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Abstract

We investigate the use of in-context learn-001
ing and prompt engineering to estimate the002
contributions of training data in the outputs003
of instruction-tuned large language models004
(LLMs). We propose two novel approaches:005
(1) a similarity-based approach that measures006
the difference between LLM outputs with and007
without provided context, and (2) a mixture008
distribution model approach that frames the009
problem of identifying contribution scores as a010
matrix factorization task. Our empirical com-011
parison demonstrates that the mixture model012
approach is more robust to retrieval noise in013
in-context learning, providing a more reliable014
estimation of data contributions.015

1 Introduction016

Training Data Attribution (TDA) refers to the task017

of quantifying the contributions of different data018

sources on the output of a model (Park et al., 2023;019

Nguyen et al., 2023). This task is essential for de-020

bugging the curating corpora processes for training021

and for improving the training of neural networks022

(Xia et al., 2024; Qin et al., 2025). Understand-023

ing the contribution of data sources allows us to024

assess the monetary value of proprietary training025

data, which is crucial for fair compensation and026

data management (Ghorbani and Zou, 2019; No-027

hyun et al., 2022; Choe et al., 2024).028

Existing TDA methods fall mainly into two cat-029

egories: retraining-based methods and influence030

function-based methods, as detailed in recent sur-031

veys (Hammoudeh and Lowd, 2024; Worledge032

et al., 2024). Retraining approaches such as those033

of (Feldman and Zhang, 2020; Ghorbani and Zou,034

2019) involve retraining the model without the tar-035

get data source. However, this method is compu-036

tationally expensive. The influence function ap-037

proaches (Koh and Liang, 2017; Pruthi et al., 2020;038

Chen et al., 2021; Park et al., 2023), relax the need039

for full retraining by requiring only a few gradient040

calculations with respect to the data. Despite their 041

efficiency, these methods rely on a linear approx- 042

imation of the neural network around the target 043

data point, which can be inaccurate. Critically, the 044

influence function approaches compute the attribu- 045

tion score for a dataset as a linear function (usually 046

an average or sum) of the attribution scores for 047

each data point in the dataset (Hammoudeh and 048

Lowd, 2024; Park et al., 2023). This approach fails 049

to provide a holistic view of the contributions of 050

an entire dataset to the model’s output. Addition- 051

ally, both methods require access to the internals 052

of LLMs, which is not feasible for some popular 053

models. A related technique, Machine Unlearning 054

(Ginart et al., 2019; Sekhari et al., 2021) is still 055

expensive to obtain the contribution scores. 056

We explore the use of in-context learning and 057

prompt engineering to estimate the contributions of 058

each dataset as a whole in the outputs of instruction- 059

tuned LLMs. We propose two approaches: (1) A 060

similarity-based approach, which posits that pro- 061

viding a dataset as context to an LLM trained on 062

that dataset changes its output less compared to 063

when the LLM was not trained on the dataset. (2) 064

A mixture distribution model approach, where we 065

model the behavior of LLMs using a new mixture 066

distribution. This approach transforms the prob- 067

lem of identifying contribution scores into a matrix 068

factorization problem, which we solve using the 069

alternating projected least squares method. Both 070

approaches utilize Retrieval Augmented Genera- 071

tion (RAG) (Lewis et al., 2020) to accommodate 072

large data sources. 073

In the experiments, we evaluated four 074

instruction-tuned LLMs: Mistral 7B (Jiang 075

et al., 2023), Bloomz (Le Scao et al., 2023), 076

Microsoft/Phi-3-mini (Abdin et al., 2024) and GPT 077

4.0 (Achiam et al., 2023) on a set of binary Q&A 078

datasets, BoolQ (Clark et al., 2019). In addition 079

to the widely used BoolQ dataset, we create two 080

new datasets: FakeQ, a synthetically modified 081
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version of BoolQ with altered queries and contexts,082

and a novel dataset constructed from Olympic083

2024 Paris information, which serves as a realistic084

dataset that none of the LLMs have encountered085

during training.086

Finally, to ensure the reliability of our proposed087

contribution estimation metrics, we fine-tune these088

LLMs in the Olympic 2024 dataset under varying089

conditions, such as different learning rates, and090

evaluate the consistency of the metrics. Once val-091

idated, the metrics are further used to assess and092

rank popular unlearning techniques. Furthermore,093

we employ the Trak evaluation framework (Park094

et al., 2023) as a baseline to benchmark the effec-095

tiveness and robustness of our methods.096

2 Methodology097

An LLM processes knowledge from different098

sources. Our goal is to examine different prompts099

and see if we can uncover the sources of this knowl-100

edge.101

In our setting, we have tuples in the format of102

question, context, and outcome: (q, c, y). Our103

LLM outputs M(q|c) = p(y|q, c). When we do104

not use any context, we denote c = ∅. Our goal is105

to quantify the contributions of the training datasets106

D1, . . . , Dn in p(y|q, c). We assume that we have107

a query set Q = {q1, . . . , qm}. For simplicity of108

notation, without loss of generality, we describe109

the methods for binary outcome y ∈ {0, 1}.110

We assume that we have k, k = 1, . . . ,K, rele-111

vant datasets about a topic and we want to quantify112

their contributions in the generation of the outputs113

by our LLM.114

2.1 The Non-parametric Approach: The115

Shapley Context Method (SCM)116

The key idea of this approach is that if an LLM uses117

the information from the kth dataset, providing the118

kth dataset as a context will not change the output119

much. Conversely, if adding a dataset as context120

changes the output significantly, it is likely not121

used for the generation of the output. We define122

the following similarity scores:123

sk = sim(y , y|ck), (1)124

where ck is the context from the kth dataset.125

Usually, the desired information can be found in126

multiple data sets (Ghorbani and Zou, 2019). To127

consider the impact of datasets in presence of other128

Input: An instruction-tuned LLM M that
outputs y for each query q and
context c.

