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Abstract

In many real-world reinforcement learning appli-
cations, access to the environment is limited to
a fixed dataset, instead of direct (online) inter-
action with the environment. When using this
data for either evaluation or training of a new
policy, accurate estimates of discounted station-
ary distribution ratios — correction terms which
quantify the likelihood that the new policy will
experience a certain state-action pair normalized
by the probability with which the state-action pair
appears in the dataset — can improve accuracy
and performance. In this work, we propose an
algorithm, DualDICE, for estimating these quan-
tities. In contrast to previous approaches, our al-
gorithm is agnostic to knowledge of the behavior
policy (or policies) used to generate the dataset.
Furthermore, it eschews any direct use of impor-
tance weights, thus avoiding potential optimiza-
tion instabilities endemic of previous methods.
In addition to providing theoretical guarantees,
we present an empirical study of our algorithm
applied to off-policy policy evaluation and find
that our algorithm significantly improves accuracy
compared to existing techniques.

1. Introduction

Reinforcement learning (RL) has recently demonstrated
a number of successes in various domains, such as
games (Mnih et al., 2013), robotics (Andrychowicz et al.,
2018), and conversational systems (Gao et al., 2019; Li et al.,
2016). These successes have often hinged on the use of sim-
ulators to provide large amounts of experience necessary
for RL algorithms. While this is reasonable in game envi-
ronments, where the game is often a simulator itself, and
some simple real-world tasks can be simulated to an accu-
rate enough degree, in general one does not have such direct
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or easy access to the environment. Furthermore, in many
real-world domains such as medicine (Murphy et al., 2001),
recommendation (Li et al., 2011), and education (Mandel
et al., 2014), the deployment of a new policy, even just for
the sake of performance evaluation, may be expensive and
risky. In these applications, access to the environment is usu-
ally in the form of off-policy data (Sutton & Barto), logged
experience collected by potentially multiple and possibly
unknown behavior policies.

State-of-the-art methods which consider this more realistic
setting — either for policy evaluation or policy improve-
ment — often rely on estimating (discounted) stationary
distribution ratios or corrections. For each state and action
in the environment, these quantities measure the likelihood
that one’s current target policy will experience the state-
action pair normalized by the probability with which the
state-action pair appears in the off-policy data. Proper esti-
mation of these ratios can improve the accuracy of policy
evaluation (Liu et al., 2018) and the stability of policy learn-
ing (Gelada & Bellemare, 2018; Hallak & Mannor, 2017;
Liu et al., 2019; Sutton et al., 2016). In general, these ratios
are difficult to compute, let alone estimate, as they rely not
only on the probability that the target policy will take the
desired action at the relevant state, but also on the probabil-
ity that the target policy’s interactions with the environment
dynamics will lead it to the relevant state.

Several methods to estimate these ratios have been proposed
recently (Gelada & Bellemare, 2018; Hallak & Mannor,
2017; Liu et al., 2018), all based on the steady-state property
of stationary distributions of Markov processes (Hastings,
1970). This property may be expressed locally with respect
to state-action-next-state tuples, and is therefore amenable
to stochastic optimization algorithms. However, these meth-
ods possess several issues when applied in practice: First,
these methods require knowledge of the probability distribu-
tion used for each sampled action appearing in the off-policy
data. In practice, these probabilities are usually not known
and difficult to estimate, especially in the case of multiple,
non-Markovian behavior policies. Second, the loss func-
tions of these algorithms involve per-step importance ratios
(the ratio of action sample probability with respect to the
target policy versus the behavior policy). Depending on how
far the behavior policy is from the target policy, these quan-
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tities may have large variance, and thus have a detrimental
effect on stochastic optimization algorithms.

In this work, we propose Dual stationary DlIstribution Cor-
rection Estimation (DualDICE), a new method for estimat-
ing discounted stationary distribution ratios. It is agnostic
to the number or type of behavior policies used for collect-
ing the off-policy data. Moreover, the objective function
of our algorithm does not involve any per-step importance
ratios, and so our solution is less likely to be affected by
their high variance. We provide theoretical guarantees on
the convergence of our algorithm and evaluate it on a num-
ber of off-policy policy evaluation benchmarks. We find
that DualDICE can consistently, and often significantly, im-
prove performance compared to previous algorithms for
estimating stationary distribution ratios.

2. Background

We consider a Markov Decision Process (MDP) setting (Put-
erman, 1994), in which the environment is specified by a
tuple M = (S, A, R, T, ), consisting of a state space, an
action space, a reward function, a transition probability func-
tion, and an initial state distribution. A policy 7 interacts
with the environment iteratively, starting with an initial state
sg ~ (8. Atstept = 0,1, - - -, the policy produces a distribu-
tion 7(+|s;) over the actions A, from which an action a; is
sampled and applied to the environment. The environment
stochastically produces a scalar reward r; ~ R(s, a;) and
a next state s;11 ~ T'(s¢,a;). In this work, we consider
infinite-horizon environments and the y-discounted reward
criterion for v € [0, 1). It is clear that any finite-horizon
environment may be interpreted as infinite-horizon by con-
sidering an augmented state space with an extra terminal
state which continually loops onto itself with zero reward.

2.1. Off-Policy Policy Evaluation

Given a rarget policy 7, we are interested in estimating its
value, defined as the normalized expected per-step reward
obtained by following the policy:

p(m) = (1 =7) - E[ Y720 're | so ~ B, V4,

ay ~ ’/T(St),Tt ~ .Z%(St7 (Lt), St41 ™~ T(St, at)] .

(D

The off-policy policy evaluation (OPE) problem studied
here is to estimate p(7) using a fixed set D of transitions
(s,a,r,s’) sampled in a certain way. This is a very general
scenario: D can be collected by a single behavior policy
(as in most previous work), multiple behavior policies, or
an oracle sampler, among others. In the special case where
D contains entire trajectories collected by a known behav-
ior policy p, one may use importance sampling (IS) to
estimate p(7). Specifically, given a finite-length trajectory
7 = (80, a0, 0, - - - , Sgr) collected by p, the IS estimate of

p based on T is estimated by (Precup, 2000):

H-1
(lt|8t
1—7 e
- (I56) (5 )
Although many improvements exist (e.g., Farajtabar et al.,
2018; Jiang & Li, 2016; Precup, 2000; Thomas & Brunskill,
2016), importance-weighting the entire trajectory can suffer

from exponentially high variance, which is known as “the
curse of horizon” (Li et al., 2015; Liu et al., 2018).

To avoid exponential dependence on trajectory length, one
may weight the states by their long-term occupancy measure.
First, observe that the policy value may be re-expressed as,

p(7r) = E(s,a)wd",rwR(s,a) [7"] ,

where

d™(s,a) == (1—=7) YoV Pr(s; =s,a,=a

2
| so ~ B,Vt,ar ~ (s¢), 5041 ~ T(St,at))7

is the normalized discounted stationary distribution over
state-actions with respect to m. One may define the dis-
counted stationary distribution over states analogously, and
we slightly abuse notation by denoting it as d"(s); note
that d™(s,a) = d™(s)w(a|s). If D consists of trajectories
collected by a behavior policy i, then the policy value may
be estimated as,

p(m)

where wy,,(s,a) = d"(s,a)/d"(s,a) is the discounted
stationary distribution correction. The key challenge is in
estimating these correction terms using data drawn from d*.

