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Abstract

Microscopy imaging of cell nuclei and cytoplasms is a powerfull technique for research,
diagnosis and drug discovery. However, the use of fluorescent microscopy imaging for cell
nuclei and cytoplasms labeling is time consuming and inconvenient for several reasons,
thus there is a lack of fast and accurate methods for prediction of fluorescence cell nuclei
and cytoplasms from bright-field microscopy imaging. We present a method for labeling
bright-field images using convolutional neural networks. We investigate different convolu-
tional neural network architectures for cell nuclei and cytoplasms prediction. Using the
DeepLabv3+, we found relative impressive results with a 5-fold cross validation dice coef-
ficient equal to 0.9503 as well as meaningful segmentation maps. This work shows proof
of concept regarding microscopy fluorescence labeling of cell nuclei and cytoplasms using
bright-field images.

Keywords: Fully convolutional neural networks, semantic segmentation, deep learning,
microscopy imaging, fluorescent imaging.

1. Introduction

Imaging of cell nuclei and cytoplasms is a powerful tool in diagnosis of diseases, research
and drug development. Manual counting and estimation of quantitative measures of cells
based on microscope images can be time consuming. A modern image cytometer, such as
the # from #, facilitates cell analysis by automating the acquisition of the static microscopy
images as well as the extraction of the quantitative characteristics of the cells using image
analysis and statistics. In this modality, optical microscopy techniques are used to acquire
static images of cells. In fluorescence microscopy imaging cells are stained with different
fluorochromes yielding different label images. The fluorochromes in microscopy images
are used to enhance contrast, and thus to infer labeling of cell nuclei and cytoplasms.
In fluorescence microscopy the fluorochromes absorb incoming light and excites light with
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higher wavelength than the incoming light. Bright-field is the simplest label-free microscopy
imaging technique, in which the contrast is related to the attenuation of white light. Bright-
field microscopy imaging is a standard protocol, which is difficult to analyze, and manual
identification of cell nuclei and cytoplasms is difficult. Therefore, the bright-field image is
often acquired together with a fluorescence label of interest.

The use of fluorescent labelled images has several drawbacks; in certain circumstances
the stain might effect the experiment, the stain might be toxic for the cells, fluorescent
microscopy imaging requires preparation of the sample and finally spectral overlap gives
physical limitations regarding simultaneous acquisition of multiple labels. Therefore, there
is a high demand on fast and accurate methods for prediction of fluorescence labels from
bright-field microscopy images.

Semantic segmentation is the process of assigning each pixel in an images into a label.
Prediction of cell nuclei and cytoplasms from the bright-field image using the fluorescence
labeled image as ground truth is thus a semantic segmentation task. The scope of this
paper is to investigate methods for predicting pixels as nuclei or cytoplasms using convo-
lutional neural networks. The input images for the convolutional neural network consist
of bright-field images x, and the output images y consist of processed fluorescence stained
images representing the ground truth. These image are presented in Figure 2 together with
prediction maps. The fluorescence image presented in Figure 2 is obtained using the fluo-
rochromes DAPI (Kapuscinski, 1995) and #. This image is a categorical label image and
is obtained by post-processing using # software as further described in section 3.

1.1. Related work

Several methods for cell segmentation based on convolutional neural networks (CNN) have
been proposed in the recent years. Regarding cell segmentation on electron microscopy im-
ages, the so-called U-Net (Ronneberger et al., 2015) showed promising results on the ISBI
2015 cell tracking challenge using a fully convolutional neural network (FCNN). However,
limited work has been published on cell nuclei and cytoplasms segmentation in bright-field
imaging with fluorescence as the ground truth.

In (Christiansen et al., 2018) it is shown that it is possible to predict fluorescent labels from
unlabeled microscopy images. In this work fluorescent labels are predicted using phase-
contrast, bright-field and differential interference contrast imaging. Furthermore, multiple
z-stack axis slices that are co-registered yielding 3D information content.