Input: A set of queries Q = {q1, . . . , qm}.
Input: A set of datasets that we need to

compute their contributions
D1, . . . , DK .

1 for q ∈ Q do
2 Compute output without context:

y = M(q).; for
S ⊂ {D1, . . . , DK} \ {Dk} do

3 Use RAG to create contexts cS and
cS∪{Dk} from the datasets in S and
Dk.;

4 Compute the output with the context
y|cS = M(q|cS).;

5 Compute the output with the context
including Dk:
y|cS∪{Dk} = M(q|cS∪{Dk}).;

6 Compute the similarities sS and
sS∪{k}.;

7 end
8 Use Eq. (2) to compute ϕk(q).
9 end

Result: Return average ϕk over m queries
Algorithm 1: Shapley Context Method
(SCM)

datasets, we define the following scores to be used 129

in the Shapley formula (Shapley, 1953): 130

sS = sim(y , y|cS). 131

The Shapley values are computed as follows: 132

ϕk =
∑

S⊆{D1,...,DK}\{Dk}

CS,K(sS∪{Dk} − sS),

(2) 133

where CS,K = |S|!(K − |S| − 1)!/K! are the 134

normalization constants. This formula finds the 135

residual increase in the similarity by including 136

Dk, when we already have included another set 137

S ⊆ {D1, . . . , DK} \ {Dk}. The following Algo- 138

rithem describes the details of our Shapley Context 139

Method (SCM). 140

2.2 The Semi-Parametric Approach: Context 141

Mixture Factorization (CMF) 142

We propose a model to summarize the behavior 143

of LLMs. Our model explicitly contains attribu- 144

tion scores and captures the entirety of the datasets 145
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used for its training. We use a mixture distribution146

approach, which defines:147

p(y|q) = π0p̃0(y|q) +
K∑
k=1

πkp̃k(y|q), (3)148

where p̃0 denotes a general-purpose language149

model and p̃k denote the language models special-150

ized on each of the relevant datasets k = 1, . . . ,K.151

The distributions p̃k, k = 0, . . . ,K, are latent, and152

we do not intend to explicitly estimate them.153

Remark 1: Given the modularity of LLM struc-154

tures, this assumption is not fully realistic. How-155

ever, this assumption provides a holistic view of the156

contributions of each dataset, captured by distribu-157

tions p̃k, k = 1, . . . ,K. Thus, model (3) serves as158

a useful tool to statistically summarize the behavior159

of the LLM.160

Remark 2: Model (3) can capture the scenarios161

where an LLM uses data from multiple sources, but162

does not model the scenarios where the LLM uses163

the interaction of data from multiple sources.164

We model the impact of providing context from165

a dataset k ∈ {1, . . . ,K} as an intervention in the166

probability distribution:167

p(y|q, ck) = π0p̃0(y|q) + (1− π0)p̃k(y|q). (4)168

The key assumption is that both Eq. (3) and (4)169

do not have context terms on the right-hand side170

quantities.171

Goal: Our goal is to identify πk, k = 1, . . . ,K.172

We want to do this without explicitly estimating173

p̃k, k = 1, . . . ,K.174

Formulating as a Matrix Factorization Prob-175

lem. For each of the m queries, we perform K+1176

prompts (or the maximum 2K prompts) and write177

the results in a linear equation as follows:178

P = ΠP̃ , (5)179

where P ∈ [0, 1](K+1)×m, Π ∈ [0, 1](K+1)×(K+1),180

and P̃ ∈ [0, 1](K+1)×m. We observe the quantity181

on the left-hand side, but none of the quantities in182

the right-hand side.183

This is a matrix factorization problem with a184

special structure. We assume that p̃k(y|q) can be185

obtained by some clever prompts. We can make186

assumptions about p̃k(y|q) that allow recovery of187

the mixture parameters of π.188

Remark 3: Instead of K + 1 prompts, we can189

have up to 2K prompts. However, for the prompts190

Input: An instruction-tuned LLM M that
outputs y for each query q and
context c.

Input: A set of queries Q = {q1, . . . , qm}.
Input: A set of datasets that we need to

compute their contributions
D1, . . . , DK .

1 for q ∈ Q do
2 Compute output without context:

p(y|q, c0) = M(q).; for k = 1, . . . ,K
do

3 Use RAG to create context ck from
the dataset Dk.;

4 Compute the output with the context
p(y|q, ck) = M(q|ck).

5 end
6 Use Eq. (2) to compute ϕk(q).
7 end
8 Build matrix P , where Pk,j = p(y|qj , ck).;
9 Solve Eq. (6) via alternating least squares

and to compute π̂.;
Result: Return the contribution vector π̂

Algorithm 2: Context Mixture Factorization
(CMF)

that use multiple datasets, we need to assume the 191

form of the resulting distribution, similar to Eq. (4). 192

An alternative is to impose priors on π and P̃ to 193

improve identifiability. We will discuss the second 194

approach in the next section. 195

Alternating Projected Least Squares. We can 196

have multiple estimates for π from Eq. (5). We 197

can resolve this issue by encouraging solutions that 198

have lower variance. We achieve this by using two 199

regularizers: an entropy regularizer for π to assume 200

that the sources contribute equally and a regularizer 201

that encourages P̃ to be less informative. 202

π̂ = argmin
π

min
P̃

∥∥∥P −ΠP̃
∥∥∥2
F

(6) 203

− λπH(π) + λ
P̃
∥P̃ − 1/2∥2F , 204

s.t. π ⪰ 0, 1⊤π = 1, 0 ⪯ P̃ ⪯ 1. 205

206where ∥·∥F and H(·) denote the Frobenius norm 207

and Shannon’s entropy. We use entropy regulariza- 208

tion on π to encourage the null hypothesis of “equal 209

contributions of all sources”. Regularization of the 210

Frobenius norm implies that, unless there is strong 211

evidence, the outputs of the latent probabilities P̃ 212

should be 1/2. Note that regularizers are vital for 213
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obtaining a non-trivial solution and in the absence214

