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ABSTRACT

The key challenge in semi-supervised learning is how to effectively leverage un-
labeled data to improve learning performance. The classical label propagation
method, despite its popularity, has limited modeling capability in that it only ex-
ploits graph information for making predictions. In this paper, we consider label
propagation from a graph signal processing perspective and decompose it into
three components: signal, filter, and classifier. By extending the three compo-
nents, we propose a simple generalized label propagation (GLP) framework for
semi-supervised learning. GLP naturally integrates graph and data feature in-
formation, and offers the flexibility of selecting appropriate filters and domain-
specific classifiers for different applications. Interestingly, GLP also provides new
insight into the popular graph convolutional network and elucidates its working
mechanisms. Extensive experiments on three citation networks, one knowledge
graph, and one image dataset demonstrate the efficiency and effectiveness of GLP.

1 INTRODUCTION

The success of deep learning and neural networks comes at the cost of large amount of training data
and long training time. Semi-supervised learning (Zhu, 2005; Chapelle et al., 2006) is interesting and
important as it can leverage ample available unlabeled data to aid supervised learning, thus greatly
saving the cost, trouble, and time for human labeling. Many researches have shown that when used
properly, unlabeled data can significantly improve learning performance (Zhu & Goldberg, 2009;
Kingma et al., 2014; Kipf & Welling, 2017). The key challenge for semi-supervised learning is how
to effectively leverage the information of unlabeled data, such as graph structures and data features.

Label propagation (Zhu et al., 2003; Zhou et al., 2004; Bengio et al., 2006) is arguably the most
popular method for graph-based semi-supervised learning. As a simple and effective tool, it has
been widely used in many scientific research fields and has found numerous industrial applications.
Given a non-oriented graph G = (V,W,X) with n = |V| vertices, a nonnegative symmetric affinity
matrix W ∈ Rn×n+ encoding edge weights, and a feature matrix X ∈ Rn×m which contains an m-
dimensional feature vector of each vertex. For semi-supervised classification, only a small subset of
vertices are labeled, and the goal is to predict the labels of other vertices. Denote by Y ∈ {0, 1}n×l
the labeling matrix1 with l being the number of classes. The objective of of label propagation (LP)
is to find a prediction (embedding) matrix Z ∈ Rn×l which agrees with Y while being smooth on
the graph such that nearby vertices have similar embeddings:

Z = arg min
Z
{ ||Z − Y ||22︸ ︷︷ ︸

Least square fitting

+ α Tr(Z>LZ)︸ ︷︷ ︸
Laplcacian regularization

}, (1)

where α is a balancing parameter, L = D −W is the graph Laplacian2 and D is the degree matrix.
The term enforcing smoothness is called graph Laplacian regularization or Tikhonov regularization.
Solving the quadratic regularization framework gives the prediction of LP.

As LP makes predictions only based on graph information (W ), its performance depends on whether
the underlying graph structure can well represent the class information of data – vertices in the same

1If the label of vertex vi is known, then Y (i, :) is a one-hot embedding of vi with yij = 1 if vi belongs to
the j-th class and yij = 0 otherwise. If the label of vertex vi is not given, then Y (i, :) is a vector of all zeros.

2Other variants such as the normalized Laplacian matrices are also applicable.
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cluster tend to have same labels. For some applications such as social network analysis, data exhibits
a natural graph structure. For some other applications such as image or text classification, data
may come in a vector form, and a graph is usually constructed using data features. Nevertheless,
in many cases, graphs only partially encode data information. Take document classification in a
citation network as an example, the citation links between documents form a graph which represents
their citation relation, and each document is represented as a bag-of-words feature vector which
describes its content. To correctly classify a document, both the citation relations (W ) and the
content information (X) need to be taken into account, as they contain different aspects of document
information. However, in this case, LP can only exploit the graph information to make predictions
without using any of the feature information, thus resulting in poor performance.

To go beyond the limit of LP and jointly model graph and feature information, a common approach
is to train a supervised learner to classify data features while regularizing the classifier using graph
information. Manifold regularization (Belkin et al., 2006) trains a support vector machine with a
graph Laplacian regularizer. Deep semi-supervised embedding (Weston et al., 2008) and Planetoid
(Yang et al., 2016) train a neural network with an embedding-based regularizer. The recently pro-
posed graph convolutional neural networks (Kipf & Welling, 2017) adopts a different approach by
integrating graph and feature information in each of its convolutional layer, which is coupled with a
projection layer for classification.