= E(s,a)wdl‘me(s,a) [wﬂ/u(sa a) : T] y

2.2. Learning Stationary Distribution Corrections

We provide a brief summary of previous methods for esti-
mating the stationary distribution corrections. The ones that
are most relevant to our work are a suite of recent techniques
(Gelada & Bellemare, 2018; Hallak & Mannor, 2017; Liu
et al., 2018), which are all essentially based on the following
steady-state property of stationary Markov processes:

d™(s") = (1 = 7)B(s)+
v ZSES ZaeA dﬂ(S)TI'(CI,|S)T(S/|S7 a’)a VS/ S S7

where we have simplified the identity by restricting to dis-
crete state and action spaces. This identity simply reflects
the conservation of flow of the stationary distribution: At
each timestep, the flow out of s’ (the LHS) must equal the
flow into s’ (the RHS). Given a behavior policy p, equa-
tion 3 can be equivalently rewritten in terms of the stationary
distribution corrections, i.e., for any given s’ € S,

3)

E (s, an,s0s1)mdr | TD(St, ey St41 | wryp) | se41 =51 =0,

4)
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where the following quantity can be viewed as a remporal
difference associated with w /,:

m(als)

TD(s,a,s | wyy,) = —
(5,8, [ W) (als)

W/ (8") 4+ YWy (s) -

provided that p(als) > 0 whenever m(als) > 0. Accord-
ingly, previous works optimize loss functions which mini-
mize this TD error using samples from d*. We emphasize
that although w,,, is associated with a temporal differ-
ence, it does not satisfy a Bellman recurrence in the usual
sense (Bellman, 2003). Indeed, note that equation 3 is writ-
ten “backwards”: The occupancy measure of a state s’ is
written as a (discounted) function of previous states, as op-
posed to vice-versa. This will serve as a key differentiator
between our algorithm and these previous methods.

2.3. Off-Policy Estimation with Multiple Unknown
Behavior Policies

While the previous algorithms are promising, they have
several limitations when applied in practice:

e The off-policy experience distribution d* is with respect
to a single, Markovian behavior policy p, and this policy
must be known during optimization. In practice, off-
policy data often comes from multiple, unknown behavior
policies.

e Computing the TD error in equation 4 requires the use
of per-step importance ratios 7(a|s;)/u(as|s¢) at every
state-action sample (s, a;). Depending on how far the
behavior policy is from the target policy, these quantities
may have high variance, which can have a detrimental
effect on the convergence of any stochastic optimization
algorithm that is used to estimate w .

The method we derive below will be free of the aforemen-
tioned issues, avoiding unnecessary requirements on the
form of the off-policy data collection as well as explicit uses
of importance ratios. Rather, we consider the general setting
where D consists of transitions sampled in an unknown fash-
ion. Since D contains rewards and next states, we will often
slightly abuse notation and write not only (s, a) ~ d? but
also (s,a,r) ~ dP and (s,a,s’) ~ dP, where the notation
dP emphasizes that, unlike previously, D is not the result of
a single, known behavior policy. The target policy’s value
can be equivalently written as,

p(’]‘(‘) = E(s,a,r)NdD [w'rr/D(Sv a) ' 7"] ) (5)

where the correction terms are given by wy/p(s,a) =
d™(s,a)/dP(s,a), and our algorithm will focus on esti-
mating these correction terms. Rather than relying on the
assumption that D is the result of a single, known behavior
policy, we instead make the following regularity assump-
tion:

Assumption 1 (Reference distribution property). For any
(s,a), d"(s,a) > 0 implies dP(s,a) > 0. Furthermore,
the correction terms are bounded by some finite constant C':
lwr/pll < C-

3. DualDICE

We now develop our algorithm, DualDICE, for esti-
mating the discounted stationary distribution corrections
wy/p(s,a) = d™(s,a)/dP(s,a). In the OPE setting, one
does not have explicit knowledge of the distribution d”,
but rather only access to samples D = {(s,a,r,s')} ~ dP.
Similar to the TD methods described above, we also assume
access to samples from the initial state distribution 3. We
begin by introducing a key result, which we will later derive
and use as the crux for our algorithm.

3.1. The Key Idea
Consider the following optimization problem of a (bounded)
functionv : S x A —» R:

V:Sril%n—)R J(V)’ (6)

with respect to the objective function

J(v) ::%E(smwp [(V — B™v) (s,a)Q]

—(1-7) Eso~p,a0~m(s0) [v(s0,a0)] -

In this formulation we use 57 to denote the expected Bell-
man operator with respect to policy 7 and zero reward:
B™v(s,a) = YEg1(s,a),a~n(s) V(5 a")]. The first term
in equation 6 is the expected squared Bellman error with
zero reward. This term alone would lead to a trivial solu-
tion v* = 0, which can be avoided by the second term that
encourages v* > (. Together, these two terms result in an
optimal v* that places some non-zero amount of Bellman
residual at state-action pairs sampled from d”.

Perhaps surprisingly, as we will show, the Bellman residuals
of v* are exactly the desired distribution corrections:

(v* = B™") (s,a) = wrp(s,a). ©)

This key result provides the foundation for our algorithm,
since it provides us with a simple objective (relying only on
samples from d”, 3, ) which we may optimize in order
to obtain estimates of the distribution corrections. In the
text below, we will show how we arrive at this result. We
provide one additional step which allows us to efficiently
learn a parameterized v with respect to equation 6. We then
generalize our results to a family of similar algorithms and
lastly present theoretical guarantees.

3.2. Derivation

A Technical Observation We begin our derivation of
the algorithm for estimating w,,p by presenting the fol-
lowing simple technical observation: For arbitrary scalars
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m € Rso,n € R>g, the optimizer of the convex problem
1,2 n

min, J(z) := gma*® — na is unique and given by z* = .
Using this observation, and letting C be some bounded sub-
set of R which contains [0, C], one immediately sees that
the optimizer of the following problem,

min

z:SXA—C Jl (.13), (8)

whose objective function is defined as

1
Ji(z) = iE(S’G),\,dD [2(s,0)*] = Es,0)~ar [2(s,a)],

is given by 2*(s,a) = wr/p(s,a) forany (s,a) € S x A.
This result provides us with an objective that shares the
same basic form as equation 6. The main distinction is that
the second term relies on an expectation over d™, which we
do not have access to.

Change of Variables In order to transform the second
expectation in equation 8 to be over the initial state distribu-
tion 3, we perform the following change of variables: Let
v: S x A — R be an arbitrary state-action value function
that satisfies,

v(s,a) :==x(s,a) + VEg1(s,a).ar~n(sh V(s a')],

V(s,a) € S x A. ®

Since x(s, a) € C is bounded and y < 1, the variable v (s, a)
is well-defined and bounded. By applying this change of
variables, the objective function in § can be re-written in
terms of v/, and this yields our previously presented objective
from equation 6. Indeed, by defining

B¢(s) :==Pr (s =8¢ | 80~ B,ar ~ m(sk),
Sp+1 ~ T(sg,ar), for0 <k < t),
to be the state visitation probability at step ¢ when following

m, immediately the initial condition is equal to 5y = £.
Furthermore, the following chain of equalities holds:

IE(s,a)Nd7r [1}(8, a)]
= ]E(s,a)wd" [V(Sa a) - FY]ES'NT(s,a),a’Nﬂ'(s’)[V(5/7 al)]]

= (1 - ’)/) Z VtEswﬁt,aNﬂ(s) [V(’S, a)
t=0
- ,Y]ES/NT(S,G),O./NW(S,) [V(S/7 al>]]

= (1 - '7) Z’YtESNBt,a~7T(S) [V(S’ a)}
t=0

_(1 - ’Y) Z PytJrlESNﬂtJrhan(s) [V(Sa Cl)]
t=0

= (1 =7Espann(s) [V(s,a)] -

This implies that the Bellman residuals of the optimum of
this objective give the desired off-policy corrections:

(v = B"v*)(s,a) = 2"(s,a) = wq/p(s,a). (10)
Equation 6 provides a promising approach for estimating the
stationary distribution corrections, since the first expectation
is over state-action pairs sampled from d”, while the second
expectation is over 3 and actions sampled from 7, both of
which we have access to. Therefore, in principle we may
solve this problem with respect to a parameterized value
function v, and then use the optimized v* to deduce the
corrections. In practice, however, the objective in its current
form presents two difficulties:

e The quantity (v — B™v)(s,a)? involves a conditional ex-
pectation inside a square. In general, when environment
dynamics are stochastic and the action space may be large
or continuous, this quantity may not be readily optimized
using standard stochastic techniques. (For example, when
the environment is stochastic, its Monte-Carlo sample gra-
dient is generally biased.)

e Even if one has computed the optimal value v*, the cor-
rections (v* — B™v*)(s, a), due to the same argument as
above, may not be easily computed, especially when the
environment is stochastic or the action space continuous.

