which addresses all the sub-tasks of plot QA such as extracting label information, numeric
information, parsing questions, etc. one should build a modular pipeline wherein different modules
address different sub-tasks involved. In particular, we first convert the plot to a semi-structured table
(similar to (Cliche et al., 2017)) and then leverage existing methods (Berant et al.) for answering
questions from such tables (Pasupat & Liang, 2015) using compositional semantic parsing.

3 THE DIP (DATA INTERPRETATION OVER PLOTS) DATASET

In this section, we describe the four main stages involved in building this dataset, viz., (i) curating
data such as year-wise rainfall statistics, country-wise mortality rates, etc. (ii) creating different
types of plots with a variation in the number of elements, legend positions, fonts, etc. (iii) using
crowdsourcing to generate questions (iv) extracting templates from the crowdsourced questions and
instantiating these templates using appropriate phrasing suggested by human annotators.

We first describe in detail the various phases that were involved in creating the dataset.
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(i) Horizontal Bar Graph (ii) Line Plot

(iii) Vertical Bar Graph (iv) Scatter Plot

Figure 2: Sample of each of the plot types present in the DIP dataset.

3.1 DATA COLLECTION AND CURATION

We considered online data sources such as World Bank Open Data1, Open Government Data2,
Global Terrorism Database3, Nutritional Analysis Data4, etc. which contain statistics about vari-
ous indicator variables such as fertility rate, rainfall, coal production, etc. across years, countries,
districts, etc. We crawled data from these sources to extract different variables whose relations
could then be plotted (for example, rainfall v/s years or rainfall v/s years across countries or movie
v/s budget or carbohydrates v/s food item and so on). Some important statistics about the crawled
data are as follows: (i) it has 841 unique indicator variables (ii) the data ranges from 1960 to 2016
(of course, all indicator variables may not be available for all years) and (iii) the data corresponds
to 160 unique entities (cities, states, districts, countries, movies, food items, etc.). The data contains
positive integers, floating point values, percentages and values on a linear scale. The minimum value
across all indicator variables is 0 and the maximum value is 3.50E + 15.

3.2 PLOT GENERATION

We included 3 different types of plots in this dataset, viz., bar graphs, line plots and scatter plots.
Within bar graphs, we have grouped bar graphs with both horizontal and vertical orientation. These
types cover a wide range of plots that are typically encountered in journals, research papers, text-
books, etc. We couldn’t find enough data to create certain other types of plots such as Venn diagrams
and pie charts which are used in very unique situations. We also do not consider composite plots
such as Pareto charts which have line graphs on top of bar graphs. Lastly, all the plots in our dataset
contain only 2-axes. Figure 2 shows one sample from each of the plot types in our dataset. Note that
in Figure 2 (iii), the plot compares an indicator variable (say, race of students) across cities for dif-
ferent racial origins. Each plot is thus a compact way of representing 3 dimensional data. To enable

1https://data.worldbank.org/
2https://www.india.gov.in/
3https://www.start.umd.edu/gtd/
4https://www.kaggle.com/mcdonalds/nutrition-facts/home
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the development of supervised modules for various sub-tasks we provide bounding box annotations
for legend boxes, legend names, legend markers, axes titles, axes ticks, bars, lines and plot title. By
using different combination of indicator variables and entities (years, countries, etc.) we created a
total of 273, 821 plots.

To ensure that there is enough variety in the plots, the following plot parameters were randomly
chosen: (i) grid lines (present/absent) (ii) font size (iii) the notation used for tick labels (scientific-
E notation or standard notation (iv) line style in the case of line plots, i.e, {solid, dashed, dotted,
dash-dot} (v) marker styles for marking data points, i.e., {asterisk, circle, diamond, square, triangle,
inverted triangle} (vi) position of legends, i.e., {bottom-left, bottom-centre, bottom-right, center-
right, top-right} and (vii) colors for the lines and bars from a set of 73 unique colors. The number
of discrete elements on the x-axis varies from 2-12. Similarly, the number of entries in the legend
box varies from 1-4. In other words, in the the case of line plots, the number of lines varies from
1-4 and in the case of grouped bars the number of bars grouped on a single x-tick varies from 1-4.
For example, for the plots in Figure 2 (iii), the number of discrete elements on the x-axis is 5 and
the number of legend names (i.e., number of lines or number of bars in a group) is 4.