In this paper, we extends the modeling capability of LP in the context of graph signal processing.
Casted in the spectral domain, LP can be interpreted as low-pass graph filtering (Ekambaram et al.,
2013; Girault et al., 2014). In light of this, we decompose LP into three components: graph signal,
graph filter, and classifier. By naturally extending the three components, we propose a generalized
label propagation (GLP) framework for semi-supervised learning. In GLP, a low-pass graph filter is
applied on vertex features to produce smooth features, which are then fed to a supervised learner for
classification. After filtering, the data features within each class are more similar and representative,
making it possible to train a good classifier with few labeled examples.

GLP not only extends LP to incorporate vertex features in a simple way, but also offers the flexibility
of designing appropriate graph filters and adopting domain-specific classifiers for different semi-
supervised applications. The popular graph convolutional networks (GCN) (Kipf & Welling, 2017)
is closely related to GLP. In fact, GCN without internal ReLUs is a special case of GLP with a
certain graph filter and a multilayer perceptron classifier. When revisited under the GLP framework,
it makes clear the working mechanisms of GCN including its design of convolutional filter and
model parameter setting. Extensive experiments on citation networks, knowledge graphs, and image
datasets show substantial improvement of GLP over GCN and other baselines for semi-supervised
classification, confirming the effectiveness of this simple and flexible framework.

The rest of the paper is organized as follows. Section 2 interprets LP in the context of graph signal
processing. Section 3 presents the proposed GLP framework. Section 4 revisits GCN under GLP.
Section 5 discusses the design of graph filters for GLP. Section 6 presents experimental results.
Section 7 discusses related works. Finally, section 8 concludes the paper.

2 A SPECTRAL VIEW OF LABEL PROPAGATION

In this section, we provide a spectral view of LP in the context of graph signal processing.

2.1 GRAPH SIGNALS AND FILTERS

In graph signal processing (Shuman et al., 2013), the eigenvectors and eigenvalues of the graph
Laplacian play the role of Fourier basis and frequencies in parallel with classical harmonic anal-
ysis. The graph Laplacian matrix can be eigen-decomposed as: L = ΦΛΦ−1, where Λ =
diag(λ1, · · · , λn) are the eigenvalues in an increasing order, i.e., 0 = λ1 ≤ · · · ≤ λn, and
Φ = (φ1, · · · ,φn) are the associated orthogonal eigenvectors. Note that the row normalized graph
Laplacian Lr = D−1L and the symmetrically normalized graph Laplacian Ls = D−

1
2LD−

1
2 have

similar eigen-decomposition. The eigenvalues (λi)1≤i≤n are interpreted as frequencies and the as-
sociated eigenvectors (φi)1≤i≤n are interpreted as Fourier basis.
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A graph signal is a real-valued function f : V → R defined on the vertex set of a graph. Denote by
f = (f(v1), · · · , f(vn))> a graph signal in a vector form. Consider (φi)1≤i≤n as basis functions.
Any graph signal f can be decomposed into a linear combination of the basis functions:

f = Φc, (2)

where c = (c1, · · · , cn)> and ci is the coefficient of φi. The magnitude of the coefficient |ci|
represents the strength of the basis function φi presented in the signal f .

A graph filter is defined as a matrix G ∈ Rn×n. G is linear shift-invariant (Sandryhaila & Moura,
2013), if and only if there exists an function p(·) : R → R, satisfying G = Φp(Λ)Φ−1, where
p(Λ) = diag(p(λ1), · · · , p(λn)). The real-valued function p(·) is called the frequency response
function of G.

It is well known that the basis functions associated with lower frequencies (smaller eigenvalues) are
smoother (Zhu & Goldberg, 2009), as the smoothness of φi can be measured by λi:∑

(vj ,vk)∈E

wjk[φi(j)− φi(k)]2 = φi
>Lφi = λi. (3)

This indicates that a smooth signal f should contain more low-frequency components than high-
frequency components. To produce a smooth signal, the graph filter G should be able to preserve
the low-frequency components in f while filtering out the high-frequency components. By Eq. (2),
we have

f̄ = Gf = Φp(Λ)Φ−1 · Φc =
∑
i

p(λi)ciφi. (4)

In the filtered signal f̄ , the coefficient ci of the basis function φi is scaled by p(λi). To preserve
the low-frequency components and remove the high-frequency components, p(λi) should amplify
ci when λi is small and suppress ci when λi is large. Simply put, p(·) should behave like a low-pass
filter in classical harmonic analysis.

2.2 THREE COMPONENTS OF LABEL PROPAGATION

The prediction (embedding) matrix of LP can be obtained by taking the derivative of the uncon-
strained quadratic optimization problem in Eq. (1) and setting it to zero:

Z = (I + αL)−1Y. (5)

With the prediction matrix Z, each unlabeled vertex vi is usually classified by simply comparing the
elements in Z(i, :). In some methods, a normalization scheme may be applied on the columns of Z
first before the comparison (Zhu et al., 2003).