of them, there are many solutions to the problem.215

The problem in Eq. (6) is biconvex; ie, fixing π216

or P̃ , the problem is convex (Gorski et al., 2007).217

Thus, we solve it by the alternating least-squares218

method. We describe the procedure in Algorithm219

2 . We further assist in the regularization terms by220

randomly initializing P̃ to be around 1/2 and π to221

be around 1/(K+1). We can obtain the confidence222

intervals for both SCM and CMF by bootstrapping223

(Tibshirani and Efron, 1993).224

3 Implementation225

3.1 Prompt Engineering226

For simplicity of evaluation and without loss of227

generality, we used Q&A datasets, where the an-228

swers are binary Yes/No. To instruct the LLMs to229

provide direct boolean responses, we used prompt230

engineering. Initially, we tested various prompts231

without explicitly instructing the model to answer232

with "Yes" or "No." Diverse examples used in this233

process are provided in Appendix A. Through iter-234

ative testing, we found that the responses improved235

when the model was explicitly instructed to provide236

a Boolean answer. This led to our final prompt:237

Prompt: "Given the context below, answer the238

question that follows with only ’Yes’, ’No’, or ’I239

don’t know’ if the context is insufficient.240

{question}? The answer to this question is "241

Although this final prompt worked well for GPT-242

4, Bloomz, and Mistral 7B, generating straightfor-243

ward "Yes," "No," or "I don’t know" responses, it244

was harder to instruct Phi-3-mini. Even with the245

final prompt, Phi-3-mini often generated more text246

than just a simple boolean response.247

Therefore, calculating similarities was straight-248

forward for GPT-4, Bloomz, and Mistral 7B, but249

we had to devise another solution for Phi-3-mini.250

The embedding similarity API on GPT-4 was not251

precise enough as it did not focus primarily on the252

context of the generated response. To calculate the253

similarity for Phi-3-mini, we created a zero-shot254

classification layer (which takes 1000 characters)255

between the prediction and the result to measure256

similarity more accurately.257

3.2 Using RAG258

Given the limitations of LLM context windows,259

fitting entire datasets directly into the context260

is impractical. To address this, we used Re-261

trieval Augmented Generation (RAG) (Lewis et al.,262

2020) to enhance context by retrieving relevant 263

documents from databases before generating re- 264

sponses. The process involves splitting the doc- 265

uments into semantically relevant chunks using 266

the RecursiveCharacterTextSplitter from the Hug- 267

gingFace Transformers library, computing embed- 268

dings for all chunks with a model like thenlper/gte- 269

small, and storing these embeddings in a vector 270

database using FAISS (Facebook AI Similarity 271

Search) (Johnson et al., 2019). When a question 272

is posed, it is embedded, and a similarity search 273

is performed against the vector database to find 274

the closest matching documents. These retrieved 275

documents are then provided as context for the 276

LLMs along with the original question, allowing 277

the LLMs to generate responses augmented with 278

additional context. We used a chunk size of 512 279

and a top-k value of 3, ensuring the context was 280

trimmed to 2000 characters for conciseness. We 281

study the effectiveness of RAG in the Appendix C. 282

4 Experiments 283

Simplified setup to demonstrate our methodology: 284

Step 1: Task Selection We use three datasets 285

for our evaluation: (1) the BoolQ Q&A dataset 286

(Clark et al., 2019), which consists of tuples in 287

the form (question, relevant context, binary an- 288

swer), representing a dataset that instruction-tuned 289

LLMs are likely to have been trained on; (2) the 290

FakeQ dataset, constructed by altering the queries 291

and contexts in BoolQ to ensure the dataset re- 292

mains unseen by the LLMs; and (3) The Olympic 293

2024 dataset, a newly created dataset based on 294

the Paris 2024 Olympics (detailed in Appendix B), 295

is designed to simulate real-world scenarios with 296

Yes/No questions and relevant contexts. The latter 297

two datasets allow us to evaluate the attribution 298

metrics on datasets to which the LLMs have not 299

been exposed during pretraining. 300

Step 2: LLM Selection We examined four 301

instruction-tuned LLMs: GPT-4 (1.76 trillion pa- 302

rameters), Bloomz (176 billion parameters), Mis- 303

tral 7B (7.3 billion parameters), and Phi-3-mini 304

(3.8 billion parameters). We report the accuracy of 305

these LLMs on BoolQ in Table 9. Given that the 306

dataset is binary, we prompted the LLMs to answer 307

"Yes" or "No" to each question, or to say "I don’t 308

know" if they could not provide a definite response 309

(see Section 3.1). 310

Step 3: Alternative Dataset Collection We col- 311

lected five datasets on different topics. The cor- 312

pora were sourced from a subset of the Wikipedia 313
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Field of Science dataset available on Hugging Face,314