3.3 SAMPLE QUESTION COLLECTION VIA CROWDSOURCING

Since the underlying data in our plots is much richer as compared to FigureQA and DVQA we felt
that instead of creating a small number of templates it would be best to ask a wider set of annotators
to create questions over these plots. However, creating questions for all the plots in our dataset would
have been prohibitively expensive. To avoid this, we sampled 3, 500 plots across different types and
asked workers on Amazon Mechanical Turk to create questions for these plots. We showed each
plot to 5 different workers resulting in a total of 17, 500 questions. We specifically instructed the
workers to ask complex reasoning questions which involved reference to multiple plot elements in
the plots. We also gave the workers a list of simple questions such as “Is this a vertical bar graph?”,
“What is the title of the graph?”, ”What is the value of coal production in 1993?” and asked them
to strictly not create such questions as we had already created such questions using hand designed
templates. We paid them 0.1$ for each question.

3.4 QUESTION TEMPLATE EXTRACTION AND INSTANTIATION

We manually analyzed the questions collected via crowdsourcing and divided them into 5 coarse
classes with a total of 74 templates (including the simple templates that we had manually designed
as mentioned earlier). These question categories along with a few sample templates are shown below
(we refer the reader to the Supplementary material for more details).

1. Structural Understanding : These are questions about the overall structure of the plot
and typically do not require any quantitative reasoning. For example, “How many different
coloured bars are there ?”, “How are the legend labels stacked ?” and so on.

2. Data Retrieval : These questions are typically related to a single element in the plot. For
example, “What is the value added by services sector in 1992 ?”, “How many bars are there
on the 4th tick from the top ?” and so on.

3. Numeric Reasoning : These questions require some numeric reasoning over multiple plot
elements. For example, “Across all countries, what is the maximum number of threatened
fish species ?”, “In which country was the number of threatened bird species minimum ?”,
“What is the median banana production ?”, “What is the difference between the number of
threatened bird species in Thailand and that in Nicaragua ?” and so on.

4. Comparative Reasoning : These questions typically require a comparative analysis of
different elements of the plot. For example, “In how many countries, is the number of
threatened fish species greater than 180 ?”, “What is the ratio of the value added by indus-
trial sector in 1988 to that in 1989 ?” and so on.

5. Compound : These questions typically combine numeric and comparative reasoning. For
example, “What is the difference between the highest and the second highest banana pro-
duction ?”, “In how many years, is the banana production greater than the average banana
production taken over all years ?” and so on.
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We also created corresponding logical forms for these questions which could be executed on the raw
data to extract the answers for the questions. Generating questions for multiple indicator variables
using these templates was a tedious task requiring a lot of manual intervention. For example, con-
sider the template “In how many <plural form of X label>, is the <Y label> of/in <legend label>
greater than the average <Y label> of/in <legend label> taken over all <plural form of X label>
?”. Now consider the indicator variable “Race of students” in Figure 2 (iii). If we substitute this
indicator variable as it is in the question it would result in a question, “In how many cities, is the
race of the students(%) of Asian greater than the average race of the students (%) of Asian taken
over all cities ?”, which sounds unnatural. To avoid this, we had to carefully paraphrase these indi-
cator variables and question templates so that the variables could be automatically substituted in the
template. As a result, when each template is instantiated for different indicator variables it looks a
bit different in its surface form.

4 PROPOSED PIPELINE

We break down the task of Plot QA into two main tasks. The first task is to extract all numeric/textual
data from the plot and store it in a semi-structured table. Once we have such a table, the next sub-
task is to perform QA over such a table as opposed to the image directly. The task of converting the
plot to a semi-structured table can itself be broken down into multiple sub-tasks. The modules used
to perform all these sub-tasks as well as the final Table-QA are shown in Figure 3 and described
below.

4.1 VISUAL ELEMENTS DETECTION (VED)

The information contained in plots is very sparse as most of the pixels simply belong to the back-
ground and very few pixels/locations contain actual data. More specifically, the data bearing ele-
ments of the plot are the title of the plot, the labels of the x and y axes, the tick marks or categories
(e.g., countries) on the x and y axis, the data markers in the legend box, the legend names, the full
legend box and finally the actual bars and lines in the graph. Following existing literature (Cliche
et al. (2017),Kafle et al. (2018)), we refer to these elements as the visual elements of the graph. The
first task is to extract all these visual elements by drawing bounding boxes around them. We treat
this as an object detection task and use the Single Shot Multibox Detector (SSD) (Liu et al., 2016)
to detect these elements in the graph. We train one such object detector for each of the 9 visual
elements and run them in parallel at inference time to detect all the elements in the plot.