Casted in the context of graph signal processing, LP can be decomposed into three components:
signal, filter, and classifier. By Eq. (5), the input signal matrix of LP is the labeling matrix Y , where
it has l channels and each column Y (:, i) can be considered as a graph signal. In Y (:, i), only the
labeled vertices in class i have value 1 and others 0.

The graph filter used in LP is

(I + αL)−1 = [Φ(I + αΛ)Φ−1]−1 = Φ(I + αΛ)−1Φ−1,

with frequency response function

p(λi) =
1

1 + αλi
. (6)

Note that this also holds for the normalized graph Laplacians. As shown in Fig. 1(a), the frequency
response function of LP is low-pass. For any α > 0, p(λi) is near 1 when λi is close to 0 and p(λi)
decreases and approaches 0 as λi increases. Applying the filter on signal Y (:, i), it will produce a
smooth signal Z(:, i) in which vertices of the same class have similar values and vertices in class i
have larger values than others under the cluster assumption. The balancing parameter α controls the
degree of the graph Laplacian regularization. When α increases, the filter becomes more low-pass
(Fig. 1(a)) and will produce smoother embeddings.

Finally, LP applies a nonparametric classifier on the embeddings to classify the unlabeled vertices,
i.e., the label of an unlabeled vertex vi is given by yi = arg maxj Z(i, j).
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(a) AR: (1 + αλ)−1
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(b) RNM: (1− λ)k
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Figure 1: Response functions of AR, RNM, and RW filters, and their comparison.

3 GENERALIZED LABEL PROPAGATION METHODS

We propose a generalized label propagation (GLP) framework by naturally generalizing the three
components of LP for semi-supervised classification:

• Signal: Use the feature matrix X instead of the labeling matrix Y as input signal.
• Filter: The filter G can be any low-pass, linear, shift-invariant filter.
• Classifier: The classifier can be any classifer trained on the embeddings of labeled vertices.

GLP consists of two steps. First, a low-pass, linear, shift-invariant graph filter G is applied on the
feature matrix X to obtain a smooth feature matrix X̄ ∈ Rn×m:

X̄ = GX. (7)

The next step is to train a supervised classifier (e.g., multilayer perceptron, convolutional neural
networks, support vector machines, etc.) with the filtered features of labeled data, and then apply
the classifier on the filtered features of unlabeled data to predict their labels.

GLP naturally combines graph and feature information in Eq. (7), and allows taking advantage of a
powerful supervised classifier. The rationale behind GLP is to learn representative feature vectors
of each class for easing the downstream classification task. After filtered by G, vertices in the same
class are expected to have more similar and representative features, which makes it much easier to
train a good classifier with very few samples.

Consider an extreme case that each class is a connected component of the graph. In this case, we
can learn perfect features by an extremely low-pass filter G, whose spectrum p(·) is unit impulse
function, i.e., p(0) = 1 and p(λ) = 0 if λ 6= 0. We can compute G = Φp(Λ)Φ−1 in the spatial
domain. In particular, Gij = 1

lk
if vi and vj are of the same class, otherwise Gij = 0, where lk is

the number of labeled samples in class k. After filtered by G, vertices in the same class will have
an identical feature vector which is its class mean. Then any classifier that can correctly classify the
labeled data will achieve 100% accuracy on the unlabeled data, and only one labeled example per
class is needed to train the classifier.

4 REVISIT GRAPH CONVOLUTIONAL NETWORKS

In this section, we show that the graph convolutional networks (GCN) (Kipf & Welling, 2017) for
semi-supervised classification can be interpreted under the GLP framework, which explains its im-
plicit design features including the number of layers, the choice of the normalized graph Laplacian,
and the renormalization trick on the convolutional filter.

Graph Convolutional Networks. The GCN model contains three steps. First, a renormalization
trick is applied on the adjacency matrix W by adding an self-loop to each vertex, which results in a
new adjacency matrix W̃ = W + I with the degree matrix D̃ = D + I . After that, symmetrically
normalize W̃ and get W̃s = D̃−

1
2 W̃ D̃−

1
2 . Second, define the propagation rule

H(t+1) = σ
(
W̃sH

(t)Θ(t)
)
, (8)

where H(t) is the matrix of activations in the t-th layer and H(0) = X , Θ(t) is the trainable weight
matrix in layer t, and σ is the activation function, e.g., ReLU(·) = max(0, ·). The graph convolution
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Figure 2: Effect of the renormalization trick. Left two figures plot points (λi, p(λi)). Right two
figures plot points (λ̃i, p(λ̃i)).

is defined by multiplying the input of each layer with the renormalized adjacency matrix W̃s from
the left, i.e., W̃sH

(t). The convoluted features are then fed into a projection matrix Θ(t). Third,
stack two layers up and apply a softmax function on the output features to produce a prediction
matrix:

Z = softmax
(
W̃s ReLU

(
W̃sXΘ(0)

)
Θ(1)

)
, (9)

and train the model using the cross-entropy loss over the labeled instances.