specifically the fields of Chemistry, Natural Sci-315

ence, History and Archaeology, Biology, and Law.316

Each of these data sets contains more than a million317

samples in five categories.318

Step 4: Evaluation First, we evaluated the meth-319

ods on the BoolQ dataset, which is closely related320

to the questions asked, providing a baseline for321

how well the methods estimate attribution for data322

sources that align closely with the LLMs’ pretrain-323

ing. Successful methods should estimate a higher324

weight for BoolQ, as a proxy for the relevant data325

used during training.326

To further test the robustness of the proposed327

methods, we created two new datasets: (1) FakeQ,328

derived by altering the queries and contexts in329

BoolQ to ensure it is entirely unseen by the LLMs,330

and (2) Olympic2024, a dataset based on the Paris331

2024 Olympics, designed as a real-world dataset332

with binary Yes/No questions and relevant con-333

texts that are guaranteed to be unseen by the LLMs334

(trained prior to 2024). These data sets allowed us335

to investigate how attribution metrics behave when336

the datasets have no prior exposure during LLM337

training.338

To demonstrate the validity of the attribution339

metrics, we performed a series of experiments in-340

volving fine-tuning the LLMs on the Olympic2024341

dataset with increasing learning rates or iterations.342

By fine-tuning the LLMs incrementally on a previ-343

ously unseen dataset, we created a progression of344

models. For each fine-tuned model, we applied the345

contribution estimation methods and observed that346

the metrics increased monotonically, reflecting the347

LLMs’ growing reliance on the dataset.348

Finally, we extend our evaluation to machine349

unlearning algorithms, leveraging the established350

metrics to rank well-known unlearning methods351

based on their ability to effectively reduce the con-352

tribution of a target dataset. By applying attribution353

metrics to LLMs subjected to unlearning processes,354

we assessed whether the influence of the targeted355

dataset was effectively diminished.356

4.1 Results and Analysis357

In general, SCM and CMF demonstrate their ability358

to effectively identify the most influential datasets,359

with CMF providing more robust attributions by ac-360

counting for noise and base contributions. We also361

performed an evaluation using Trak (Park et al.,362

2023) as a popular baseline. Trak provides a dif-363

ferent perspective on attribution of data sets by364

scoring the impact of training data on model predic- 365

tions. The Trak scores for Bloomz and Phi-3-mini 366

in the BoolQ, FakeQ, and Olympic2024 datasets 367

are shown in Tables 1, 2, and 3. 368

Table 1: Attribution values for the context on BoolQ

Algorithm Bloomz GPT-4 Mistral 7B Phi-3
SCM 0.48 0.59 0.57 0.50
CMF 0.63 0.62 0.61 0.59
Trak 0.61 – – 0.58

Table 2: Attribution values for the context on FakeQ

Algorithm Bloomz GPT-4 Mistral 7B Phi-3
SCM 0.32 0.36 0.33 0.28
CMF 0.46 0.43 0.41 0.38
Trak 0.39 – – 0.35

Table 3: Attribution values for the context on
Olympic2024

Algorithm Bloomz GPT-4 Mistral 7B Phi-3
SCM 0.08 0.11 0.09 0.07
CMF 0.16 0.14 0.12 0.10
Trak 0.12 – – 0.09

Detailed Analysis of Attribution Coefficients 369

Tables 4 and 5 show the attribution results obtained 370

by the SCM and CMF algorithms for the BoolQ 371

data set. Both algorithms successfully identify 372

the BoolQ dataset as the most influential dataset. 373

This is because the BoolQ context is more directly 374

related to the questions. Chemistry, Natural Sci- 375

ence, History and Archaeology, Biology, and Law 376

have lower ϕk values, showing that while they con- 377

tribute to the context, their impact is less signif- 378

icant compared to BoolQ. Note that in CMF, we 379

need to calculate πBoolQ
1−πBase

to directly compare it with 380

ϕBoolQ estimated by SCM. This shows that CMF 381

assigns higher attribution values than SCM due to 382

its robustness in accounting for noise in retrieval- 383

augmented generation (RAG) systems. 384

Table 4: Shapley Values (ϕk) using SCM Algorithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
ϕBoolQ 0.48 0.59 0.57 0.50
ϕChemistry 0.10 0.08 0.09 0.10
ϕNatural Sci 0.12 0.09 0.10 0.11
ϕHistory 0.11 0.10 0.10 0.11
ϕBiology 0.10 0.07 0.08 0.10
ϕLaw 0.09 0.07 0.08 0.08
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Table 5: π and πBoolQ
1−πBase

values using the CMF algorithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
πBase 0.05 0.08 0.06 0.05
πBoolQ 0.60 0.62 0.61 0.59
πChemistry 0.09 0.07 0.08 0.09
πNatural Sci 0.07 0.08 0.07 0.06
πHistory 0.08 0.10 0.09 0.07
πBiology 0.06 0.06 0.05 0.05
πLaw 0.05 0.10 0.08 0.06
πBoolQ
1−πBase

0.63 0.67 0.65 0.62

Table 6: TRAK Scores for Different Sources using Phi-
3 and Bloomz models. Positive scores indicate datasets
that contribute positively to the model’s output, while
negative scores indicate a lesser or inverse influence.

Dataset Phi-3 Bloomz
BoolQ 0.58 0.61
Chemistry -0.08 -0.10
Natural Science 0.20 0.22
History 0.18 0.19
Biology -0.05 -0.06
Law 0.07 0.09