4.2 OPTICAL CHARACTER RECOGNITION (OCR) AND DATA EXTRACTION

Once we have the bounding boxes, the next task is to read the numeric or textual values inside these
bounding boxes. This is a task of Optical Character Recognition(OCR) and we use a state of the art
OCR model (Smith, 2007) for this task. Specifically, given the coordinates of the bounding box, we
crop the image to this bounding box, convert the cropped image into grayscale, resize and deskew
it and then pass it to an OCR module. Since existing OCR modules perform very well for machine
written English text, we simply use an existing pre-trained OCR module 5 and do not re-train it using
our data.

4.3 SEMI-STRUCTURED INFORMATION EXTRACTION (SIE)

As shown in Figure 3, using all the information extracted so far, we are interested in creating a
table where the rows correspond to the ticks on the x-axis (1996, 1997, 1998, 1999 in this case),
the columns correspond to the different elements listed in the legend (Brazil, Iceland, Kazakhistan,
Thailand in this case) and the i,j-th cell contains the value corresponding to the x-th tick and the
y-th legend. The values of the x-tick labels and the legend names are already available from the
OCR module. However, we still need to identify which legend name corresponds to which legend
marker (or color in this case). More specifically, in the above example, we have already identified
the bounding boxes of all the legend markers (colors in this case) and the legend names but we
need to now associate the right color to the right legend name. We do this by simply associating

5https://github.com/tesseract-ocr/tesseract
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(i)

Q: “What is the average percentage of

imports from different countries in Thailand

per year?”

(ii)

Visual

Elements

Detection

(iii)

OCR

and Data

Extraction

(iv)

Information

Extraction

(v) (vi)

(vii)

Table

Question

Answering

(viii)

A: 9.008

(ix)

Figure 3: Our proposed multi-staged modular pipeline which (i) takes the image of the plot and (ii)
question as input, (iii) extracts bounding boxes for all visual elements of the plot, (iv) applies OCR
to extract the textual and numerical content of the visual elements, (v) associates the data-points
with appropriate legend labels, x and y co-ordinates, (vi) consolidates all the information about the
input plot into JSON format, (vii) converts the json formatted file into a semi-structured table. (viii)
Further, the Question Answering module which takes the question and the semi-structured table and
predicts the (ix) answer.

a legend name to the marker whose bounding box is closest to the bounding box of the legend
name. Similarly, we associate each tick label to the tick marker whose bounding box is closest to
the bounding box of the tick label. In other words, we have now associated, the legend name Brazil
to the color “Dark Cyan” and the tick label 1996 to the corresponding tick mark on the x- axis.

Once we have identified the 4 row headers (years, in this case) and the 4 column headers (countries,
in this case) we need to fill a total of 16 values in the table. This is a two step process, wherein we first
need to associate each of the 16 bounding boxes corresponding to the 16 bars to the corresponding
x-tick and legend name. Associating a bar to the corresponding x-tick label is again straightforward
as we can simply associate it with the tick whose bounding box is closest to the bounding box of
the bar. To associate a bar to a legend name we find the dominant color in the bounding box of
the bar and associate it with the legend name associated with that color. Lastly, we need to find
the value represented by each bar. For this, we use the tick marks on the y-axis as identified by
the OCR module as a reference. In particular, we extract the height of the bar using the bounding
box information and then look at the y-tick labels immediately above and below it. We can then
interpolate the value of the bar based on the values of these ticks.

At the end of this stage we have extracted all the information from the plot into a semi-structured
table as shown in Figure 3 (vii).

4.4 TABLE QUESTION ANSWERING (QA)

Once we have the data in a semi-structured table the task becomes similar to the task of answer-
ing questions from the WikiTableQuestions dataset (Pasupat & Liang, 2015). We simply use the
approach outlined in Pasupat & Liang (2015) wherein they first convert the table to a knowledge
graph, convert the question to a set of candidate logical forms by applying compositional semantic
parsing. Each of these logical forms is then ranked using a log-linear model and the highest ranking
logical form is then applied to the knowledge graph to get the answer. Due to space constraints, we
refer the reader to the original paper for more details of this stage.
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Table 1: DIP Dataset Statistics
Dataset Split #Images #QA pairs
Train 1,57,070 5,733,893
Validation 33,650 1,228,468
Test-Familiar 33,657 1,228,313
Test-Novel 48,444 1,593,138
Test-Hard 1,000 3,000
Total 273,821 9,786,812

Table 2: Accuracy of the Semi-Structured In-
formation Extraction(SIE) module on the various
dataset-splits with varying values of threshold.