4.1 LINK TO GENERALIZED LABEL PROPAGATION METHODS

The graph convolution in each layer of the GCN model actually performs feature smoothing with
a low-pass filter W̃s = I − L̃s, where L̃s is the symmetrically normalized graph Laplacian of the
graph with extra self-loops. Suppose that L̃s can be eigen-decomposed as L̃s = ΦΛ̃Φ−1, then we
have I − L̃s = Φ(I − Λ̃)Φ−1. The frequency response function of the filter is

p(λ̃i) = 1− λ̃i. (10)

Clearly, as shown in Fig. 1(b), this function is linear and low-pass on the interval [0, 1], but not on
[1, 2], as it amplifies the eigenvalues near 2.

Interestingly, by removing the activation function ReLU in Eq. (9), we can see that GCN is a special
case of GLP, where the input signal isX , the filter is W̃ 2

s , and the classifier is a two-layer multi-layer
perceptron (MLP).

Why the Normalized Graph Laplacian. Note that the eigenvalues of the normalized LaplaciansLs
andLr all fall into interval [0, 2] (Chung, 1997), while the unnormalized LaplacianL has eigenvalues
in [0,+∞]. If using the unnormalized graph Laplacian, the response function in Eq. (10) will
amplify eigenvalues in [2,+∞], which will introduce noise and undermine performance.

Why Two Convolutional Layers. In Eq. (9), the GCN model stacks two convolutional layers.
Without the activation function, the feature matrix is actually filtered by I − L̃s twice, which is
equivalent to be filtered by (I− L̃s)2 with response function (1−λ)2. As we can see from Fig. 1(b),
(1 − λ)2 is more low-pass than (1 − λ) by suppressing the eigenvalues in the mid-range of [0, 2]
harder, which explains why GCNs with two convolutional layers perform better than those with only
one.

Why the Renormalization Trick. The effect of the renormalization trick is illustrated in Fig. 2,
where the response functions on the eigenvalues of Ls and L̃s on the Cora citation network are
plotted. We can see that by adding a self-loop to each vertex, the range of eigenvalues shrink from
[0, 2] to [0, 1.5], thus avoiding amplifying eigenvalues near 2 and reducing noise. This explains why
the renormalization trick works.

5 FILTER DESIGN AND COMPUTATION

In this section, we discuss the design and computation of low-pass graph filters for GLP.

Auto-Regressive. The Auto-Regressive (AR) filter is the one used in LP:

par(L) = (I + αL)−1. (11)
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Actually par is an auto-regressive filter of order one (Tremblay et al., 2018). We have shown par is
low-pass in section 2.2. However, the computation of par involves matrix inversion, which is also
computationally expensive with complexityO(n3). Fortunately, we can circumvent this problem by
approximating par using its polynomial expansion:

(I + αL)−1 =
1

1 + α

+∞∑
i=0

[
α

1 + α
W

]i
, (α > 0). (12)

We can then compute X̄ = par(L)X iteratively with

X ′(0) = O, · · · , X ′(i+1) = X +
α

1 + α
WX ′(i),

and let X̄ = 1
1+αX

′(k). Empirically, we find that k = d4αe is enough to get a good approximation.
Hence, the computational complexity is reduced toO(nmα+Nmα) (note thatX is of size n×m),
where N is the number of nonzero entries in L, and N � n2 when the graph is sparse.

Renormalization. The renormalization (RNM) filter is an exponential function of the renormalized
adjacency filter used in GCN:

prnm(L̃) =
(
I − L̃

)k
. (13)

We have shown in section 4.1 that although the response function prnm(λ) = (1 − λ)k is not low-
pass, the renormalization trick shrinks the range of eigenvalues of L̃ and makes prnm resemble a
low-pass filter. The exponent parameter k controls the low-pass effect of prnm. When k = 0, prnm is
all-pass. When k increases, prnm becomes more low-pass. Note that for a sparse graph, (I − L̃) is a
sparse matrix. Hence, the fastest way to compute X̄ = prnm(L̃)X is to left multiply X by (I − L̃)
repeatedly for k times, which has the computational complexity O(Nmk).