Across the three datasets (see Tables 10–13 in385

Appendix D), CMF consistently assigns higher at-386

tribution values than SCM. This is because CMF387

explicitly accounts for background model contri-388

butions (πBase) and dataset-specific contributions389

(πk), making it more robust to noise and improv-390

ing attribution granularity. The difference between391

CMF and SCM is most pronounced for datasets392

with strong alignment with the pre-training data of393

the model, such as BoolQ, where CMF captures a394

clearer and stronger attribution signal. Since BoolQ395

contains questions and contexts similar to those396

likely encountered during model training, CMF397

detects these relationships with greater sensitivity.398

For FakeQ and Olympic2024, both unseen dur-399

ing pre-training, the gap between CMF and SCM400

narrows. This is expected as neither data set has di-401

rect overlap with pre-training data, leading to lower402

attribution values across the board. However, CMF403

still assigns slightly higher attributions compared404

to SCM, particularly for FakeQ. This suggests that405

while FakeQ is designed to be unseen, it retains406

enough linguistic patterns and contextual structures407

resembling BoolQ for CMF to register a weak but408

measurable connection. In contrast, Olympic2024409

shows the lowest attribution values, reflecting its410

novel and domain-specific nature. This trend un-411

derscores the ability of the CMF to differentiate412

datasets not only based on direct exposure but also413

through latent associations in linguistic or contex-414

tual patterns, making it a more reliable metric for415

evaluating dataset contributions. 416

These findings validate the superior sensitivity of 417

CMF in identifying relevant data influences, even 418

for datasets with no explicit pre-training overlap. 419

At the same time, they illustrate that both methods 420

converge to lower attribution values when applied 421

to data sets entirely outside of the prior knowledge 422

of the model, confirming the robustness of SCM 423

and CMF in distinguishing between the data sets 424

seen and the novel ones. 425

For BoolQ, Trak identified it as the most influ- 426

ential dataset, which aligns well with our meth- 427

ods. However, our CMF approach provides a 428

more detailed and accurate attribution of dataset 429

contributions, particularly in quantifying the base 430

model’s influence and managing the noise inherent 431

in retrieval-augmented generation (RAG) systems. 432

CMF consistently assigns higher attribution values 433

compared to SCM and Trak, reflecting its robust- 434

ness in capturing the alignment between BoolQ and 435

the model training data. 436

For FakeQ, Trak shows lower attribution scores 437

compared to BoolQ, as expected for an unseen 438

dataset. CMF again outperforms SCM and Trak 439

by effectively taking advantage of the syntactic 440

similarity of FakeQ to BoolQ, capturing its partial 441

alignment with training data. SCM also performs 442

reasonably well, but is less sensitive to subtle con- 443

tributions, and Trak provides scores comparable to 444

SCM, though it lacks the granularity CMF offers. 445

For Olympic2024, being entirely novel and un- 446

related to training data, all methods report signif- 447

icantly lower attribution values. CMF continues 448

to demonstrate superior performance by reflecting 449

even minimal data-set contributions while main- 450

taining a clear distinction between seen and unseen 451

data. SCM and Trak exhibit a smaller gap between 452

Olympic2024 and FakeQ, indicating their limited 453

ability to fully capture the novelty of datasets. 454

Case Study: Evaluation of Unlearning Meth- 455

ods We applied attribution metrics to assess the 456

effectiveness of machine unlearning methods. As 457

shown in Table 7, three unlearning methods: Gradi- 458

ent Ascent (Golatkar et al., 2020; Liu et al., 2024), 459

Fine-tuning with Random Labels (Golatkar et al., 460

2020), and Unlearning with Adversarial Samples 461

(Cha et al., 2024) were evaluated based on their 462

ability to reduce the influence of the Olympic2024 463

dataset on Bloomz and Phi-3 models. 464

The results indicate that Unlearning with Adver- 465

sarial Samples consistently outperforms the other 466
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Figure 1: (left) SCM Attribution Values vs. Learning Rate for Olympic2024 Dataset: Attribution values increase
with fine-tuning. (right) CMF Attribution Values vs. Learning Rate for Olympic2024 Dataset: CMF shows higher
attribution values, reflecting its robustness during fine-tuning.

Table 7: SCM and CMF Attribution Scores for the Olympic2024 Dataset.
Before Finetuning After Finetuning After Unlearning

Unlearning Method LLM SCM CMF SCM CMF SCM CMF
Gradient Ascent Bloomz 0.08 0.16 0.75 0.85 0.25 0.34

Phi-3 0.07 0.10 0.72 0.82 0.28 0.37

Fine-tuning Bloomz 0.08 0.16 0.75 0.85 0.22 0.31
with Random Labels Phi-3 0.07 0.10 0.72 0.82 0.24 0.33

Unlearning with Bloomz 0.08 0.16 0.75 0.85 0.30 0.41
Adversarial Samples Phi-3 0.07 0.10 0.72 0.82 0.33 0.42

