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Abstract

In compressed sensing, a primary problem to solve is to reconstruct a high di-
mensional sparse signal from a small number of observations. In this work, we
develop a new sparse signal recovery algorithm using reinforcement learning (RL)
and Monte Carlo Tree Search (MCTS). Similarly to orthogonal matching pursuit
(OMP), our RL+MCTS algorithm chooses the support of the signal sequentially.
The key novelty is that the proposed algorithm learns how to choose the next
support as opposed to following a pre-designed rule as in OMP. Empirical results
are provided to demonstrate the superior performance of the proposed RL+MCTS
algorithm over existing sparse signal recovery algorithms.

1 Introduction

We consider the compressed sensing (CS) problem [1; 2; 3], where for a given matrix A ∈ Rm×n,
m� n, and a (noiseless) observation vector y = Ax0, we want to recover a k-sparse vector/signal
x0 (k < m). Formally, it can be formulated as:

minimize
x

||x||0, (1)

subject to Ax = Ax0 (2)

Related work There is a large collection of algorithms for solving the CS problem. Some founda-
tional and classic algorithms include convex relaxation, matching and subspace pursuit [4; 5; 6] and
iterative thresholding [7; 8]. In particular, two well-established methods are (i) Orthogonal Matching
Pursuit (OMP) and (ii) Basis Pursuit (BP). OMP recovers x0 by choosing the columns of A iteratively
until we choose k columns [9]. BP recovers x0 by solving minAx=y ||x||1 [2]. Because OMP and BP
are extremely well studied theoretically[1; 2] and empirically [10], we use these two algorithms as
the main baseline methods to compare against when evaluating the proposed RL+MCTS algorithm.

Recent advancements in machine learning have opened a new frontier for signal recovery algorithms.
Specifically, these algorithms take a deep learning approach to CS and the related error correction
problem. The works in [11], [12], [13] and [14] apply ANNs and RNNs for encoding and/or
decoding of signals x0. Modern generative models such as Autoencoder, Variational Autoencoder,
and Generative Adversarial Networks have also been used to tackle the CS problem with promising
theoretical and empirical results [15; 16; 17]. These works involve using generative models for
encoding structured signals, as well as for designing the measurement matrix A. Notably, the
empirical results in these works typically use structured signals in x0. For example, in [16] and [17],
MNIST digits and celebrity images are used for training and testing.

Our contribution Differently from the above learning-based works, our innovation with machine
learning is on signal recovery algorithms (as opposed to signal encoding or measurement matrix
design). We do not assume the signals to be structured (such as images), but cope with general sparse
signals. This underlying model for x0 is motivated by the same assumptions in the seminal work on
universal phase transitions by Donoho and Tanner in [10]. Moreover, we assume the measurement
matrix A is given. Extending to varying matrices A is left for future investigation.
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In this work, we approach the signal recovery problem using reinforcement learning (RL). Specifically,
we leverage the Monte Carlo Tree Search (MCTS) technique with RL, which was shown to achieve
outstanding performance in the game of Go [18; 19]. We further introduce special techniques to
reduce the computational complexity for dealing with higher signal sparsity in CS. Experimental
results show that the proposed RL+MCTS algorithm significantly outperforms OMP and BP for
matrix A of various sizes.

2 Compressed sensing as a reinforcement learning problem

In this section, we formulate the sparse signal recovery problem as a special sequential decision
making problem, which we will solve using RL and MCTS. In the context of compressed sensing, a
key challenge is to correctly choose the columns of A, or equivalently, the support of x0, such that
the problem (1) is solved. To address this problem, we formulate it as a sequential decision making
problem: an agent sequentially chooses one column of A at a time until it selects up to k columns
such that the constraint in (2) holds and the `0-loss in (1) is minimized. The MDP for compressed
sensing can then be defined as follows. A state s ∈ S is a pair (y, S), where y is the observed
signal generated according to x0, and S ⊆ [n] is the set of the already selected columns of A, where
[n] , {1, . . . , n}. In our current setup, we assume the matrixA is fixed, so a state is not dependent on
the sensing matrix. Terminal states are states s = (y, S) which satisfy one or more of the following
conditions: (i) |S| = k (the maximum possible signal sparsity), or (ii) ||ASxs − y||22 < ε for some
pre-determined ε. Here, AS stands for the submatrix of A that is constructed by the columns of A
indexed by the set S, and xs is the optimal solution given that the signal support is S,

xs , argmin
z
||ASz − y||22. (3)