The models we investigate in this paper rely heavily on the prior work from the following.
The backbone of the networks we experiment with is inspired by (Ronneberger et al., 2015),
in which FCNN is utilized in an encoder-decoder scheme in combination with skip connec-
tions. The work by (He et al., 2016) utilizes residual blocks using identity mapping of input
layers to circumvent vanishing gradient problems in order to train very deep convolutional
neural networks. The alternative to the residual block, known as dense-block (Huang et al.,
2017), uses concatenation of previous layers to improve the information flow in convolu-
tional neural networks. The state-of-the art on cell segmentation relies on the backbone
from U-Net with encoder decoder structure combined with some of blocks mentioned above.
The work done by (Christiansen et al., 2018) is of certain interest since it deals with the
same kind of data. However, there are certain differences: 1) the data provided from #
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includes the whole cell specific stain BlueMask"™ from #, instead of CellMask'™, which is
a plasma membrane specific stain 2) the flourescent labeled images from # are processed
before training using # software, which yields a categorical ground truth image consisting
of background, cell nucleus and cell cytoplasm as described in Section 3, and finally 3) the
architecture proposed by (Christiansen et al., 2018) uses the Inception module (Szegedy
et al., 2015) and the residual block (He et al., 2016).

We investigate convolutional neural networks to predict post-processed fluorescence la-
beled cytoplasms and cell nuclei images from bright-field images using U-Net (Ronneberger
et al., 2015), the Tiramisu (Jégou et al., 2017) and the DeepLabv3+ (Chen et al., 2018).

2. Methods

2.1. U-Net

We implemented a custom U-Net inspired by (Ronneberger et al., 2015). All convolutional
layers use zero padding in order to retain spatial dimensions. The custom U-Net architecture
consists of an encoding path with pooling and a decoding path with transpose convolution.
Before the decoding path, a bottleneck is implemented with no pooling.

The architecture is illustrated in Figure 1. To prevent overfitting, 12 weight decay was
utilized at each convolutional layer with w=0.0001.
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Figure 1: The network architecture inspired by U-Net

2.2. DeepLabv3+

The current state of the art for semantic segmentation of images on CityScapes (April
2018) and Pascal VOC (April 2018) is the DeepLabv3+ proposed in (Chen et al., 2018).
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The DeepLab v3+ is a mixture of different components including; atrous convolution and
the Xception block proposed in (Chollet, 2016), which consists of depthwise separable con-
volutions. The DeepLabv3+ utilizes also an encoder-decoder architecute like the U-Net. In
the decoding path atrous spatial pyramid pooling (ASPP) is used for global image feature
extraction.

Atrous convolution, also known as dilated convolution, is a powerful extension of ordinary
convolution in which we can control the resolution of the receptive field of the convolutional
operation (Yu and Koltun, 2015). Atrous convolution produces i spatial locations of the
output feature maps a of the input x using the kernel w.

ali] = Y _x[i+r - klw(k] (1)

k

In this a hyperparameter atrous rate r describes rate in which one samples the input signal.
The standard convolutional operater is thus a situation with » = 1. Atrous convolution is
often implemented

Depthwise separable convolution is a combination of depthwise convolution and con-
volution with a 1x1 kernel (pointwise convolution). Depthwise convolution performs a
convolution independently for each input channel. It is shown in (Howard et al., 2017)
that depthwise separable convolution is significantly computational cheaper to calculate
compared to standard convolution. In (Chollet, 2016), depthwise separable convolution is
used, together with Residual blocks (He et al., 2016), as the building blocks to produce the
Xception network, which outperformed the Inception network (Szegedy et al., 2015). The
DeepLabv3+ architecture follows the original implementation in (Chen et al., 2018).

2.3. Tiramisu

Motivated by the work of (He et al., 2016) on ResNets, the authors in (Huang et al., 2017)
develop the so-called DenseNets, which introduces the dense block. The dense block is an
alternative to the residual block. The idea behind the dense block is to concatenate the
identity mapping rather than adding it:

x; = H/([xo, x1, ..., T1—1]) (2)

In which [z, x1, ..., £;—1] refer to the skip connections which are concatenated from the
previous layers [.

The composite function H; refers to the cascade of operations including Batch Normal-
ization, ReLLU activation and 3x3 convolutions followed by dropout.