Exploiting Fenchel Duality We solve both difficulties
listed above in one step by exploiting Fenchel duality (Rock-
afellar, 2015): Any convex function f(x) may be written
as f(x) = maxcx - ¢ — f*(¢), where f* is the Fenchel
conjugate of f. In the case of f(x) = %a:Q, the Fenchel
conjugate is given by f*(¢) = %CQ. Thus, we may express
our objective as,

min

= ™ oL
ViSX A—R TW):=E s 0y [m?x(y —B™v) (s,a)- ¢ 56 ]

- (1 - ’7) ESUNﬁJlONW(So) [1/(807610)] .

By the interchangeability principle (Dai et al., 2016; Rock-
afellar & Wets, 2009; Shapiro et al., 2009), we may re-
place the inner max over scalar { to a max over functions
¢ : S x A — R and obtain a min-max saddle-point opti-
mization:

J(v,¢), (11)

min max
v:iSXA-R(G:SXA—R

where the objective function of this problem is given by

J(l/, C) = E(s,a,s’)wd”,a/wﬂ(s’) [(V(Sa a) - ’YV(Slv CL,))C(S, CL)
— C(5,0)/2] = (1= %) Eqympagmn(on [V(50,00)]

Using the KKT condition of the inner optimization problem
(which is convex and quadratic in (), for any v the opti-
mal value ( is equal to the Bellman residual, v — B v.
Therefore, the desired stationary distribution correction can
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then be found from the saddle-point solution (v*, *) of the
minimax problem in equation 11 as follows:

¢*(s,a) = (v = B"v")(s,a) = wyp(s,a). (12)
Now we finally have an objective which is well-suited for
practical computation. First, unbiased estimates of both
the objective and its gradients are easy to compute using
stochastic samples from dP, B, and m, all of which we
have access to. Secondly, notice that the min-max objective
function in equation 11 is linear in v and concave in (.
Therefore in certain settings, one can provide guarantees on
the convergence of optimization algorithms applied to this
objective (see Section 3.4). Thirdly, the optimizer of the
objective in equation 11 immediately gives us the desired
stationary distribution corrections through the values of
(*(s,a), with no additional computation.

3.3. Extension to General Convex Functions

Besides a quadratic penalty function, one may extend the
above derivations to a more general class of convex penalty
functions. Consider a generic convex penalty function
f R — R. Recall that C is a bounded subset of R which
contains the interval [0, C] of stationary distribution correc-
tions. If C is contained in the range of f’, then the opti-
mizer of the convex problem, min,, J(z) :=m - f(z) —n
for n/m € C, satisfies the following KKT condition:
f'(z*) = n/m. Analogously, the optimizer z* of,

min

z:SXA—C (13)

J 1 (x),
whose objective function is denoted by

Jl (l’) = E(s,a)wdD [f(x(& a))} - IE(S,(J,)Nd7r [x(s7 a)] )

satisfies the equality f'(z*(s,a)) = wy/p(s,a).

With change of variables v := x + B" v, the above problem
becomes,

i 14
V:SrilhnﬁR ( )

J(),
where the objective function is given by
J(v) :=E(s,a)nar [f (v = B™v) (s,a))]
—(1-7) Eso~p,a0~m(s0) [v(s0,a0)] -

Applying Fenchel duality to f in this objective further leads
to the following saddle-point problem:

min max
v:SXA—-RG:SXA—-R

J(v, Q) 15)

where the objective function of this problem is

J(Va(:) = ]E(s,a,s’)NdD,a’NTr(s’) [(V(S’ a’) - ’YV(Slv a’))((s, CL)
_f*(C(Sv a))] - (1 - 7) ESON,B,CL[)NTF(S()) [V(SO7 &0)] .

By the KKT condition of the inner optimization problem,
for any v the optimizer (;; satisfies,

[7(G(s,a)) = (v = B™v)(s, a).

Therefore, using the fact that the derivative of a convex
function f’ is the inverse function of the derivative of its
Fenchel conjugate f*', our desired stationary distribution
corrections are found by computing the saddle-point ({*, v*)
of the above problem:

(*(s,a) = f'((v* = B™v")(s,0a))
= f'(z*(s,a)) = wp(s,a).

(16)

a7

Amazingly, despite the generalization beyond the quadratic
penalty function f(z) = 32, the optimization problem
in equation 15 retains all the computational benefits that
make this method very practical for learning w /p (s, a):
All quantities and their gradients may be unbiasedly esti-
mated from stochastic samples; the objective is linear in v
and concave in (, thus is well-behaved; and the optimizer
of this problem immediately provides the desired station-
ary distribution corrections through the values of (*(s, a),
without any additional computation.

This generalized derivation also provides insight into the
initial technical result: It is now clear that the objective
in equation 13 is the negative Fenchel dual (variational)
form of the Ali-Silvey or f-divergence, which has been
used in previous work to estimate divergence and data like-
lihood ratios (Nguyen et al., 2010). Despite their similar
formulations, we emphasize that the aforementioned dual
form of the f-divergence is not immediately applicable to
estimation of off-policy corrections in the context of RL, due
to the fact that samples from distribution d™ are unobserved.
Indeed, our derivations hinged on two additional key steps:
(1) the change of variables from x to v := x + B™v; and
(2) the second application of duality to introduce ¢. Due to
these repeated applications of duality in our derivations, we
term our method Dual stationary Dlistribution Correction
Estimation (DualDICE).

3.4. Theoretical Guarantees

In this section, we consider the theoretical properties
of DualDICE in the setting where we have a dataset
formf]:\?l by empirical samples {si,ai,ri,sg}f.v:l ~ dP,
{sh}._, ~ B. and target actions a] ~ =(s}),a} ~ 7(sf)
fori = 1,...,N.! We will use the shorthand notation
E, o to denote an average over these empirical samples.
Although the proposed estimator can adopt general f, for
simplicity of exposition we restrict to f(z) = %azQ. We

'For the sake of simplicity, we consider the batch learning
setting with i.i.d. samples as in (Sutton et al., 2008). The results
can be easily generalized to single sample path with dependent
samples (see Appendix).
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consider using an algorithm O PT (e.g., stochastic gradient
descent/ascent) to find optimal v,  of equation 15 within
some parameterization families F, H, respectively. We de-
note by f/,gc the outputs of OPT. We have the following
guarantee on the quality of ¥, é with respect to the off-policy
policy estimation (OPE) problem.

Theorem 2. (Informal) Under some mild assumptions, the
mean squared error (MSE) associated with using U, C for
OPE can be bounded as,

. . 2

E [(Edp {C (s,a) ~r} — p(ﬂ')) }
(18)

=0 (Eapproz (]:7 H) + €opt + \/N) 3
where the outer expectation is with respect to the random-
ness of the empirical samples and OPT, €,y denotes the
optimization error, and €qpproy (F, H) denotes the approxi-
mation error due to F, H.