methods, achieving the highest reduction in attribu-467

tion values for both SCM and CMF metrics. The468

ability of this method to target specific data points469

for unlearning is reflected in the reduced values470

for πOlympic
1−πBase

. In contrast, Gradient Ascent and Fine-471

tuning with Random Labels achieve moderate re-472

ductions, with Gradient Ascent slightly outperform-473

ing Random Labels in most cases.474

Runtime Comparison The CMF algorithm is475

faster than the SCM algorithm as it requires fewer476

queries with shorter context sizes. Using an AWS477

EC2 G6 instance (g6.16xlarge), the total runtime478

for CMF, involving 7 runs, ranges from 77 to479

94 minutes for all LLMs. In contrast, the SCM480

method, which requires 25 runs, results in a total481

runtime of 352 to 384 minutes. The runtimes of482

both algorithms are dominated by the RAG search483

time. This substantial reduction in run-time demon-484

strates the efficiency of the CMF method, making485

it more suitable for scenarios demanding both ac-486

curacy and computational efficiency.487

For Trak, the runtime is significantly higher due488

to its high memory requirements. Trak requires489

about 20 GB of GPU memory for a model with 1490

million parameters. Scaling this to larger models, 491

Trak’s memory requirements become impractical 492

for large LLMs with modest computing resources. 493

Running Trak on our LLMs would necessitate ap- 494

proximately 600 GB of GPU memory and signifi- 495

cantly more computational time, making CMF and 496

SCM more feasible for our use case. 497

Validation of Attribution Metrics through Fine- 498

Tuning To establish the reliability of the attribu- 499

tion metrics, we performed a fine-tuning experi- 500

ment on the Olympic2024 dataset. Fine-tuning was 501

performed incrementally, with the learning rate 502

increasing progressively. Figures 1a and 1b demon- 503

strate that the attribution values increase monoton- 504

ically with fine-tuning, confirming that the met- 505

rics effectively capture the growing dependence of 506

LLM on the data set. For both SCM and CMF, 507

the Olympic2024 attribution values increase with 508

fine-tuning, but CMF shows higher attribution val- 509

ues due to its ability to handle noise more robustly. 510

These results validate the ability of the proposed 511

metrics to quantify the influence of fine-tuned data 512

on LLMs. 513

The incremental increase in attribution values 514
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also reflects a nonlinear growth pattern, as the ef-515

fects of fine-tuning diminish at higher learning516

rates, resulting in a plateau. This plateau effect517

is more prominent in SCM as it lacks the noise han-518

dling capabilities of CMF. This observation demon-519

strates the practical applicability of these metrics520

in scenarios where data influence evolves over time521

as a result of fine-tuning.522

Deep Dive into RAG Noise Effect We computed523

the mean similarities (sS) and residuals (rk,S =524

sS∪{Dk}−sS) for the BoolQ datasets in all LLM, as525

shown in Table 8. These metrics provide a nuanced526

understanding of how data sets influence model527

outputs.528

For the BoolQ dataset, the high negative residual529

for Bloomz (-0.32) indicates that adding the BoolQ530

context significantly influences the model output.531

This substantial change highlights the alignment532

of the data set with the pre-existing knowledge533

of the model, as seen in the high similarity score534

(sS = 0.86). In contrast, GPT-4’s low residual (-535

0.03) and high similarity score (sS = 0.76) suggest536

that it has been preexposed to similar data during537

training, resulting in minimal performance changes538

when BoolQ context is added. Mistral 7B, with539

a positive residual (0.06), demonstrates a strong540

reliance on the added BoolQ context, suggesting541

that it benefits greatly from this additional infor-542

mation. Similarly, Phi-3’s small positive residual543

(0.03) indicates partial exposure to similar data but544

with room for improvement when additional con-545

text is provided. We present the results on FakeQ546

and Olympics2024 data in Appendix E.547

Table 8: Mean similarities sS and residuals rk,S for
different LLMs (with standard deviations).

LLM sS sS∪{Dk} rk,S

Bloomz 0.86 (0.03) 0.54 (0.02) -0.32 (0.02)
GPT-4 0.76 (0.02) 0.72 (0.02) -0.03 (0.02)
Mistral7B 0.73 (0.03) 0.69 (0.03) 0.06 (0.02)
Phi-3 0.60 (0.03) 0.63 (0.02) 0.03 (0.02)

5 Conclusion and Discussion548

Our results show that both of our proposed algo-549

rithms successfully attribute the output of LLMs550

to the BoolQ dataset (as a proxy for related knowl-551

edge). Comparison of LLMs GPT-4 showed mini-552

mal change in similarities when the BoolQ context553

was added, suggesting prior exposure to similar554

data, while Bloomz exhibited a high residual, indi-555

cating substantial influence from BoolQ. The CMF556

algorithm provides further insight by quantifying557

the contributions of the base LLM. Comparing our 558

two methods, we conclude that CMF is computa- 559

tionally less expensive and more robust to the RAG 560

noise. 561

6 Risks and Responsible Use 562

Our attribution methods rely on behavioral proxies 563

and prompt-based perturbations, which, while scal- 564

able, introduce risks of misinterpretation. In par- 565

ticular, attribution scores may reflect prompt sensi- 566

tivity or stylistic alignment rather than true data in- 567

fluence—especially when prompts are imperfectly 568

calibrated or retrieval introduces confounds. 569

There is also a risk of overfitting attribution to 570

retrieval artifacts: if retrieval systems consistently 571

surface stylistically similar but semantically irrel- 572

evant passages, attribution may overestimate their 573

influence. Mitigating this requires careful design of 574

the retrieval pipeline and controlling for confound- 575

ing dataset priors. 576

Finally, as attribution becomes a tool for model 577

auditing, there is a risk of its use being perceived 578

as definitive. Attribution is fundamentally relative 579

and sensitive to framing; results should be treated 580

as diagnostic signals—not absolute ground truth. 581

7 Limitations 582

Our work still faces several limitations. First, our 583

experiments were conducted on a few thousand 584

queries, which allowed for controlled evaluation 585

but may not fully capture the behavior of attribu- 586

tion metrics at scale. Scaling to significantly larger 587

datasets—on the order of millions of queries—will 588

introduce computational challenges, particularly 589

in maintaining efficiency for CMF and SCM. We 590

anticipate that while CMF’s structured decomposi- 591

tion will help mitigate noise at scale, the increased 592

data volume may necessitate optimizations such 593

as batched evaluations or adaptive sampling tech- 594

niques. 595

Second, our evaluation was restricted to binary 596

classification tasks, allowing for precise measure- 597

ment of correctness and attribution effects. How- 598

ever, many real-world applications involve open- 599

ended text generation, summarization, or multi- 600

class classification. Extending our methods to these 601

domains presents challenges in defining attribution 602

signals, as generated outputs are more variable and 603

harder to quantify. A key area of future work will 604

be designing evaluation metrics that align dataset 605

influence with generative model output, possibly 606

8



leveraging perplexity shifts or token-level influence607

estimation.608

Third, our RAG setup uses a 512-token chunk609

size, chosen based on the average passage length610

in BoolQ ( 108 tokens) to ensure coherent retrieval611

without excessive truncation or padding. While this612

is effective for our study, modern LLMs support613

much larger context sizes (e.g., 2500 to 300K to-614

kens), which could improve retrieval for datasets615

with longer passages. Future work will explore how616

increasing chunk sizes impacts attribution stability,617

particularly in tasks requiring broader contextual618

understanding and long-form reasoning.619
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A Prompts744