Threshold Test-
Familiar

Test
Novel

1% 7.9% 5.6%
10% 58.53% 53.23%

Table 3: Arithmetic Mean accuracy calculated by
computing the Levenshtein distance between the
ground-truth label and the label predicted after do-
ing OCR.

Dataset Split Test-
Familiar

Test-
Novel

Title 96.3% 97.1%
X-Label 97.8% 99.6%
Y-Label 85.2% 85.7%

Legend Label 87.7% 92.1%
Tick Label 93.4% 90.1%

Total 92.9% 90.7%

Table 4: Average Precision (AP) of the SSD mod-
els for different classes present in the plots of the
DIP dataset

Class Test-
Familiar

Test-
Novel

Title 99.4% 98.9%
Bar 62.3% 63.5%
Line 45.8% 60.1%
Scatter 82.6% 89.7%
X-axis Label 99.4% 99.3%
Y-axis Label 28.7% 10.3%
X-tick Label 98.4% 98.8%
Y-tick Label 96.4% 96.5%
X-tick Mark 16.5% 15.9%
Y-tick Mark 5.3% 3.9%
Legend Label 88.1% 92.8%
Legend Preview 84.3% 91.1%
mAP 67.27% 68.41%

5 EXPERIMENTAL SETUP

Train-Valid-Test Splits: As mentioned earlier, by using different combinations of 841 indicator
variables and 160 entities(years, countries, etc), we created a total of 273, 821 plots. Depending
on the context and type of the plot, we instantiated the 74 templates to create meaningful (ques-
tions,answer) pairs for each of the plots. The number of questions per plot varies from 17-44. We
created train (58%), valid(12%), test-familiar (12%) and test-novel (17%) splits from this data. The
difference between test-familiar and test-novel is that test-novel contains plots from a data source
(Open Government Data) which was not seen at training time and hence has almost no overlap with
the indicator variables seen at training time. We also created a test-hard split which contains 3000
questions created by crowdsourced workers from 1000 plots. However, we do not use the test-hard
split for our experiments. These statistics are summarized in Table 1.

Training Details: Of the 4 components described in Section 4, only two require training, viz., Visual
Elements Detection (VED) and Table Question Answering(QA). As mentioned earlier, for VED we
need to train one object detection model (SSD (Liu et al., 2016)) for each of the 9 visual elements.
We observed that if we use a single object detection model for all the elements then the performance
drops significantly. These models were trained using the bounding box annotations available in our
dataset. We trained each model for 200, 000 steps with a batch size of 32. We did not see any benefit
of training beyond 200, 000 steps. We used RMSrop6 as the optimizer with an initial learning rate
of 0.004. Next, for the Table QA module we trained the model proposed in (Pasupat & Liang, 2015)
using questions from our dataset and the corresponding ground truth tables which were known to
us. Since this model is computationally expensive with a high training time, we could train it using
only 200, 000 questions from our training set.

6http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf
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Table 5: Accuracy of Compositional Semantic Parsing on DIP dataset for each question category.

Dataset Split Validation
(Ground-truth)

Validation
(Predicted)

Test-Familiar
(Predicted)

Test-Novel
(Predicted)

Structural 13.17% 13.21% 13.37% 5.97%
Data Retrieval 54.8% 26.8% 26.83% 27.86%
Numeric Reasoning 67.20% 39.02% 39.48% 17.4%
Comparative Reasoning 23.7% 18.19% 18.53% 6.15%
Compound 1.29% 1.11% 1.2% 1.9%
Total 32.9% 19.9% 20.2% 13.10%

6 RESULTS

We now discuss the performance of each of the components of our pipeline.

• VED Module: We evaluate this module by computing the average precision of the detected
bounding box for all the visual elements. We use the same methodology as outlined in the
original PASCAL-VOC 2012 challenge7. We report the per element average precision (AP)
in Table 4. We observe that the object detection module does well for most elements except
line, y-label, x-tick and y-tick. On further investigation, we found that x-tick and y-tick are
typically very small and thus hard to detect. Similarly, line elements are very thin and hence
hard to detect. Lastly, we found that the Y-axis label is often very close to the tick values
which makes it hard to detect. While overall the performance of this module is satisfactory,
significant improvements are needed to use it in an end-to-end plot QA pipeline.