The sources of estimation error are explicit in Theorem 2.
As the number of samples N increases, the statistical er-
ror N~1/2 approaches zero. Meanwhile, there is an im-
plicit trade-off in e,pprox (F, ) and €,p,. With flexible
function spaces F and H (such as the space of neural net-
works), the approximation error can be further decreased;
however, optimization will be complicated and it is difficult
to characterize ¢,,;. On the other hand, with linear param-
eterization of (v, {), under some mild conditions, after T
iterations we achieve provably fast rate, O (exp (—T')) for
OPT = SVRG and O () for OPT = SGD, at the cost
of potentially increased approximation error. See the Ap-
pendix for the precise theoretical results, proofs, and further
discussions.

4. Related Work

Density Ratio Estimation Density ratio estimation is an
important tool for many machine learning and statistics
problems. Other than the naive approach, (i.e., the density
ratio is calculated via estimating the densities in the numer-
ator and denominator separately, which may magnify the
estimation error), various direct ratio estimators have been
proposed (Sugiyama et al., 2012), including the moment
matching approach (Gretton et al., 2009), probabilistic clas-
sification approach (Bickel et al., 2007; Cheng et al., 2004,
Qin, 1998), and ratio matching approach (Kanamori et al.,
2009; Nguyen et al., 2010; Sugiyama et al., 2008)

The proposed DualDICE algorithm, as a direct approach
for density ratio estimation, bears some similarities to ra-
tio matching (Nguyen et al., 2010), which is also derived
by exploiting the Fenchel dual representation of the f-
divergences. However, compared to the existing direct es-
timators, the major difference lies in the requirement of
the samples from the stationary distribution. Specifically,
the existing estimators require access to samples from both

dP and d™, which is impractical in the off-policy learning
setting. Therefore, DualDICE is uniquely applicable to the
more difficult RL setting.

Off-policy Policy Evaluation The problem of off-policy
policy evaluation has been heavily studied in contextual
bandits (Dudik et al., 2011; Swaminathan et al., 2017; Wang
et al., 2017) and in the more general RL setting (Fonteneau
et al., 2013; Jiang & Li, 2016; Li et al., 2015; Mahmood
et al., 2014; Paduraru, 2013; Precup et al., 2001; 2000;
Thomas & Brunskill, 2016; Thomas et al., 2015). Several
representative approaches can be identified in the literature.
The Direct Method (DM) learns a model of the system
and then uses it to estimate the performance of the evalu-
ation policy. This approach often has low variance but its
bias depends on how well the selected function class can
express the environment dynamics. Importance sampling
(IS) (Precup, 2000) uses importance weights to correct the
mismatch between the distributions of the system trajectory
induced by the target and behavior policies. Its variance can
be unbounded when there is a big difference between the
distributions of the evaluation and behavior policies, and
grows exponentially with the horizon of the RL problem.
Doubly Robust (DR) is a combination of DM and IS, and
can achieve the low variance of DM and no (or low) bias of
IS. Other than DM, all the methods described above require
knowledge of the policy density ratio, and thus the behavior
policy. Our proposed algorithm avoids this necessity.

5. Experiments

We evaluate our method applied to off-policy policy evalua-
tion (OPE). We focus on this setting because it is a direct
application of stationary distribution correction estimation,
without many additional tunable parameters, and it has been
previously used as a test-bed for similar techniques (Liu
et al., 2018). In each experiment, we use a behavior policy
1 to collect some number of trajectories, each for some
number of steps. This data is used to estimate the stationary
distribution corrections, which are then used to estimate the
average step reward, with respect to a target policy 7. We
focus our comparisons here to a TD-based approach (Gelada
& Bellemare, 2018) and weighted step-wise IS (as described
in (Liu et al., 2018)), which we and others have generally
found to work best relative to common IS variants (Mandel
et al., 2014; Precup, 2000). See the Appendix for additional
results and implementation details.

We begin in a controlled setting with an evaluation agnostic
to optimization issues, where we find that, absent these
issues, our method is competitive with TD-based approaches
(Figure 1). However, as we move to more difficult settings
with complex environment dynamics, the performance of
TD methods degrades dramatically, while our method is
still able to provide accurate estimates (Figure 2). Finally,
we provide an analysis of the optimization behavior of our
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method on a simple control task across different choices of
function f (Figure 4). Interestingly, although the choice of
fz) = %x2 is most natural, we find the empirically best
performing choice to be f(z) = %\x|3/ 2. All results are
summarized for 20 random seeds, with median plotted and
error bars at 25" and 75" percentiles.

5.1. Estimation Without Function Approximation

# Trajectory = 50 # Trajectory = 100

AN N
TN |

T T T T T T T T
50 100 200 400 50 100 200 100

Log RMSE

# Trajectory = 200 # Trajectory = 400

T T T T T T T T
50 100 200 400 50 100 200 400
Trajectory length

—@— DualDICE (ours) == TD 18

Figure 1. We perform OPE on the Taxi domain (Dietterich, 2000).
The plots show log RMSE of the estimator across different num-
bers of trajectories and different trajectory lengths (x-axis). For
this domain, we avoid any potential issues in optimization by solv-
ing for the optimum of the objectives exactly using standard matrix
operations. Thus, we are able to see that our method and the TD
method are competitive with each other.

We begin with a tabular task, the Taxi domain (Dietterich,
2000). In this task, we evaluate our method in a manner
agnostic to optimization difficulties: The objective 6 is a
quadratic equation in v, and thus may be solved by matrix
operations. The Bellman residuals (equation 7) may then be
estimated via an empirical average of the transitions appear-
ing in the off-policy data. In a similar manner, TD methods
for estimating the correction terms may also be solved us-
ing matrix operations (Liu et al., 2018). In this controlled
setting, we find that, as expected, TD methods can perform
well (Figure 1), and our method achieves competitive per-
formance. As we will see in the following results, the good
performance of TD methods quickly deteriorates as one
moves to more complex settings, while our method is able
to maintain good performance, even when using function
approximation and stochastic optimization.

5.2. Control Tasks

We now move on to difficult control tasks: A discrete-
control task Cartpole and a continuous-control task
Reacher (Brockman et al., 2016). In these tasks, obser-
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Cartpole, « = 0.33
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F 1 T T , T T T
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50000 100000 150000

T T T .
0 50000 100000 150000 0

Reacher, « = 0.33 Reacher, « = 0.66

0.0 0.0
—0.1 —0.1 ' H
—02 4 m W 0.2 LR
ALY J¥ v w
-0.3 -0.3
—0.4 — — 0.4 - -
0 50000 100000 150000 0 50000 100000 150000
Step
—@— DualDICE (ours)  —h— TD (known ) TD (unknown 1) IS (known ) == True Value

Figure 2. We perform OPE on control tasks. Each plot shows the
estimated average step reward over training and different behavior
policies (higher « corresponds to a behavior policy closer to the
target policy). We find that in all cases, our method is able to
approximate these desired values well, with accuracy improving
with a larger «v. On the other hand, the TD method performs poorly,
even more so when the behavior policy p is unknown and must be
estimated. While on Cartpole it can start to approach the desired
value for large «, on the more complicated Reacher task (which
involves continuous actions) its learning is too unstable to learn
anything at all.

vations are continuous, and thus we use neural network
function approximators with stochastic optimization. Fig-
ure 2 and Figure 3 show the results of our method compared
to the TD method and other common OPE baselines. We
find that in this setting, DualDICE is able to provide good,
stable performance, while the TD approach suffers from
high variance, and this issue is exacerbated when we at-
tempt to estimate y rather than assume it as given. On the
other hand, in the case when the behavior policy is unknown,
empirical results of most other baseline OPE methods ei-
ther exhibits high bias (such as the DM method or the direct
estimation of Q™) or high variance (such as the DR method).