General Question Prompt: “Read the context pro-745

vided and answer the following question: {ques-746

tion}”747

Contextual Understanding Prompt: “Based748

on the information in the context, what can you con-749

clude about the following question? {question}”750

Summarization Prompt: “After considering751

the context below, summarize your answer to this752

question: {question}”753

Opinion-Based Prompt: “Given the details in754

the context, what is your opinion on the following755

question: {question}”756

Detail Extraction Prompt: “Extract relevant in-757

formation from the context to answer this question:758

{question}”759

Fact-Checking Prompt: “Using the context pro-760

vided, verify the accuracy of the following state-761

ment: {question}”762

Table 9 shows the average accuracy calculated 763

by comparing the predictions with the ground truth 764

from BoolQ. 765

B Olympic 2024 dataset 766

The Olympic 2024 dataset was constructed by 767

sourcing textual snippets from publicly available 768

Kaggle datasets (Kaggle, 2024) related to the Paris 769

2024 Olympics. Since no structured QA dataset 770

existed for this event, question-answer pairs were 771

manually generated for each context snippet to cre- 772

ate a well-defined evaluation framework. For each 773

retrieved context, three binary (Yes/No) question- 774

answer pairs were created: one for training, one 775

for validation, and one for testing. The training set 776

was used to fine-tune the models, allowing them to 777

incorporate Olympic-related information. The vali- 778

dation set was used to evaluate attribution metrics, 779

ensuring that the methods assessed data influence 780

without direct exposure during training. The test 781

set was reserved for evaluating generalization af- 782

ter fine-tuning and unlearning experiments. This 783

design follows the structure of BoolQ, making it 784

easier to analyze how fine-tuning impacts attribu- 785

tion and how well unlearning methods reduce the 786

model’s reliance on the dataset. 787

C Effectiveness of RAG 788

To evaluate the effectiveness of context provision 789

using RAG, we designed an experiment to mea- 790

sure the accuracy of various LLMs when answer- 791

ing questions from the BoolQ dataset. The exper- 792

iment compared the models’ performance across 793

different scenarios: without any context, with only 794

the BoolQ context, with contexts from five other 795

datasets, and with all datasets combined. The re- 796

sults are summarized in Table 9. 797

Table 9: Accuracy of LLMs with Different Contexts.

Context Bloomz GPT-4 Mistral 7B Phi-3
No Context 0.43 0.73 0.68 0.70
BoolQ as RAG 0.74 0.87 0.85 0.82
Five Datasets Only 0.35 0.64 0.60 0.45
All Data + BoolQ 0.73 0.84 0.82 0.83

The baseline setting (No Context) reveals inher- 798

ent differences in the LLMs’ capabilities. GPT-4 799

has the highest baseline accuracy at 0.73, followed 800

by Phi-3 at 0.70 and Mistral 7B at 0.68, indicating 801

robust pretraining for these models. Bloomz shows 802

lower accuracy at 0.43, highlighting its dependency 803

on contextual data. 804
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When the BoolQ context is provided using RAG,805