• OCR Module : For all the textual elements, we took the bounding boxes predicted by
VED and then passed them through a pre-trained OCR engine. We then computed the
accuracy of OCR as the percentage of characters which were detected correctly. We report
this accuracy in Table 3 and observe that the OCR module performs reasonably given that
it is also affected by the errors of the VED module. This suggests that going forward, we
could pay less attention to this module and focus on the other components in the pipeline.

• SIE Module : As mentioned earlier, we have the ground truth table corresponding to each
plot. To compute the performance of this module we compare each entry in the table ex-
tracted by this module with the corresponding entry in the ground-truth table. We consider
the two entries to match if the predicted value is within k% of the true value. We refer
to k as the threshold. Table 2 summarizes the performance of the SIE module for differ-
ent threshold values. This module clearly needs further improvement. Currently, this is
a heuristic based module and there is clear scope for improving it using a learning based
algorithm.

• QA Module : The task of this module is to find the answer based on the table extracted
by SIE and the given question. We first evaluate the standalone accuracy of this module
on the validation set when the table is the ground-truth table. We observe that even when
the table is a ground truth table i.e. even when all the entries in the table and row and
column names are correct, this module only achieves an accuracy of 32.9% (see Table 5).
As expected, when we replace the ground truth with that predicted by SIE after taking the
output from OCR and VED, the accuracy drops significantly. The last 3 columns of this
table thus report the end-to-end accuracy on different splits. The results are clearly low and
we clearly need to fcous on this last stage of the pipeline. In particular, we observe that the
results are very bad for questions requiring comparative and compound reasoning.

7 CONCLUSION

We introduced the DIP dataset for Data Interpretation over Plots which contains scientific plots
created from real world data sources such as World Bank, stock market, etc. Further, the questions
in our dataset are based on templates which were manually extracted from realistic questions created

7http://host.robots.ox.ac.uk/pascal/VOC/voc2010/devkit doc 08-May-2010.pdf
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by crowd-workers. One of the primary challenges of this dataset is that it has a large vocabulary
because of which existing VQA models which treat this as a multi-class classification model cannot
be applied. Instead we propose a modular pipeline which first converts the plot to a semi-structured
table and then learns to answer questions from this table using compositional semantic parsing.
Our experiments suggest that this is a very challenging dataset and requires significant progress on
multiple sub-tasks. In particular, we need improved models for reasoning over structured data.
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APPENDICES

A. EXAMPLE PLOTS

Few instances of the {plot, question, answer} triplet are given below. We have also shown the
bounding box annotations which is used to recognise every visual element in the plot.

Q: What is the percentage of rural pop-

ulation who used sanitation services in

Senegal ?

A: 28.2

Q: In how many countries, is the percent-

age of rural population who used drinking

water services greater than the average

percentage of rural population who used

drinking water services taken over all

countries ?
A: 1

Q: Are the values on the major ticks of

X-axis written in scientific E-notation ?
A: No

Q: What is the average tobacco produc-

tion per year ?

A: 588

Q: What is the ratio of the tobacco

production in 2007-08 to that in 2009-10

?

A: 0.657

Q: Does the tobacco production monotoni-

cally increase over the years ?

A: No

Q: What is the difference between two

consecutive major ticks on the Y-axis ?

A: 10

Q: Is the sum of the percentage of

electricity produced by oil sources in

2005 and 2007 greater than the maximum

percentage of electricity produced by coal

across all years ?

A: No

Q: In how many years, is the percentage

of electricity produced by natural gas

greater than 50%?