For the action space, the set of all feasible actions at state s = (y, S) is As = [n] \ S. Note that in
compressed sensing, when an action a is taken (i.e., a new column of A is selected) for a particular
state s = (y, S), the next state s′ is determined; that is, the MDP transition is deterministic. Finally,
we define our reward function R:

R(s) := −α||xs||0 − γ||ASxs − y||22 (4)

where α, γ > 0 are fixed hyperparameters, and xs is determined by (3).

Different from existing compressed sensing algorithms, we propose to learn, via RL and MCTS, a
policy to sequentially select the columns of A and reconstruct the sparse signal x0, based on data
generated for training. We generate the training data by generating k-sparse signals x0 and computing
the corresponding vectors y = Ax0 (each k is randomly generated from 1 to m). For each signal y,
we then use a “policy network” (to be explained in details later) along with MCTS to choose columns
sequentially until k columns have been chosen. The traversed states will be used as our new training
data for updating the policy network. Such a strategy allows us to move as much of the computational
complexity as possible in testing (i.e., performing the sparse signal recovery task) into training, which
shares a similar spirit to the work in [20].

3 The RL+MCTS Algorithm

3.1 The Policy/Value Network fθ

To learn a policy in the above sequential decision making formulation of CS, we employ a single
neural network fθ to jointly model the policy πθ(a|s) and the state-value function Vθ(s), where θ is
the model parameter (i.e., the weights in a neural network). The policy πθ(a|s) defines a probability
over all actions for a given state s, where the action set includes the possible next columns of A to
pick and a stopping action. The value Vθ(s) defines the long-term reward that an agent receives when
we start from the state s and follow the given policy.

We design two sets of input features for the policy/value network. The first set of input features is
xs extended to a vector in Rn with zeros in components whose indices are not in s. The second set
of features is motivated by OMP, which is given by λs := AT (y −ASxs) ∈ Rn, where y −ASxs
is the residual vector associated with the solution xs. For the root state r in which no columns are
chosen, xr is set to be the n-dimensional zero vector, and λr := AT y. Note that the OMP rule is
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exactly choosing the next column index whose corresponding component in |λs| is the largest, where
| · | is the absolute value taken component wise.

3.2 RL+MCTS Training Procedure

The goal of the RL+MCTS algorithm is to iteratively train the policy network fθ. The high-level
training structure is given in Algorithm 1.

Algorithm 1 High-Level Training Procedure
1: initialize: j = 0, θ = θ0, θ0 random, fixed matrixA ∈ Rm×n

2: while j < i (where i is a hyperparameter) do
3: 1) generate training samples from each (y, x0) pair by building a tree using Monte Carlo Tree Search (MCTS) and current fθ
4: 2) train/update neural network parameters to get θ̂ using the training samples from step 1.
5: θ ← θ̂
6: j ← j + 1
7: end while

Most of the details arise in step 1) of Algorithm 1. Similar to the AlphaGo Zero algorithm [18], the
proposed RL+MCTS algorithm uses Monte Carlo Tree Search (MCTS) as a policy improvement
operator to iteratively improve the policy network in the training phase. For a randomly generated
pair (y, x0), we use MCTS and the current fθ to generate new training samples to feed back into the
neural network. We note that in the testing phase, MCTS can also be combined with the policy/value
network to further boost the performance. Specifically, for each given observation vector y and the
desired sparsity k, we run MCTS simulations multiple times to construct a search tree [21; 22; 23].