5.3. Choice of Convex Function f

We analyze the choice of the convex function f. We consider
a simple continuous grid task where an agent may move
left, right, up, or down and is rewarded for reaching the
bottom right corner of a square room. We plot the estimation
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Figure 3. We perform OPE on control tasks using our method
compared to a number of additional baselines: doubly-robust (DR),
in which one learns a value function in order to reduce the variance
of an IS estimate of the evaluation; direct method (DM), in which
one learns a model of the dynamics and reward of the environment
and performs Monte Carlo rollouts using the model in order to
estimate the value of the target policy; and Q™, in which one learns
Q™ values via Bellman error minimization over the off-policy data,
and uses the initial values (1 — ) - Q™ (s0, ao) as estimates of the
policy value (these estimates are below —0.4 for Reacher, o = 0).

errors of using DualDICE for off-policy policy evaluation
on this task, comparing against different choices of convex
functions of the form f(z) = %|x\p. Interestingly, although
the choice of f(z) = %27 is most natural, we find the
empirically best performing choice to be f(z) = 2|z[3/2.
Thus, this is the form of f we used in our experiments for
Figure 2 and Figure 3.

6. Conclusions

We have presented DualDICE, a method for estimating off-
policy stationary distribution corrections. Compared to pre-
vious work, our method is agnostic to knowledge of the be-
havior policy used to collect the off-policy data and avoids
the use of importance weights in its losses. These advan-
tages have a profound empirical effect: our method provides
significantly better estimates compared to TD methods, es-
pecially in settings which require function approximation

Trajectory length = 50 Trajectory length = 100

14 8 11 8
04 04
BJ) N l I l N l l l
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~ -3 -3
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Trajectory length = 200 Trajectory length = 400
14 1
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Figure 4. We compare the OPE error when using different forms
of f to estimate stationary distribution ratios with function approx-
imation, which are then applied to OPE on a simple continuous
grid task. In this setting, optimization stability is crucial, and this
heavily depends on the form of the convex function f. We plot the
results of using f(x) = %|915|p forp € [1.25,1.5,2, 3, 4]. We also
show the results of TD and IS methods on this task for compar-
ison. We find that p = 1.5 consistently performs the best, often
providing significantly better results.

and stochastic optimization.

Future work includes (1) incorporating the DualDICE algo-
rithm into off-policy training, (2) further understanding the
effects of f on the performance of DualDICE (in terms of
approximation error of the distribution corrections), and (3)
evaluating DualDICE on real-world off-policy evaluation
tasks.
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A. Pseudocode

Algorithm 1 DualDICE

Inputs: Convex function f and its Fenchel conjugate f*, off-policy data D = {(s(), a®, () ¢/@)}N | sampled initial

states 3 = {séi) M. | target policy 7, networks vy, (-, -), Cp, (-, -), learning rates 7, 1¢, number of iterations T', batch size
B.
fort=1,...,T do
Sample batch { (s, a1+ ')}B  from D.
Sample batch {s}B_, from j.
Sample actions a’®) ~ 7(s'M), fori =1,...,B.
Sample actions a((f) ~ w(s(()i)), fori=1,...,B.
Compute empirical loss J = + Zil(ugl (59,0 — v, (s'D, ' D)), (5D, aD) — (Lo, (s, aD)) — (1 —
V)vo (55, ). )
Update 61 < 61 — 1, Vo, J.
Update 05 <+ 05 + ngvezj.
end for
Return (g, (-, ).

B. Experimental Details
B.1. Taxi

For the Taxi domain, we follow the same protocol as used in (Liu et al., 2018). In this tabular, exact solve setting, the TD
methods (Gelada & Bellemare, 2018) are equivalent to their kernel-based TD method. We fix «y to 0.995. The behavior and
target policies are also taken from (Liu et al., 2018) (referred in their work as the behavior policy for a = 0).

In this setting, we solve for the optimal empirical v exactly using matrix operations. Since (Liu et al., 2018) perform a
similar exact solve for | S| variables w /,(s), for better comparison we also perform our exact solve with respect to |S|
variables v(s). Specifically, one may follow the same derivations for DualDICE with respect to learning w. /,,. The final
objective will require knowledge of the importance weights 7(a|s)/u(als).

B.2. Control Tasks

We use the Cartpole and Reacher tasks as given by OpenAl Gym (Brockman et al., 2016). In these tasks we use COP-
TD (Gelada & Bellemare, 2018) for the TD method ((Liu et al., 2018) requires a proper kernel, which is not readily available
for these tasks). When assuming an unknown p, we learn a neural network policy i using behavior cloning, and use its
probabilities for computing importance weights 7(a|s)/u(als). All neural networks are feed-forward with two hidden
layers of dimension 64 and tanh activations.

We modity the Cartpole task to be infinite horizon: We use the same dynamics as in the original task but change the reward
to be —1 if the original task returns a termination (when the pole falls below some threshold) and 1 otherwise. We train
a policy on this task until convergence. We then define the target policy 7 as a weighted combination of this pre-trained
policy (weight 0.7) and a uniformly random policy (weight 0.3). The behavior policy u for a specific 0 < a < 1 is taken
to be a weighted combination of the pre-trained policy (weight 0.55 + 0.15«)) and a uniformly random policy (weight
0.45 — 0.15a). We use v = 0.99, which yields an average step reward of ~ 0.8 for m and ~ 0.1 for p with o = 0. We
generate an off-policy dataset by running the behavior policy for 200 epsiodes, each of length 250 steps. We train each
stationary distribution correction estimation method using the Adam optimizer with batches of size 2048 and learning rates
chosen using a hyperparameter search (the optimal learning rate found for either method was ~ 0.003).

For the Reacher task, we train a deterministic policy until convergence. We define the target policy 7 as a Gaussian with
mean given by the pre-trained policy and standard deviation given by 0.1. The behavior policy p for a specific0 < a <1
is taken to be a Gaussian with mean given by the pre-trained policy and standard deviation given by 0.4 — 0.3cc. We
use 7 = 0.99, which yields an average step reward of ~ —0.12 for 7 and ~ —0.50 for p with & = 0. We generate an
off-policy dataset by running the behavior policy for 1000 epsiodes, each of length 40 steps. We train each stationary
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distribution correction estimation method using the Adam optimizer with batches of size 2048 and learning rates chosen
using a hyperparameter search (the optimal learning rate found for either method was ~ 0.0001).

B.3. Continuous Grid

For this task, we create a 10 x 10 grid which the agent can traverse by moving left/right/up/down. The observations are the
x, y coordinates of the square the agent is on. The reward at each step is given by exp{—0.2|x — 9| — 0.2]y — 9|}. We use
~v = 0.995. The target policy 7 is taken to be the optimal policy for this task plus 0.1 weight on uniform exploration. The
behavior policy (i is taken to be the optimal policy plus 0.7 weight on uniform exploration. We train using batches of size
the Adam optimizer with batches of size 512 and learning rates 0.001 for v and 0.0001 for (.

C. Proofs

We provide the proof for Theorem 2. We first decompose the error in Section C.1. Then, we analyze the statistical error and
optimization error in Section C.2 and Section C.4, respectively. The total error will be discussed in C.3.

Although the proposed estimator can use any general convex function f, as a first step towards a more complete theoretical
understanding, we consider the special case of f(z) = 22?. Clearly, f (-) now is n-strongly convex with 7 = 1. Under
Assumption 1, we need only consider ||v||, < C, which implies that |[|[v — B™v|| < }J_r—ij’, and that f(x) is k-Lipschitz

continuous with x = %C . Similarly, f*(y) = 4y is L-Lipschitz continuous with L = C on [|w|| ., < C. The following
assumption will be needed.