A: 0

B. PLOT STATISTICS

Table 6 presents the detailed statistics of the number of plots present in each of our data splits
according to plot type. Note that the plot type k-multi means that the number of lines/bars on each
tick is k. In the above mentioned samples, the horizontal bar graph is 3-multi and so on.
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Table 6: Detailed statistics of the dataset for different splits for different figure types

Dataset Split Plot Type vbar hbar line scatter

Train

single 8,906 8,825 5,285 5,315
2-multi 9,434 9,756 5,047 5,091
3-multi 18,772 18,756 8,295 8,309
4-multi 15,351 15,363 7,270 7,295

Validation

single 1,908 1,891 1,132 1,138
2-multi 2,021 2,090 1,081 1,090
3-multi 4,022 4,019 1,777 1,780
4-multi 3,298 3,292 1,557 1,563

Test-Familiar

single 1,908 1,891 1,132 1,139
2-multi 2,021 2,090 1,081 1,091
3-multi 4,023 4,019 1,778 1,781
4-multi 3,290 3,292 1,558 1,563

Test-Novel

single 10,604 10,610 3,446 3,565
2-multi 4,862 4,874 1,243 1,240
3-multi 1,850 1,850 900 900
4-multi 1,000 1,000 250 250

C. QUESTION TEMPLATES

The templates which we have used for question generation are given below. Note that, not all
question templates are applicable to each and every type of plot. Also depending on the context of
the plot, the question varies largely along the template’s surface form.

1. Structural Understanding :

(a) Does the graph contain any zero values?
(b) Does the graph contain grids ?
(c) Where does the legend appear in the graph ?
(d) How many legend labels are there?
(e) How are the legend labels stacked?
(f) How many <plural form of X label> are there in the graph?
(g) How many <figure-type>s are there?
(h) How many different colored <figure-type>s are there?
(i) How many groups of <figure-type>s are there?
(j) Are the number of bars on each tick equal to the number of legend labels?
(k) Are the number of bars in each group equal?
(l) How many bars are there on the ith tick from the left?

(m) How many bars are there on the ith tick from the right?
(n) How many bars are there on the ith tick from the top?
(o) How many bars are there on the ith tick from the bottom?
(p) Are all the bars in the graph horizontal?
(q) How many lines intersect with each other?
(r) Is the number of lines equal to the number of legend labels?

2. Data Retrieval :

(a) What does the ith bar from the left in each group represent?
(b) What does the ith bar from the right in each group represent?
(c) What does the ith bar from the top in each group represent?
(d) What does the ith bar from the bottom in each group represent?
(e) What is the label of the jth group of bars from the left?
(f) What is the label of the jth group of bars from the top?

13
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(g) Does the <Y label> of/in <legend-label> monotonically increase over the <plural
form of X label> ?

(h) What is the difference between two consecutive major ticks on the Y-axis ?
(i) Are the values on the major ticks of Y-axis written in scientific E-notation ?
(j) What is the title of the graph ?
(k) Does <legend label> appear as one of the legend labels in the graph ?
(l) What is the label or title of the X-axis ?

(m) What is the label or title of the Y-axis ?
(n) In how many cases, is the number of <figure type> for a given <X label> not equal

to the number of legend labels ?
(o) What is the <Y value> in/of < ith X tick> ?
(p) What is the <Y value> of the ith <legend label> in < ith X tick> ?
(q) Does the <Y label> monotonically increase over the <plural form of X label> ?
(r) Is the <Y label> of/in <legend label1> strictly greater than the <Y label> of/in

<legend label2> over the <plural form of X label> ?
(s) Is the <Y label> of/in <legend label1> strictly less than the <Y label> of/in

<legend label2> over the <plural form of X label> ?

3. Numeric Reasoning :

(a) Across all <plural form of X label>, what is the maximum <Y label> ?
(b) Across all <plural form of X label>, what is the minimum <Y label> ?
(c) In which <X label> was the <Y label> maximum ?
(d) In which <X label> was the <Y label> minimum ?
(e) Across all <plural form of X label>, what is the maximum <Y label> of/in

<legend label> ?
(f) Across all <plural form of X label>, what is the minimum <Y label> of/in

<legend label> ?
(g) In which <singular form of X label> was the <Y label> of/in <legend label> max-

imum ?
(h) In which <singular form of X label> was the <Y label> of/in <legend label> min-

imum ?
(i) What is the sum of <title> ?
(j) What is the difference between the <Y label> in < ithx tick> and < jthx tick> ?
(k) What is the average <Y label> per <singular form of X label> ?
(l) What is the median <Y label> ?