Random Walk. We also propose to design a random walk (RW) filter:

prw(Lr) =

(
I +D−1W

2

)k
=

(
I − 1

2
Lr

)k
. (14)

We call prw the random walk filter because
(
I+D−1W

2

)
is a stochastic matrix of a lazy random walk

which at each step returns to the current state with probability 1
2 , and

(
I+D−1W

2

)k
is the k-step

transition probability matrix. Similarly, we can derive the response function of prw as

prw(λ) = (1− 1

2
λ)k. (15)

Note that Lr has the same eigenvalues with Ls, with range [0, 2]. Unlike the RNM, prw is a typical
low-pass filter on [0, 2], as shown in Fig. 1(c). We can also see in Fig. 1(d) that the curves of (1−λ)2

and (1− 1
2λ)4 are very close, implying that to have the same level of low-pass effect, k in prw should

be set twice as large as in prnm. This may be explained by the fact that the two functions (1 − λ)k

and (1 − 1
2λ)2k have the same derivative k at λ = 0. On the computation side, RW has the same

complexity O(Nmk) as RNM.

An important issue of filter design for GLP is how to control the strength of filters by setting pa-
rameters such as α and k. Intuitively, when labeled data is scarce, it would be desirable for the
filtered features of each instance to be closer to its class mean and be more representative of its own
class. Hence, in this case, α and k should be set large to produce smoother features. However, over-
smoothing usually results in inaccurate class boundaries. Therefore, when the amount of labeled
data is reasonably large, α and k should be set relatively small to preserve feature diversity in order
to learn more accurate class boundaries.

6 EXPERIMENTS

Datasets In this section, we test GLP on three citation networks – Cora, CiteSeer and PubMed
(Sen et al., 2008), one knowledge graph – NELL (Carlson et al., 2010), and one handwritten digit
image dataset – MNIST (LeCun et al., 1998). Dataset discriptions are provided in Appendix A.
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Table 1: Classification Accuracy and running time on citation networks and NELL.

Label Rate 20 labels per class 4 labels per class 10% 1% 0.1%

Cora CiteSeer PubMed Cora CiteSeer PubMed NELL

ManiReg 59.5 60.1 70.7 - - - 63.4 41.3 21.8
SemiEmb 59.0 59.6 71.7 - - - 65.4 43.8 26.7
DeepWalk 67.2 43.2 65.3 - - - 79.5 72.5 58.1
ICA 75.1 69.1 73.9 62.2 49.6 57.4 - - -
Planetoid 75.7 64.7 77.2 43.2 47.8 64.0 84.5 75.7 61.9
MLP 56.7 (0.5s) 55.9 (0.6s) 69.1 (0.5s) 37.8 (0.5s) 39.6 (0.6s) 57.6 (0.5s) 63.7 (9.4s) 41.3 (4.9s) 21.5 (7.1s)
LP 67.8 (0.4s) 43.9 (0.3s) 66.4 (1.2s) 60.9 (0.1s) 40.0 (0.2s) 62.6 (4.3s) 71.4 44.8 26.5
GCN 79.5 (1.5s) 68.7 (2.3s) 77.2 (16s) 64.0 (1.8s) 56.4 (2.5s) 66.7 (17s) 81.6 / 82.1 (39s) 62.9 / 67.7 (33s) 39.1 / 58.2 (40s)

GLP (RNM, MLP) 79.1 (0.5s) 67.6 (0.6s) 77.2 (0.5s) 68.4 (0.5s) 57.5 (0.6s) 67.2 (0.6s) 85.2 / 85.9 (49s) 77.4 / 78.8 (22s) 64.5 / 68.1 (26s)
GLP (RW, MLP) 79.1 (0.5s) 67.7 (0.6s) 77.0 (0.5s) 68.5 (0.5s) 57.6 (0.6s) 67.2 (0.6s) 85.3 / 86.6 (87s) 77.4 / 79.5 (35s) 64.9 / 70.5 (39s)
GLP (AR, MLP) 80.3 (0.5s) 68.3 (0.7s) 78.3 (0.5s) 69.4 (0.7s) 58.3 (0.9s) 68.7 (0.8s) 84.2 / 84.0 (487s) 63.9 / 66.1 (375s) 59.9 / 62.9 (637s)

Baselines On citation networks and NELL, we compare GLP against GCN (Kipf & Welling,
2017), LP (Wu et al., 2012), multi-layer perceptron (MLP), Planetoid (Yang et al., 2016), DeepWalk
(Perozzi et al., 2014), manifold regularization (ManiReg) (Belkin et al., 2006), semi-supervised em-
bedding (SemiEmb) (Weston et al., 2008), and iterative classification algorithm (ICA) (Sen et al.,
2008). On MNIST, we compare GLP against GCN, LP, MLP, and convolutional neural networks
(CNN).