Assumption 3 (MDP regularity). We assume the observed reward is uniformly bounded, i.e., |7 (s, a)| ., < C, for some

constant C,. > 0. It follows that the reward’s mean and variance are both bounded in [—C.,., C,].

For convenience, the objective function of DualDICE is repeated here:

J(V7 C) = IE(s,a,s’)r\zdv,a’NTr(s’) [(V(87 Cl) - ’YV(SI7 CLI))C(S, a‘) - C(Sa CL)2/2]
—(1—=7) ESONB,aoMr(m) [v(s0,a0)] -

We will also make use of the objective in the form prior to introduction of ¢, which we denote as J(v):

1

‘](V) = iE(s,a)NdD [(V - B”y)(g’ a)2] - (1 - ’7) ESONB,O«ONW(SO) [V(507 a’O)] :

Let .J (v, ¢) denotes the empirical surrogate of .J (v, ¢) with optimal solution as (2*, (*). We denote Vi =argmin,cr J (v)
and v* = argmin, g, 4_p J (¥). We denote L(rv) = maxcey J(v,¢) and L(v) = maxcey J(v, () as the primal
objectives, and £(¢) = minyer J(,¢), £(¢) = minyer J(v,¢) as the dual objectives. We apply some optimization
algorithm OPT for optimizing .J (v, ¢) with samples {s;,a;, 7,5}~ ~ dP, {s%}jvzl ~ 3, and target actions a, ~
w(sh),afy ~ w(sh) fori =1,..., N. We denote the outputs of OPT by (7, ().

C.1. Error Decomposition

Let

Observe that
p(m) = Egp [w,r/p(s,a) -R(s,a)] .

We begin by considering the estimation error induced by using (7 — B™7)(s, a) as estimates of w, /p(s,a), where B~
denotes the empirical Bellman backup with respect to samples from dP, 7. We will subsequently reconcile this with the true
implementation of DualDICE, which uses (s, a) as estimates of w, p (s, a).

The mean squared error of the policy value estimate when using (2 — B™7)(s, a) in place of w.; /p(8,a) can be decomposed
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as

(Edp [ y— B“z;) (s,a) .7’} — Ego [wyp(s,a) .R(s,a)])2 (19)
) (5.9) 0)

< 4 (fEdD (f/ - l?“f/) (s,a)-r| —Ego Kf/ - [;”Tf/) (s,a) -E(S,CL)D2 (21)
+4 (]Edn [(ﬁ — B”ﬁ) (s,a) - R(s, a)] —Ryo [(f/* — 3"&*) (s,a) - R(s, a)D2 (22)
+4 (]]::dv [(1)* _ BA'ﬂf/*) (s,a) - R(s, a)} —E4o [wﬂ/p(s, a)- R(s, a)D2 . (23)

€2

The first term, €, is induced by the randomness in observed reward, and we have

2

1+v) € (o [ (5,0)] — Ban [ (s.)])

er < (Edo {(19—8”19) (s,a)- (7 (s,a) —r(&a))D2 < (1 -

which will be discussed in section C.2.
‘We consider the € as
R . 2
(1) - B”ﬁ) - (V - B’Tﬁ*)
D

e < C? L=cz||lc-¢

L H (1/ _ BW*) _ (a . B’Tp)

which is the error induced by optimization O PT.

For the last term €5, we have

e < 2 (Edv [(ﬁ* - B”l)*) (s,a)-r(s, a)] —Egp [(0" = B™0%) (s,a) -7“(s7a)])2

€stat

+2 (]Edv [(0* = B™0") (s,a) - r(s,a)] — Egp [wﬁ/p(s, a) - r(s, a)] )2
Qestar + 2 (Ego [(0F — B™0*) (s,a) - r(s,a)] — Ego [(v* — B™v*) (s,a) - 7(s,a)])?. (due to equation 17)

IN

For the first term €4:4¢, Which is due to finite samples, we will bound in section C.2.

For the second term, we have

(Eqe (07 = B70%) (s,a) - 1(s,a)] = Ego [(v" = B™V") (s,a) - 7(s,a)))

< Ego [r (s,a)®- (0" — B™0%) (s,a) — (v* — B™v*) (s,a))?
< C2|(0F - BT0*) — (v — B™vY)||

2
< 2? (%) — T (")),

where the last inequality comes from the 7-strongly convexity of f and the optimality of v*.
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We then consider the error between J(2*) and J(v*), which can be decomposed as

>

T T = T07) - TR+ T W)~ T ()

= @)~ L)+ L07) — L) + L) — J () + T () —

We bound this expression term-by-term from the right. For the term J (v%) — J (v*), we have

<
o~
|
<
<
N
I

Ep [f (vF — B™vy) — f(v* = B™v")] — Egr [vF — V']

< klvr=villpy +6IB™ (v —v)llpy + IvE = v"llgr 0
< max (54818 p 1) (I = v llp + 105 = " l5r)
< max (K—'_HHBﬂ-H'D,l ,1) * €approx (]:) ;

J ().

where €,pproz (F) = SUP,cgx a—r Ifrer <||1/; —vp, +llvE— V”BWJ)’ due to the approximation with F for v.

For the term L (v%) — J (v}), we have by definition that

L(vy) = J (v) = mac ] (v () = __max _J (v5,¢) <0

For the term L(0*) — L(v%),

L(v*) - L(vy) = L@")-— é(ﬁ*) + é(ﬁ*) — L(vy) + L(vy) - L(v5)
< LY - B6") + Livs) - Lvp)
< 2sup|L(v) — f/(l/)‘
veF
= 251612 rgne%«f(v ,¢) — rgneaﬁd(v,c)’
< 2 sup [J(0) =T w0
veF ,(EH
= 2 €yt (-7:) s

where in the first inequality we have used the fact that I:(ﬁ ) — ﬁ( %) < 0 due to the optimality of
€ost (F) 1= 51D, 7 cene |1 (1,0) = T (1,0)].
For the term J (*) — L (¥*), we have

J@) - L") = _max J(P7,¢) —maxJ (07, ()
< (L+1C> ¢ — <||D17
~—_———
<eéapproz(H)

*, and in the last step

where €approx (H) = SUPcegx a—r infeen (HCH —Cllpy + G — C”BWJ)’ due to the approximation with H for .

Finally, we can decompose the squared error as

32C2

1+~
(1 KB,y 1) eopran () + (£ 4+ 12 ) capran ()

+ 467" + 8€stat + Treest (-F) + 4€opt~ (24)
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Remark (Dual OPE estimator): We now reconcile the above derivations with the use of é (s,a) as estimates of
wr/p(8,a). Note that in the implementation of DualDICE we use the estimator,

EdD {é (s,a) '7’}

for off-policy policy evaluation. In this case, the error can be decomposed as

(]Edp [é (s, ) .r} — Ego [wap(s,a) .E(s,a)])2 (25)
< 2 (Edp [é (s,a) ~r} —Eyo [(ﬁ - B”ﬁ) (s,a) -r} )2 (26)
+2 (fEdD [(ﬁ — B”D) (s,a) ~T] —Ego [wrp(s,a) - R(s, a)])Q. 27

The second term above is the same as given in equation 19. The first term can be rewritten as,

(Edp [é (s,a) '7’] —Ego [(19 — B”ﬁ) (s,a) ~TD2 <C? = (f/ — B’”f/) H;,
which can be bounded as follows:
- o)l
= Hc ~C = (=Bt (0 - B) - (0 - B7) Hi 28)

IN

o+ 4| (= 8) = (-85 | 4] ;

af¢-¢&

& — (ﬁ* - B"Tﬁ*)

D
where the first two terms correspond to optimization error €.y, and the last to approximation error due to parametrization.