3.3 Reducing Computational Complexity during Training by Limiting the Tree Depth

When training the proposed RL+MCTS algorithm, we employ the following technique for reducing
the training complexity. First, we remark that using MCTS as a policy improvement operator can
potentially be computationally expensive for relatively large matrix A (depending on the available
computation resources). To address this challenge, we fix the maximum depth d of the MCTS tree;
that is, we build the MCTS tree until we reach a depth of d. From then on, we roll-out the remaining
levels of the tree by simply using the OMP rule to select all remaining columns until a total of k
columns are chosen. This technique will be evaluated in the experiments in the next section.

4 Experimental Results

In this section, we present experimental results for evaluating our proposed RL+MCTS algorithm
and comparing it against two baseline methods: (i) OMP and (ii) BP (i.e., `1 minimization).

We first present results on the proposed RL+MCTS algorithm without limiting the tree depth. In
this setting, we will be training and testing on matrices of size 7 × 15 and 15 × 50. The training
parameters we use in our experiment is given in Table 2 in Appendix A. At testing time, we generate
observed signals y via the following method. For each sparsity level k between 1 and m, we generate
1000 k-sparse signals x0. The k locations of the support of x0 are chosen randomly, and each entry in
x0 is generated i.i.d U [0, 1]. We compare the proposed RL+MCTS policy/value network to BP and
OMP. With x̂ as the predicted sparse vector (by RL+MCTS, OMP, or BP, respectively), we define
successful recovery of x0 as ||x̂− x0||22 < 10−3, (i.e., “symbol” recovery instead of “bit” recovery).

Figure 1(a) and Figure 1(b) show the recovery success probabilities of different algorithms. We would
like to emphasize that the proposed RL+MCTS results shown in Figures 1(a)–1(b) are obtained using
the learned policy πθ(a|s) only, and no MCTS has been used in the testing stage (which, if used,
would lead to further improvement). Even in this setting RL+MCTS still significantly outperforms
OMP and BP.

We next show the results using the RL+MCTS algorithm with reduced complexity as described in
Section 3.3. Specifically, in a single MCTS search, we expand the tree to depth d, and then proceed
to follow the OMP rule until a terminal state is reached. We now show the experiment results for this
version of the RL+MCTS algorithm. Specifically, we consider the 10× 100 matrix in our evaluation.

The training details of this experiment can be found in Table 2 in Appendix A. We train two models. A)
We train a policy value network using the vanilla RL+MCTS algorithm without tree depth constraint.
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(a) (b) (c)

Figure 1: Signal Recovery accuracies of the 7 by 15 matrix, 15 by 50 matrix, and 10 by 100 matrices.

Table 1: Average Prediction Times
7 by 15 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14

RL+MCTS 1.2e-3 2.0e-3 3.2e-3 3.7e-3 4.6e-3 5.5e-3
OMP 2.6e-4 4.2e-4 5.9e-4 6.1e-4 7.2e-4 8.2e-4
BP 2.4e-3 2.8e-3 3.2e-3 2.8e-3 2.9e-3 2.8e-3

15 by 50 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14
RL+MCTS 1.7e-3 2.3e-3 3.3e-3 3.9e-3 5.2e-3 5.9e-3 7.1e-3 8.7e-3 8.9e-3 1.0e-2 1.1e-2 1.2e-2 1.3e-2 1.4e-2

OMP 3.5e-4 4.7e-4 5.8e-4 6.5e-4 8.0e-4 8.6e-4 9.9e-4 1.1e-3 1.1e-3 1.2e-3 1.4e-3 1.5e-3 1.6e-3 1.7e-3
BP 7.5e-3 6.9e-3 7.2e-3 7.1e-3 7.9e-3 7.6e-3 8.0e-3 8.4e-3 7.6e-3 7.8e-3 8.1e-3 8.1e-3 7.8e-3 8.0e-3

10 by 100 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14
vanilla RL+MCTS 1.4e-3 2.3e-3 3.3e-3 3.9e-3 4.9e-3 5.9e-3 6.7e-3 7.8e-3 1.0e-2

RL+MCTS (d=2, M=0) 2.0e-3 1.8e-3 2.1e-3 2.4e-3 2.6e-3 3.2e-3 3.5e-3 3.6e-3 3.9e-3
RL+MCTS (d=6, M = 1500) 0.27 0.88 1.76 3.08 4.97 5.73 5.58 5.81 5.94