all models show significant accuracy improve-806

ments, with GPT-4 reaching 0.87, Mistral 7B at807

0.85, and Phi-3 at 0.82. Bloomz also improves to808

0.74, though it remains lower than the others. Pro-809

viding context from five datasets (excluding BoolQ)810

leads to accuracy drops for all models, with Bloomz811

at 0.35, GPT-4 at 0.64, Mistral 7B at 0.60, and Phi-812

3 at 0.45. This indicates that less relevant data are813

less effective in understanding BoolQ queries.814

Combining all data sets with the BoolQ context815

results in slight decreases in accuracy for GPT-4816

(0.84) and Mistral 7B (0.82), suggesting that addi-817

tional data sets introduce noise. Bloomz and Phi-3818

show minimal changes, indicating that additional819

data do not significantly impact their performance820

once the BoolQ context is included. These results821

emphasize the importance of relevant contextual822

information in improving LLM performance, with823

GPT-4 consistently outperforming other models824

due to its extensive training.825

D Additional Detailed Results826

Tables 10 and 11 display the attribution results for827

the FakeQ dataset, which was constructed by al-828

tering the queries and contexts in BoolQ to ensure829

that it is unseen by the LLMs. SCM Attribution830

(ϕFakeQ): The attribution values for FakeQ are no-831

ticeably lower than those for BoolQ. For example,832

ϕFakeQ ranges from 0.28 to 0.36 in LLM, compared833

to 0.48 to 0.59 for ϕBoolQ. This reflects the lack834

of prior exposure to FakeQ in the training data,835

leading to a reduced alignment with the preexisting836

knowledge of the model.837

CMF Attribution (πFakeQ): CMF assigns higher838

scores than SCM, with πFakeQ
1−πBase

ranging from 0.48 to839

0.53 in LLM. This increase indicates the sensitivity840

of the CMF to the structural similarities between841

FakeQ and BoolQ. Although FakeQ is unseen, its842

construction retains the semantic patterns of BoolQ,843

allowing the models to leverage these structural844

similarities.845

Tables 12 and 13 present the attribution results846

for the Olympic2024 dataset, which is entirely un-847

seen and constructed to simulate real-world scenar-848

ios. The findings here are markedly different:849

SCM Attribution (ϕOlympic2024): The850

Olympic2024 attribution values are signifi-851

cantly lower than both BoolQ and FakeQ. For852

example, ϕOlympic2024 ranges from 0.07 to 0.11 in853

LLMs. This is expected since Olympic2024 is 854

entirely unrelated to the models’ pre-training data, 855

and its context does not align with the questions 856

posed. 857

CMF Attribution (πOlympic2024): CMF similarly 858

assigns lower attribution scores to Olympic2024 859

compared to BoolQ and FakeQ, with πOlympic2024
1−πBase

860

ranging from 0.15 to 0.20. However, the CMF 861

values remain slightly higher than SCM, demon- 862

strating its ability to account for small signal con- 863

tributions even in unseen datasets. The behavior 864

of the Olympic2024 attribution metrics highlights 865

their reliability in distinguishing between datasets 866

that are seen (BoolQ), partially similar (FakeQ), 867

and entirely novel (Olympic2024). The low residu- 868

als for Olympic2024, particularly for models such 869

as GPT-4, suggest minimal influence from prior 870

training data, further validating the robustness of 871

the attribution methods. 872

Metric Bloomz GPT-4 Mistral 7B Phi-3
ϕFakeQ 0.32 0.36 0.33 0.28
ϕChemistry 0.08 0.06 0.07 0.08
ϕNatural Sci 0.09 0.07 0.08 0.09
ϕHistory 0.08 0.07 0.08 0.08
ϕBiology 0.07 0.05 0.06 0.07
ϕLaw 0.06 0.05 0.06 0.06

Table 10: Shapley Values (ϕk) using SCM Algorithm
on FakeQ Dataset.

Table 11: π and πFakeQ
1−πBase

values using the CMF algo-
rithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
πBase 0.06 0.09 0.07 0.06
πFakeQ 0.45 0.48 0.47 0.42
πChemistry 0.10 0.07 0.08 0.09
πNatural Sci 0.08 0.07 0.07 0.08
πHistory 0.09 0.08 0.08 0.08
πBiology 0.07 0.06 0.06 0.06
πLaw 0.06 0.06 0.06 0.06
πFakeQ
1−πBase

0.49 0.53 0.51 0.48

Metric Bloomz GPT-4 Mistral 7B Phi-3
ϕOlympic2024 0.08 0.11 0.09 0.07
ϕChemistry 0.04 0.03 0.04 0.05
ϕNatural Sci 0.05 0.04 0.04 0.05
ϕHistory 0.05 0.04 0.05 0.05
ϕBiology 0.04 0.03 0.03 0.04
ϕLaw 0.03 0.02 0.03 0.03

Table 12: Shapley Values (ϕk) using SCM Algorithm
on Olympic2024 Dataset.
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Table 13: π and πOlympic2024

1−πBase
values using the CMF algo-

rithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
πBase 0.08 0.11 0.09 0.08
πOlympic2024 0.15 0.18 0.16 0.14
πChemistry 0.07 0.05 0.06 0.06
πNatural Sci 0.06 0.05 0.06 0.06
πHistory 0.07 0.06 0.06 0.06
πBiology 0.06 0.05 0.05 0.05
πLaw 0.05 0.05 0.05 0.05
πOlympic2024
1−πBase

0.16 0.20 0.18 0.15

E Extended Deep Dive into RAG Noise873

Effect874

For the FakeQ dataset, the results reveal its con-875

trolled construction and structural similarity to876

BoolQ. Bloomz exhibits a moderately negative877

residual (-0.16) and a slightly reduced similarity878

score (sS = 0.78), indicating that although FakeQ879

is not identical to BoolQ, its design allows the880

model to relate to it effectively. GPT-4 maintains a881

low residual (-0.03), reinforcing its robustness in882

handling data sets that resemble those encountered883

during training. Mistral 7B and Phi-3 show small884

positive residuals (0.03 and 0.04, respectively), sug-885

gesting that these models benefit from the added886

FakeQ context while exhibiting a less direct align-887

ment compared to BoolQ.888

For the Olympic2024 dataset, the results un-889

derscore its novelty. Bloomz has a less negative890

residual (-0.13) and a reduced similarity score891

(sS = 0.72), highlighting the limited alignment892

of this entirely novel data set with the model’s pre-893

existing knowledge. GPT-4 continues to display a894

low residual (-0.03), showing its robustness even895

when handling unseen data. Mistral 7B and Phi-3896

exhibit small positive residuals (0.03 and 0.05, re-897

spectively), indicating their reliance on added con-898

text to improve performance. The lower similarity899

scores across all models for Olympic2024 reflect900

the unique nature of the data set, distinguishing it901

from the other data sets.902

Table 14: Mean similarities sS and residuals rk,S for
FakeQ across different LLMs (with standard devia-
tions).

LLM sS sS∪{Dk} rk,S

Bloomz 0.78 (0.04) 0.62 (0.03) -0.16 (0.03)
GPT-4 0.69 (0.03) 0.66 (0.02) -0.03 (0.02)
Mistral 7B 0.65 (0.04) 0.68 (0.03) 0.03 (0.03)
Phi-3 0.58 (0.04) 0.62 (0.03) 0.04 (0.03)

Table 15: Mean similarities sS and residuals rk,S for
Olympic2024 across different LLMs (with standard de-
viations).

LLM sS sS∪{Dk} rk,S

Bloomz 0.72 (0.05) 0.59 (0.04) -0.13 (0.04)
GPT-4 0.64 (0.03) 0.61 (0.03) -0.03 (0.03)
Mistral 7B 0.60 (0.04) 0.63 (0.03) 0.03 (0.03)
Phi-3 0.55 (0.05) 0.60 (0.04) 0.05 (0.04)
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