Experimental Setup We test GLP with RNM, RW and AR filters (section 5) on all the datasets.
We use MLP as the classifier for GLP on citation networks and NELL, and use CNN as the classifier
on MNIST. Guided by our analysis in section 5, the filter parameters k and α should be set large
with small label rate and set small with large label rate. We use fixed parameters k = 10 for RNM,
k = 20 for RW, and α = 20 for AR when label rate is less than or equal to 2%, and set them to
5, 10, 10 respectively otherwise. We follow Kipf & Welling (2017) to set the parameters of MLP,
including learning rate, dropout, and weight decay. To make sure GLP works in practice and for
more fair comparison with baselines, we do not use a validation set for classifier model selection as
in Kipf & Welling (2017), instead we select the classifier with the highest training accuracy in 200
steps. Results of GLP and GCN on all the datasets are reported without using a validation set, except
that on NELL, we also report the results with validation (on the right of “/”). More implementation
details are provided in Appendix B due to space limitations.

Performance of GLP The results are summarized in Tables 1 and 2, where the top 3 classification
accuracies are highlighted in bold. Overall, GLP performs the best on all the datasets. On citation
networks, with 20 labels per class, GLP performs comparably with GCN and outperforms other
baselines by a considerable margin. With 4 labels per class, GLP significantly outperforms all
baselines including GCN. On NELL, GLP wtih RW and RNM filters consistently outperforms the
best baseline Planetoid for each setting, and outperforms other baselines including GCN by a large
margin. Note that GLP achieves this performance without using any additional validation set. The
performance of GLP (and GCN) will be further boosted with validation, as shown on the right of
“/”. On MNIST, GLP consistently outperforms all baselines for every setting.

The running times of GLP and some other baselines are also reported in Tables 1 and 2. GLP runs
much faster than GCN on most datasets, except for NELL, on which the running times of GLP with
two filters are similar with GCN. More discussions about running times are included in Appendix E.

Results Analysis Compared with LP and DeepWalk which only use graph information, the large
performance gains of GLP clearly comes from leveraging both graph and feature information. Com-
pared with purely supervised MLP and CNN which are trained on raw features, the performance
gains of GLP come from the unsupervised feature filtering. Fig. 3 visualizes the raw and filtered
features (by RNM filter) of Cora projected by t-SNE (Van der Maaten & Hinton, 2008). The filtered
features exhibit a much more compact cluster structure, thus making classification much easier. In
Appendix C, we show that feature filtering improves the accuracy of various classifiers significantly.

Compared with GCN and other baselines which use both graph and feature information, the perfor-
mance gains of GLP come in two folds. First, GLP allows using stronger filters to extract higher level
data representations to improve performance when label rate is low, which can be easily achieved
by increasing the filter parameters k and α, as shown in Fig. 3. But this cannot be easily achieved in
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Labels per class 10 20 30

MLP 66.1 (0.5s) 74.9 (0.5s) 78.5 (0.6s)
CNN 86.3 (2.5s) 92.1 (4.1s) 94.3 (6.3s)
LP 92.9 (0.2s) 94.4 (0.2s) 95.1 (0.2s)
GCN 82.4 (143.0s) 88.2 (148.0s) 90.3 (147.0s)

GLP (RNM, CNN) 94.1 (4.9s) 95.3 (6.6s) 95.6 (8.7s)
GLP (RW, CNN) 94.1 (5.1s) 95.3 (6.7s) 95.6 (8.9s)
GLP (AR, CNN) 94.1 (7.2s) 95.5 (8.8s) 95.8 (11.1s)

Table 2: Classification accuracy and running
time on MNIST.

Raw

k = 2

k = 5

k = 10

Figure 3: Visualization of raw and filtered fea-
tures of Cora.

GCN. As each convolutional layer of GCN is coupled with a projection layer, to increase smooth-
ness one needs to stack many layers, and a deep GCN is difficult to train. Second, GLP allows
adopting domain-specific classifiers such as CNN to deal with vision tasks. As shown in Table 2,
the performance of CNN trained on raw features of labeled data is very competitive and grows fast.

Due to space limitations, we include the stability analysis of GLP in Appendix D.

7 RELATED WORKS

Many graph-based semi-supervised learning methods adopt a common assumption that nearby ver-
tices are likely to have same labels. One idea is to learn smooth low-dimensional embedding of data
points by using Markov random walks (Szummer & Jaakkola, 2002), Laplacian eigenmaps (Belkin
& Niyogi, 2004), spectral kernels (Chapelle et al., 2003; Zhang & Ando, 2006), and context-based
methods (Perozzi et al., 2014). Another idea hinges on graph partition, where the cuts should a-
gree with the labeled data and be placed in low density regions (Blum & Chawla, 2001; Zhu et al.,
2003; Joachims, 2003; Blum et al., 2004). Perhaps the most popular idea is to formulate a quadratic
regularization framework to explicitly enforce the consistency with the labeled data and the cluster
assumption, which is known as label propagation (Zhou et al., 2004; Chapelle & Zien, 2005; Bengio
et al., 2006; Kveton et al., 2010).