OMP 2.8e-4 4.7e-4 5.8e-4 6.4e-4 7.5e-4 8.3e-4 9.3e-4 1.0e-3 1.2e-3
BP 1.6e-2 2.3e-2 2.5e-2 2.3e-2 2.25e-2 2.24e-2 2.20e-2 2.1e-2 2.7e-2

B) We train a policy value network by limiting the tree depth d = 6, which leads to a 40% reduction
in training time per sample. Next, we first test the policy/value network trained from A) above.
This policy/value network will select each column without MCTS. We then test the policy/value
network trained from B) above: First, we test the policy/value network to pick the first column; For
all subsequent columns up to k, we invoke the OMP rule. This is equivalent to setting the tree depth
during testing to d = 2 and with no MCTS (M = 0). Using the same policy/value network, we
also conduct an experiment where d = 6 and MCTS simulations is set to 1500 during testing. From
Figure 1(c), note that the vanilla RL+MCTS policy πθ(a|s) still performs slightly better than both
OMP and BP. We see that training the RL+MCTS algorithm with a fixed tree depth gives us favorable
results versus OMP, vanilla RL+MCTS policy πθ(a|s), and BP.

Average Prediction Times In Table 1, we give the average prediction times per signal in seconds.
For OMP and BP, we use python libraries sklearn and cvx respectively. To illustrate the speed during
testing, we measure the prediction times on a much less powerful machine than what was used during
training. While training was accomplished on a i7 4790 (3.6 GHz) with a single GTX 780, the testing
speeds in Table 2 were conducted on a Macbook Air with an Intel i5 clocked at 1.4 GHz and an
integrated Intel HD 5000. We predict that the testing speeds can be greatly improved with a more
powerful machine and further optimization in the source code. In general, we see that using just the
policy/value network for prediction is in general slower than OMP, but on par with or better than BP.

5 Conclusion

We have shown that the proposed RL+MCTS algorithm is a highly effective sparse signal decoder for
the compressed sensing problem assuming no signal structure other than sparsity. Even without using
MCTS in testing, the RL+MCTS algorithm’s performance exceeds that of existing sparse signal
recovery algorithms such as OMP and BP. The flexibility in the RL+MCTS algorithm’s design further
offers many interesting avenues for future research. For one, it is possible that the features chosen
in our model can be further improved. Secondly, since the true signal x0 is known in training, one
may be able to leverage the information about x0 to increase training sample efficiency. The training
hyper-parameters may also be further tuned to improve performance. Broader settings of problems
such as noisy observations and varying observation matrices A are under active investigation.
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Supplementary Material
A Experimental Details

In this appendix, we include the hyper-parameters of our experiments — see Table 2.

Table 2: Training Hyper-Parameters for all matrix sizes
NN hyper-parameters (7× 15) (15× 50) (10× 100) description

Input 30× 1 100× 1 200× 1 Input(features xs and λs)
Hidden Layer 200 neurons 200 neurons 200 neurons activation ReLu

Output 17× 1 52× 1 102× 1 Output dimensions(p̂θ(·|s) and v̂θ(s))
θ 9400 weights 30400 weights 60400 weights

general hyper-parameters description
A ∈ R7×15 ∈ R15×50 ∈ R10×100 entries are i.i.d N (0, 1)
k ∈ {1, 2..., 6} ∈ {1, 2..., 14} ∈ {1, 2..., 9} randomly generated sparsity of x0 during training
x0 ∈ R15 ∈ R50 ∈ R100 randomly selected support locations,

where each component of x0, x0,i ∼ U [0, 1], ||x0||0 = k
i 100 200 100 num. of training iterations
e 400 400 100 num. signals (y, x) pairs generated
M 500 500 1500 num. of MCTS simulations
cpuct 2 2 3 exploration/exploitation factor
ε 10−5 10−5 10−5 determines threshold of terminal states
d max max max, 6 max tree depth of MCTS tree
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