Specifically, when the output of our algorithm ¢ (s, a) = (f/ - 3”17) (s,a) forV (s,a) € D, the extra term vanishes, and
the error is the same as in equation 19.

C.2. Statistical Error

We analyze the statistical error €,, €s¢q: and €.5; (F) in this section. We discussed in batch learning setting with i.i.d.

samples (Sutton et al., 2008). However, by exploiting blocking technique in Proposition 15 of (Yu, 1994), following (Antos

et al., 2008; Lazaric et al., 2012; Dai et al., 2017), all the sample complexity we provided can be easily generalized for single
.. . AN . . . s . .

[-mixing sample path, i.e., {s;,a;, 7, s;};_, is strictly stationary and mixing in an exponential rate with parameter b, x > 0

if B, = O (exp (—bm X)), which we omit for the sake of exposition simplicity.

Bounding ¢,. Recall that R (s,a) = E.5 , [r], so

E [67‘]

| IA
—~
= = = =
| |+ ||+
=2 |2 =2 |2
 ~—
Q Q
n [V
< =
—
2= - :
M= 1
T I
-~ 3
|
=

11+ , (L
(—’y) C supV(r|5,a)—(9<N>. (29)

Since r (s, a) and 7 (s, a) is bounded, we can also obtain high-probability deviation bounds using standard concentration
inequalities (Boucheron et al., 2016).
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Bounding ¢. ; (7). By definition, we have

€est (‘F) = E_b;-'uge‘}-[ j(l/ac) _J(V7C) )

which can be bounded using a covering-number argument outlined below.
We will need Pollard’s tail inequality that relates maximum deviation to the covering number of a function class:

Lemma 4. (Pollard, 1984) Let G be a permissible class of Z — [—M, M] functions and {Zi}i]il are i.i.d. samples from
some distribution. Then, for any given € > 0,

N

p@gggggmz>—Ewwﬂ>~><8EP%(;Q%ZﬁﬁJ]“P(£$;>'

The covering number can then be bounded in terms of the function class’s pseudo-dimension:

Lemma 5. [Corollary 3, (Haussler, 1995)] For any set X, any points VN € XN, any class F of functions on X taking
values in [0, M| with pseudo-dimension Dz < oo, and any € > 0,

D
. 2eM\ 77
Nl(e,f,xl'N)ge(D;—l—l)( c ) :
With the above technical lemmas, we are ready to bound €. (F).

Lemma 6 (Statistical error €.5; (F)). Under Assumption 1, if f* is L-Lipschitz continuous, with at least probability 1 — 6,

log N + log &
€est (F) = O \/?‘5

Proof. Denote hy¢ (s, a,s',a’, s0,a0) = (v(s,a) —yv(s',a'))((s,a) — f*(((s,a)) — (1 =) v(s0,a0), we use lemma 4
with Z2 =S x Ax Sx Ax S x A Z; = (s;,a;,8;,a}, sy, ah) and G = hryy.
—_—— ——

dP Bm
We first show that Vh, - € G is bounded. Recall v € F and ¢ € H are bounded by ﬁC and C, then, h,, ¢ will be bounded
by M; = %C’Q + (1+L)C + | f*(0)|. Specifically,

lhocle < AN Wl €l + (1= 3) Wl + 157 Ol
< OIS O PO+ 1 O)
< EICHCH LI+ O)
o 1+

ﬁc? +C+LC+|f*(0)].

Thus,

1 N
N Z huc (Zi) = E [y c]

(3

)

< 8E {/\/1 (gg {Zi}gv:l)} exp (&iz) . (30)

P( sup ‘j(V,C)—J(I/,C)‘ZG)ZP< sup
veF,(EH vEF,CEH
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We bound the distance in G,

N
Z ‘thCl l - hV27C2 (Zl)‘

(L+gc) N
S *ZlKl (si7az) C2 Sz7az |+ ZlVl Szuaz - (Shai)‘

v (s, ad)|,

N
WCZ 17 a; _VQ(smaz

which leads to

M (B o)) oz, )
<M (e H, {sz,az}z 1)./\/1 (e F, {sl,al}l 1)./\/1 (e F,{s}, 1}1 1)]\/1 (e F, {so,ao} ) (31)

Applying lemma 5, we can bound the covering number. Denote the pseudo-dimension of 7 and H as D, and D¢, then, we
have

)

7 3DF+D3
N ((L—i—mC—i—(l—y)) 617g»{Zi}f\11> §64(D}‘+1)3(DH+1) (461}41)

which implies

€ N
Nl (gvg7{Zi}i:1)
2 3Dr+D
, 32 (L+2+%jc+(1—7)) e\ " 1\ D
e'(Dr +1)° (Dy +1) =C <6> . (32)

€

D
where C) = ¢* (D 4+ 1) (Dyy + 1) (32 (L + %C +(1—- fy)) eMl) " and Dy =3Dr+ Dy.

Combine this result with equation 30, we immediately obtain the statistical error, i.e.,

P su ‘j(I/C)—J(Z/C)‘>E <8C 1Dlex iﬁ?
ue}',gPe’H ’ Bl =77 e P 512M32 ) -

1
By setting € = w with Cy = max ((SCl)DL 512M1 D1, 512M7, ) we have

1\ —N¢?
- — | <.
8Ch (e) P (512M12> <0

Bounding €;,;. As 7" is a random variable, we need to bound the following instead:

V Estat

]ES,a,S’,a’ (77 (s,a) = 0" (s, ")) r(s,a)] — Esa,sar (07 (5,0) — y0" (s',a"))r(s, a)]‘

Es,a,5,a’ [(V (37 a) -y (Sla a/)) r(s, a)] —Es 4,507 [(V (Sa a) - (Slva/)) 7“(5, a)] s

< sup
vEF

which can be done using a similar argument as above.
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Lemma 7 (Statistical error €444¢). Under Assumption 1, with at least probability 1 — 6,

log N + log &
€stat = O (NJ .

Proof. We first show that Vv € H, (v (s,a) —yv (s',a)) r (s, a) is bounded by My = %02, ie.,
1+~
| =) 7oy < A7) C e < 772

!/

Then, we apply the lemma 4 with £ = S x A x S x A, Z; = (s;,a4,8;,a;),and G = (v —yv) - 1,

]P’<sup £ [(V—B’Tu) ~r] —E[(V—B”z/)-r]‘ >e> (33)
veF
< SE [N (504205, )| exp (5_1%2) . (34)
Similarly, we have
1

N
Z |(v1 —yv1) -7 (Zi) = (v2 —y12) - 7 (Z)]

C
1 (siy2) = v (s0,00)| + 257 [ (57, af) = v (51, @)

IA
zla =
-

=1

leading to
N (U 49) €€ G421 ) <N (€0 F fsnait il ) M (€0 F (st ald Ly ) - (35)

Applying lemma 5, we bound the covering number as

’ N 2 2 26M2 bF
M ((1 +4)Ce ,g,{zi}izl) < (Dr+1)° (=5 , (36)
which implies
€ 16 (14 7) CeMy \ 27 1\ 7>
(g a12) 20 (B (1)
with C3 := €2 (Dx + 1) (16 (1 + ») CeM5)”? and Dy = 2D .
We achieve the statistical error bound, i.e.,
1\ 72 ~Neé2
P (V€star > €) < 8C3 p exp m . 37
1
By setting € = w with Cy = max ((86'3)1% ,512M5 Do, 512 M, 1), we have
D2 2
1 —Ne
- — | <.
;) o (5iovg) <
log N+log + . .
Therefore, we have €40 = O (#5), with 1 — § probability. O
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C.3. Putting It All Together

Theorem 2  Under Assumptions 1 and 3, with f (z) = %x% the mean squared error of DualDICE’s estimate is bounded
by

E | (Bar [¢ 5.0 1] = m)"| = O (canman (F 20+ o+ ).

where B[] is taken w.r.t. randomness both in the sampling of D ~ dP and in the algorithm, O (+) ignores logarithmic
factors, and the error terms are defined in equation 40.