To leverage more data information to improve predictions, a variety of methods proposed to jointly
model data feature and graph information. Zhou et al. (2004) proposed to combine label propagation
with external classifiers by attaching a “dongle” vertex to each unlabeled vertex. Iterative classifi-
cation algorithm (Sen et al., 2008) iteratively classifies an unlabeled vertex using its neighbors’
labels and features. Manifold regularization (Belkin et al., 2006), deep semi-supervised embedding
(Weston et al., 2008), and Planetoid (Yang et al., 2016) regularize a supervised classifier with a
Laplacian regularizer or an embedding-based regularizer. Graph convolutional networks (Kipf &
Welling, 2017) combine graph and feature information in convolutional layers, which is actually
doing Laplacian smoothing on data features (Li et al., 2018). Follow-up works include graph atten-
tion networks (Velikovi et al., 2018), attention-based graph neural network (Thekumparampil et al.,
2018), and graph partition neural networks (Liao et al., 2018).

The idea of feature smoothing has been widely used in computer graphics community for fairing 3D
surface (Taubin, 1995b;a; Desbrun et al., 1999). Hein & Maier (2007) proposed manifold denoising
which uses feature smoothing as a preprocessing step for running a label propagation algorithm,
i.e, the denoised features are used to construct a better graph for LP. This method is still “one-
dimensional”, as it cannot use the preexisting graph information in data such as citation networks.
In contrast, the proposed GLP and the GCN frameworks are “two-dimensional”.

8 CONCLUSION

In this paper, we have proposed a simple, flexible, and efficient framework GLP for semi-supervised
learning, and demonstrated its effectiveness theoretically and empirically. GLP offers new insights
into existing methods and opens up possible avenues for new methods. An important direction for
future research is the design and selection of graph filters for GLP in different application scenarios.
Other directions include making GLP readily applicable to inductive problems, developing faster
algorithms for GLP, and applying GLP to solve large-scale real-world problems.
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Appendices
We include dataset descriptions, experimental details, supplementary experiments, stability analysis,
and running time analysis here.

APPENDIX A DATASET DESCRIPTION

Citation networks (Sen et al., 2008) are networks that record documents’ citation relationship.
In citation networks, vertices are documents and edges are citation links. A pair of vertices are
connected by an undirected edge if and only if one cites another. Each vertex is associated with
a feature vector, which encodes the document content. In the three citation networks we tested
on, CiteSeer, Cora and PubMed, feature vectors are 0/1 vectors that have the same length as the
dictionary size and indicate whether a word appears in a document. The statistics of datasets are
summarized in Table 3.

Never Ending Language Learning (NELL) (Carlson et al., 2010) is a knowledge graph introduced
by Carlson et al.. Yang et al. extracted an entity classification dataset from NELL, and converted the
knowledge graph into a single relation graph. For each relation type r, they created two new vertices
r1 and r2 in the graph. For each triplet (e1, r, e2), they created two edges (e1, r1) and (e2, r2). We
follow Kipf & Welling (2017) to extend the features by assigning a unique one-hot representation
for every relation vertex, resulting in a 61,278-dimensional sparse feature vector for each vertex.
Dataset statistics are also provided in Table 3.

MNIST contains 70,000 images of handwritten digits from 0 to 9 of size 28 × 28. Each image
is represented by a dense 784-dimensional vector where each dimension is a gray intensity pixel
value. A 5-NN graph is constructed based on the Euclidean distance between images. If the i-th
image is within the j-th image’s 5 nearest neighbors or vice versa, then wij = wji = 1, otherwise
wij = wji = 0.

Table 3: Dataset statistics.

Dataset Type Vertices Edges Classes Features
CiteSeer Citation network 3,327 4,732 6 3703
Cora Citation network 2,708 5,429 7 1433
PubMed Citation network 19,717 44,338 3 500
NELL Knowledge graph 65,755 266,144 210 5414
MNIST Images 70,000 2,060,504 10 784

APPENDIX B EXPERIMENTAL DETAILS

We provide more experimental details here for the sake of reproduction.

Parameters We set k = 10 for RNM, k = 20 for RW, and α = 20 for AR, if label rate is less or
equal than 2%; otherwise, we set them to 5, 10, 10 respectively.