(m) What is the total <Y label> of/in <legend label> in the graph?
(n) What is the difference between the <Y label> of/in <legend label> in < ithx tick>

and that in < jthx tick> ?
(o) What is the difference between the <Y label> of/in <legend label1> in <

ithx tick> and the <Y label> of/in <legend label2> in < jthx tick> ?
(p) What is the average <Y label> of/in <legend label> per <singular form of X label>

?
(q) In the year < ithx tick>, what is the difference between the <Y label> of/in

<legend label1> and <Y label> of/in <legend label2> ?
(r) What is the difference between the <Y label> of/in <legend label1> and <Y label>

of/in <legend label2> in < ithx tick> ?

4. Comparative Reasoning :

(a) In how many <plural form of X label>, is the <Y label> greater than <N> units ?
(b) Do a majority of the <plural form of X label> between < ith x tick> and < jth

x tick¿ (inclusive/exclusive) have <Y label> greater than N <units> ?
(c) What is the ratio of the <Y label> in < ith x tick> to that in < jth x tick> ?
(d) Is the <Y label> in < ith x tick> less than that in < jth x tick> ?
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(e) In how many <plural form of X label>, is the <Y label> of/in <legend label>
greater than <N> <units>?

(f) What is the ratio of the <Y label> of/in <legend label1> in < ith x tick> to that in
< jthx tick>?

(g) Is the <Y label> of/in <legend label> in < ith x tick> less than that in < jth

x tick> ?
5. Compound :

(a) Is the difference between the <Y label> in < ithx tick> and < jthx tick> greater
than the difference between any two <plural form of X label> ?

(b) What is the difference between the highest and the second highest <Y label> ?
(c) Is the sum of the <Y label> in < ithx tick> and < (i+1)thx tick> greater than the

maximum <Y label> across all <plural form of X label> ?
(d) What is the difference between the highest and the lowest <Y label> ?
(e) In how many <plural form of X label>, is the <Y label> greater than the average

<Y label> taken over all <plural form of X label> ?
(f) Is the difference between the <Y label> of/in <legend label1> in < ithx tick>

and < jthx tick> greater than the difference between the <Y label> of/in
<legend label2> in < ithx tick> and < jthx tick> ?

(g) What is the difference between the highest and the second highest <Y label> of/in
<legend label> ?

(h) What is the difference between the highest and the lowest <Y label> of/in
<legend label> ?

(i) In how many <plural form of X label>, is the <Y label> of/in <legend label>
greater than the average <Y label> of/in <legend label> taken over all <plural form
of X label> ?

(j) Is it the case that in every <singular form of X label>, the sum of the <Y label>
of/in <legend label1> and <legend label2> is greater than the <Y label> of/in
<legend label3> ?

(k) Is the sum of the <Y label> of/in <legend label1> in < ithx tick> and <
jthx tick> greater than the maximum <Y label> of/in <legend label2> across all
<plural form of X label>?

(l) Is it the case that in every <singular form of X label>, the sum of the <Y label>
of/in <legend label1> and <legend label2> is greater than the sum of <Y label> of
<legend label3> and <Y label> of <legend label4> ?

D. QUESTION TYPES

Table 7 presents the distribution of the number of questions, categorized by their template type, that
are present in each of the data splits.
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Table 7: Detailed statistics of the dataset for different splits for different question types

Dataset
Split

Question
Type #Questions #Unique

Answers

Train

Structural 1,743,760 34
Data Retrieval 1,376,963 134,727
Numeric Reasoning 1,280,736 339,508
Comparative Reasoning 441,931 101,102
Compound 890,503 164,030

Validation

Structural 373,568 34
Data Retrieval 294,881 37,396
Numeric Reasoning 274,339 77,687
Comparative Reasoning 94,720 23,955
Compound 190,960 41,408

Test-
Familiar

Structural 373,646 34
Data Retrieval 294,963 37,178
Numeric Reasoning 274,218 77,627
Comparative Reasoning 94,611 23,953
Compound 190,875 41,286

Test-
Novel

Structural 395,564 27
Data Retrieval 372,439 9,899
Numeric Reasoning 386,058 52,509
Comparative Reasoning 170,236 19,674
Compound 268,841 15,317

E. ANSWER DISTRIBUTION

The answer distribution of the questions in the DIP dataset can be summarized in Table 8.

Table 8: Distribution of answers in the DIP dataset

Dataset Split Type of Answers
Yes No Numeric Text

Train 12.04% 15.32% 48.34% 24.30%
Validation 12.07% 15.30% 48.30% 24.33%
Test-Familiar 12.03% 15.34% 48.34% 24.29%
Test-Novel 11.58% 16.10% 51.73% 20.59%
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