Proof. By equations 25 and 28, the error can be decomposed as

E {(Edp [C(s,a) 7] = Ego [we/p(s.a) - R(s, a)]ﬂ
< [ (tu o0 o] e (o 59) o0
428 | (Bge [ (7= 89) (50) 1] = B [ueyp(ov0)- Res.)]) |
< 8C’E K é— ¢ ;+ H(u - 87) - (- Bﬂu)Hiﬂ 4 8C2E U &= (o7 - i) m

+2E (Edv Kz} - B"D) (s,a) -f(s,a)} —Ego [wyp(s,a) -r(s,a)])z} . (38)

. . 2
We can bound the last term, E (Edn Kf/ - B”f/) (s,a) - 7(s, a)} —Ego [wyp(s,a) - r(s, a)]) },by straightforwardly

combining equation 29, lemma 6 and lemma 7 into equation 24. Specifically, by lemma 6, we have

Colog N + log + log N
E[eest(]-')]\/ 208 & 5, (151)+261M1(’)< -

N N
by setting 6; = \/#ﬁ Similarly, we have

Cy (logN + log é)
N

E [Estat] =

log N
(1—62)+2§2M2:(9(Og )

N

where the last equation comes from by setting do = % Plug these results into equation 24, we have

E [(H::dv [(ﬁ — B“ﬁ) (s,a) - (s, a)} —Ego [wryp(s,a) - r(s, a)D2]

~(1 1
S O (Eapprom (-F) + 6ap‘m"ox (H) + 6opt) + O — + NT ) (39)
N N
where €opr = El[éopt]. €approa (F) = sup,cgxarinfrer (”V}' —Vlpy +llvr - VH,BW,I)’ and €approc (H) =
SUPcesx Ak INfeen (||C?-L —Cllpy + 16 — <||,87r71), due to the approximation with F for v and H for (, respectively.
2 . . 2
8| - Bror) - (v- 87))|
D

The first term in equation 38, KH@ — é*
D

)] , is also the optimization error €,;.

2
The second term, E “ ’ } , is due to the parametrization by F and .
D

& - (l/ - Bm*)
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Define the approximation error

&= (v - Bm)

2
€approx (F,H) = €approx (F) + €approx (H)+E U ’@} ) (40)

combine equation 39 and the extra errors, we immediately have

E [(E [E(5,0) 7 (5,0)] = Bgo [weyp(s,0) -1, a)]ﬂ -0 ( (FH) + copt + V}) :

which is the first conclusion.

C.4. Optimization Error

In this section, we characterize the optimization error é,,;. With different parametrizations for (F,H) and different
optimization algorithms for J (v, (), the convergence rate of €; will be different. For general parametrization of (F, H)
as neural network, how to quantitively analyze the optimization error is still an open problem and out of the scope of this
paper. We focus on the tabular, linear or kernel parametrization for (F, ). Let (F, ) are the family of linear models with
basis function 1) (s, a) € RP. The tabular and kernel version can be easily generalized by treating + as indicator vectors or
infinite dimension feature mapping, respectively, and we omit here. Then, we can parametrize v (s,a) = w, ' (s, a) and
¢ (s,a) = we T (s,a) with w,,, we € RP. Then, the optimization reduces to

N
) 1
min max J (wy,we) = wy Awe = ; £ (we " (s, 00)5) — wy "D, 41

where A = % Zi\il (¥ (siya;) — v (sh,al)) w7 (si,a;) € RP*P and b = (I;NW) Zf\;l ) (sf), af)).

‘We have
R . 2
() (o= 5) |
D
2 2 - k(12
+ [[@]15 ([ — @]

Jibe — @ ||” + b, — w3 ) (42)

(-
w3
mas (1913 + o12) (

where W = [1) (s;,a;)], € RN*P and @ = [t (s;,a;) — v (s, al)]X, € RN¥P,

2
+|
D

€opt =

IN

We —

IN

In general case, the optimization 41 is convex-concave, therefore, the vanilla stochastic gradient descent con-

verges in rate O (ﬁ) in terms of the primal-dual gap. Specifically, we have f(x) = %xQ, which will lead

+ Zf\il I (we ™ (sisai)y) = Hw<||g with C = & vazl Y (si,a:) VT (si,a;) € R4, Under the assumption as (Du
etal., 2017),

Assumption 8. A has full rank, C is strictly positive definite, and the feature vector 1 (s, a) is uniformly bounded.

We discuss the optimization error €,,; := IE [¢1], where the E [-] w.r.t. the randomness in the algorithm, in two algorithms
for equation 41,
e SVRG We can easily verify that the T-step solution of SVRG, (f/T, fT), converges to (f/*, é*) in linear rate

24

the randomness in the SVRG. Specifically, we have

O (exp (—T)) in terms of E {ng“ — W Wl — i}

2
] following (Du et al., 2017), where the expectation w.r.t.

€opt = O (exp (—T)). 43)

e SGD Although the optimization equation 41 is not strongly convex-concave, we can still prove O (%) convergence
rate.
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tion 8, we have

Lemma 9. Let the stepsize ¢ decay in O (%), assume the norm of the stochastic gradient is bounded, under Assump-

N 1
€opt = o0 (T) .
] and

Proof. Denote 0, = [12;

t
v

(44)

Nt Tk
We — W

T ot - i
2 v v P

as the unbiased stochastic gradient with E [G¢] = g;, we have the updaterule as 6,1 = 0, —X,G;, X; = {
We denote §; = Hét — 0"

1 0 }
1|0t
0 7
2
] and A; = E [0;]. Then, we have

114 N* 2 1 2 1 2 ) O* T
b = 00— TG 07| <o+ 5o 1 )G (0 -0) 0.
Take the expectation on both sides and E [||Gt||2} < K2,

2
o
Appr = A+ -

1 . ANT
: <1 + ) K?_E {(et _ 9*) (Etgt)} . (45)
p

. . 8Amax (ACT'A) . ~ .
As shown in (Du et al., 2017), under Assumption 8 and set p = @ the matrix @ := E {Q} has positive
real eigenvalue and

Amax (C) -1

)\max S 97)\max -AC -A 9

©| oo

)\min (Q) Z )\min (AC_1A> .
On the other hand, with the first-order optimality condition, we can show that Qé* = b. Then, we have

E [(9} ) (gtgg] _E [(9} —07)" 52 (b, - 5)}

. ANT I 1
E {(et - 9*) $2Q (at - 9)} > 2\ min (Q) (1 n ) oA,
Plug this into the equation 30, we obtain the recursion,

2
o
App1 <AL+ _

(1 + 1) K2 — 2)\min (Q) <1 —+ 1> O’?At < (1 — 260}) At +
p

1
;O'?K2,
p 2
with ¢ = Apin (Q) (1 + %) By setting oy > ﬁ, Ar =0 (%)

(40)
Using the above results for linear parametrization, we can reach the following corollary of Theorem 2.

O
Corollary 10. Under the conditions of Theorem 2 and with linear parametrization of (v, () and under Assumption 8, after
T-iteration, we have éopy = O (exp (=T)) for SVRG and éopy = O () for SGD.