Networks On citation networks, we follow Kipf & Welling (2017) to use a two-layer MLP with
16 hidden units for citation networks, 0.01 learning rate, 0.5 dropout rate, and 5 × 10−4 L2 reg-
ularization. On NELL, we also follow Kipf & Welling (2017) to use 64 hidden units, 10−5 L2
regularization, 0.1 dropout rate and two layer-structure. On MNIST, we use 256 hidden units, 0.01
learning rate, 0.5 dropout rate, and 5 × 10−4 L2 regularization. The CNN we use consists of six
layers, whose structure is specified in Table 4. For CNN, we use 0.003 learning rate and 0.5 dropout.
All results of MNIST are averaged over 10 runs. We train all networks using Adam (Kingma & Ba,
2014).

Baselines Results of some baselines including ManiReg, SemiEmb, DeepWalk, ICA, Planetoid
are taken from Kipf & Welling (2017), except for the 4-labels-per-class setting, for which we run

12



Under review as a conference paper at ICLR 2019

Table 4: CNN structure.

Layer Structure Output Size

Conv. 5× 5× 32 with BN 28× 28× 32
Max-pooling 2× 2 with BN 14× 14× 32
Conv. 3× 3× 64 with BN 14× 14× 64
Conv. 3× 3× 64 with BN 14× 14× 64
Max-pooling 2× 2 with BN 7× 7× 64
Conv. 3× 3× 128 with BN 7× 7× 128
Conv. 1× 1× 10 with BN 7× 7× 10
Drop out 0.5
FC 490× 10 with BN 10

ICA2 implemented by Kipf and Planetoid implemented by Yang with their choices of parameters.
Results of LP on NELL are also taken from Yang et al. (2016). All other results are reported by us.

APPENDIX C GLP WITH VARIOUS CLASSIFIERS

To demonstrate the benefit of GLP, we compare training various supervised classifiers with raw and
filtered features. The classifiers include support vector machine (SVM), decision tree (DT), logistic
regression (LR), and multilayer perceptron (MLP). The results are summarized in Table 5. We can
see that for all classifiers and on all datasets, there is a huge improvement in classification accuracy
with the smooth features produced by the three filters we proposed. This clearly demonstrates the
advantage of filtered features over raw features.

Table 5: Classification accuracy with 20 labels per Class.

Cora CiteSeer PubMed

SVM DT LR MLP SVM DT LR MLP SVM DT LR MLP

Raw Features 22.3 45.2 54.6 56.7 50.0 42.2 58.8 55.9 63.2 58.0 68.9 69.1
GLP with RNM 55.3 63.5 74.3 79.1 61.1 51.9 66.6 67.6 68.5 66.8 74.2 77.2
GLP with RW 55.3 64.2 74.3 79.1 62.4 50.3 66.5 67.7 68.5 67.2 74.1 77.0
GLP with AR 51.3 63.3 74.1 80.3 62.0 51.7 67.1 68.3 70.3 67.1 74.6 78.3

In this experiment, we use 0.01 learning rate and 5 × 10−4 L2 regularization for LR. For SVM,
we use the RBF kernel with γ = 1/n and 1.0 L2 regularization. For DT, we use Gini impurity as
quality measure. We use the same parameters for MLP as described in Appendix B.

APPENDIX D STABILITY ANALYSIS OF GLP

We test how the filter parameters k and α influence the performance of GLP. Figs. 4 to 6 plot the
classification accuracies of GLP with different k and α on three citation networks, with 4 labels per
class. Consistent with our analysis in section 5, the classification accuracy of GLP first increases
and then decreases as k and α increases. The results shows that GLP consistently outperforms GCN
for a wide range of k and α.

APPENDIX E RUNNING TIMES OF GLP

The running times of GLP and some other baselines are also reported in Tables 1 and 2. On citation
networks and MNIST, GLP runs much faster than GCN, especially for large-scale datasets such as
PubMed and MNIST. The reason is that feature filtering only needs to be done once in GLP, while
GCN basically performs filtering in every training step.

2https://github.com/tkipf/ica
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Figure 4: Classification accuracy on Cora with different parameters.

0 20 40 60 80 100
k

45

50

55

60

65
Test accuracy

RNM
GCN

(a) GLP (RNM, MLP)

0 50 100 150 200
k

45

50

55

60

65
Test accuracy

RW
GCN

(b) GLP (RW, MLP)

0 50 100 150 200
45

50

55

60

65
Test accuracy

AR
GCN

(c) GLP (AR, MLP)

Figure 5: Classification accuracy on CiteSeer with different parameters.
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Figure 6: Classification accuracy on PubMed with different parameters.

When the data feature dimension m is very large, such as on NELL (m = 61278), GLP becomes
slower. However, the computation of filtering (convolution) of GCN in Eq. (8) can be speeded up
by matrix chain multiplication, and the larger m is, the more times it can be accelerated. Therefore,
on NELL, GLP with RNM and RW filters have similar running times as GCN.
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