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Abstract
GRAVITY is an open source, scalable, memory efficient modeling language for
solving mathematical models in Optimization and Machine Learning. GRAVITY
exploits structure to reduce function evaluation time including Jacobian and Hes-
sian computation. GRAVITY is implemented in C++ with a flexible interface
allowing the user to specify the numerical accuracy of variables and parameters.
It is also designed to offer efficient iterative model solving, convexity detection,
multithreading of subproblems, and lazy constraint generation. When compared to
state-of-the-art modeling languages such as JUMP, GRAVITY is 5 times faster in
terms of function evaluation and up to 60 times more memory efficient. GRAVITY
enables researchers and practitioners to access state-of-the-art optimization solvers
with a user-friendly interface for writing general mixed-integer nonlinear models.

1 Introduction
While modeling languages play a critical role across all scientific areas, they constitute a key stone in
Computer Science and Applied Mathematics. Modeling tools are ubiquitous to fields like Constraint
Programming (CP), Artificial Intelligence (AI) and Operations Research (OR). A non-exhaustive list
of existing modeling languages include AMPL (1), JUMP (2), GAMS (3), AIMMS (4), CASADI (5),
PYOMO (6; 7), and MINIZINC (8). With increasingly large data inputs and the desire to model complex
nonlinear functions, the efficiency of modeling tools is becoming critical for the implementation of
scalable solution algorithms. This is especially true for Machine Learning (ML) applications dealing
with large data sets and using nonlinear learning functions. Note that tools like TENSORFLOW(9) and
THEANO(10) are highly specialized modeling languages for deep learning. Modern mathematical
modeling languages need to offer a new set of features. These include an efficient support for
user-defined constraints, automatic convexity detection, hybrid numerical precision for variables and
parameters, multi-threaded subproblem solving, lazy constraint generation, automatic reformulation
and handling large data sets, just to name a few. GRAVITY is designed with these requirements in
mind.

2 Design Choices
GRAVITY’s efficiency in speed and memory can mainly be attributed to its structure exploiting design
choices. Structure is what differentiate various classes of mathematical models, e.g., Linear Programs
(LP), Quadratic Programs (QP) or general Nonlinear Programs (NLP). Problems solved by scientists
and practitioners will inherently have structure, and exploiting it is key to performance boosting.

Below, we highlight some of the main design choices proper to GRAVITY:
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Template Constraints. Structure can be exploited by considering the fact that most mathematical
formulations have a small set of “template" constraints, i.e., an abstract/symbolic representation of
the constraint where only variables and parameters’ indices change.

Flexible Numerical Precision. Being able to select different numerical precision for different
subset of variables and parameters is another critical design choice made in GRAVITY. An example
where we mix double and short int parameters can be found here.

Graph Aware. Graphs and networks are also ubiquitous in computer science and especially
in optimization and machine learning. GRAVITY has an underlying graph implementation and
indexing can be done on nodes and edges of the graph. Some useful graph algorithms such as tree
decomposition and cycle basis computation are also implemented in GRAVITY.

Plug And Play Depending on the nature of your mathematical formulation, GRAVITY will al-
low you to call the corresponding solver. GRAVITY currently links to Mixed-Integer Linear and
Quadratic Optimization solvers CPLEX (11) and GUROBI (12), Nonlinear Optimization solver
IPOPT(13), Convex Mixed-Integer Nonlinear solver BONMIN(14) and Semidefinite Programming
solver MOSEK (15).

Symbolic Differentiation Automatic Differentiation (AD) has numerous benefits, including the
ability to compute derivative for non-mathematical structures, e.g., computer code. There is an
extensive literature on the subject, we only provide a few references herein (20; 21; 22; 23; 24).
The common belief is that AD outperforms Symbolic Differentiation (SD) (see (23; 25)) . Let us
emphasize that AD is currently the norm in all state-of-the-art mathematical modeling tools including
ML frameworks such as THEANO (10) and TENSORFLOW (9). In this work, we show that a careful
SD implementation can dominate AD by exploiting the structure of the underlying mathematical
formulations. Avoiding redundant storage of symbolic nonlinear expressions helps our SD outperform
state-of-the-art AD implementations (e.g., (2), which uses graph coloring methods for exploiting
sparsity of the Hessian matrix).

Model Readability. Readability of the models was also a main concern during the design process
of GRAVITY. This can be seen in the example presented in Figure 1.

Efficiency and Multithreading. GRAVITY is implemented in C++, allowing for a flexible memory
management and various code optimization under the hood. The user can also simultaneously build
multiple mathematical models and call GRAVITY’s run_parallel() function.

(a) Mathematical formulation (b) Implementation

Figure 1: Implementation of the Stable Set problem in GRAVITY

3 Numerical Experiments
Numerical experiments were conducted on HPE ProLiant XL170r servers featuring two Intel2.10
GHz 16 Core CPUs and 128 GB of memory. IPOPT v3.12 (13) compiled with HSL (26) was used
for solving Nonlinear Programs. In the results tables, “mem." indicates that available memory was
exceeded for the corresponding instance.

3.1 AC Optimal Power Flow
The Alternating Current Optimal Power Flow (ACOPF) Problem is a fundamental building block in
Power Systems Optimization. The problem admits two nonconvex NLP formulations, one known
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as the polar formulation (featuring trigonometric functions) and one known as the rectangular
formulation (quadratically-constrained). A comprehensive description of the two formulations can
be found in (27). Figure 2 is a performance profile illustrating percentage of instances solved as a
function of time. The figure compares GRAVITY, JUMP and AMPL’s NL interface (used by AMPL
and PYOMO) on all standard instances found in the pglib benchmark library (28). The recorded
time corresponds to the wall-clock time spent inside IPOPT. Figure 2 indicates that GRAVITY
outperforms both JUMP and AMPL’s NL interface on all instances, with speed improvements up to
300%. Note that the largest instance has 117, 370 variables, 187, 371 constraints, 666, 023 non zeros
in the Jacobian, and 299, 384 non zeros in the Hessian matrix.

Figure 2: Performance profile on Polar and Rectangular ACOPF (216 instances).

3.2 Learning of Ising Models
Learning the structure and the parameters of an Ising model is a typical Machine Learning problem
where data input quickly becomes problematic. Matrices with 92 million non-zero entries appear in
the biggest instances. A comprehensive formulation of the problem can be found in (30) and (31).
Figure 3 shows that both JUMP and AMPL crash after a certain threshold due to memory issues.
GRAVITY is able to scale up on all tested instances. Since the problem has a natural parallelization
procedure, a parallel implementation in GRAVITY was also tested on this problem. Figure 3 also
compares GRAVITY running with 12 threads, showing gains up to one order of magnitude.

Figure 3: Performance profile on Inverse Ising problems (12 instances).

4 Links
GRAVITY has recently joined the COIN-OR https://www.coin-or.org initiative and can be
downloaded here https://github.com/coin-or/Gravity.
Documentation and examples can be found at https://www.allinsights.io/gravity.
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