Inspired by the performance of DenseNets, (Jégou et al., 2017) introduced the Tiramisu
network architecture for semantic segmentation. Along the encoding phase and the decoding
phase, dense blocks are implemented. The encoding phase consist of dense blocks and
max pooling (transition down) and the decoding path consist of transposed convolution
(transition up). Before each dense-block in the downsampling path, features are forwarded
and concatenated.

The Tiramisu architecture used in this paper follows the original implementation of the
FC-DenseNet103 Tiramisu described in (Jégou et al., 2017).
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3. Experiments

The input images are bright-field microscopy images and label images of adherent HelLa
cells acquired with # device using 20x magnification. Since all the data originates from the
same type of scanner the domain shift between the brightfield images is neglectable. The
thresholding of fluorescence images to form ground-truth label images is achieved through
unsupervised classification of pixels into the three classes; cytoplasm, nuclei, and back-
ground. In the dataset the cell nuclei appear app. 5 times more than the background, and
the cytoplasms appear app. 10 times more than the background. From each sample two
fluorescense images are acquired, one to detect nuclei pixels and one to detect cytoplasms
pixels, respectively. The nuclei image is stained with DAPI and excited with wavelength
equal to 405nm and detected at 593nm. The cytoplasms image is stained with # and
excited at 405nm and detected at 452nm.

The provided data consist of 170 images with dimension: 1440x1920 together with
corresponding label images of same size. The data was split into 153 training images
and 17 validation images. Since the amount of data provided only consists of 170 images
data augmentation was necessary in order to generalize and prevent over-fitting. The data
augmentation includes; rotations of 90, 180, 270 degree, horizontal and vertical flip, and
translation of 122 pixels vertical and horizontal. Furthermore, deformation using B-splines
with 2 control points and standard deviation equal to 15 was utilized. For the DeepLabv3+,
a 5-fold cross validation was carried out. The data was randomly split into 136 training
images and 44 for validation.

Training a neural network with input size 1440x1920 is computational expensive and
requires large amount of memory, but it is possible. However, training with large input
size requires a smaller model. In order to train a large model and maintaining all possible
information without resampling and to, patches of size 224x224 were sampled randomly
from each category; background, cytoplasms and cell nuclei. Furthermore, this strategy
of sampling from the different categories also compensates the class imbalance problem
described previosly. All experiments were carried out on 4xTitan X GPU’s. The training
was done asynchronously on each GPU.

The implementation was carried out in Keras. We utilized a categorical cross entropy
with the Adam optimizer (Kingma and Ba, 2014) with learning rate equal to 0.001, which
drops by a factor of 0.5 every 50 epoch for 300 epochs. The mini-batch size was 3 pr GPU.

3.1. Results

The inspection of training and validation loss curves showed no sign of overfitting. The dice
coefficient (Dice, 1945) is used to compare the found segmentation with the ground truth
image. The performance of the different models are showed in Table 1. The DeepLabv3+
showed a validation dice coefficient at 0.9395. The bright field image, the ground truth
flourescence label image and the prediction map is presented in Figure 2. A 5-fold cross
validation for the DeepLabv3+ was carried out yielding a validation dice coefficient equal
to 0.9503 and a validation loss equal to 0.14306.
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Figure 2: First row: Bright field image, flourescent label image and DeepLabv3+ prediction
image. In second row to fourth row: Comparison between the three different
models. a) The U-Net model, b) The Tiramisu model and c¢) the DeepLabv3+
model. 6
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Table 1: Comparison of results
U-Net Tiramisu | Deeplabv3+ | Deeplabv3+ (cross validation)
Parameters 1,942,023 | 9,419,011 | 41,253,023 41,253,023
Validation dice | 0.9102 0.927 0.9395 0.9503

4. Discussion

As seen in the results, it is possible to predict fluorescent labels from bright-field images.
The best performing architecture is the DeeplLabv3+ as seen in Table 1. However, the
performance gain with respect to the parameters using DeepLabv3+ compared to smaller
models was not significantly large. This suggests that for the given segmentation task, a
smaller model can be be sufficient to a certain extent. This makes sense since the domain of
possible segmentations is limited to the same modality (bright-field), the same type of scan-
ner and only three categories. Compared to (Christiansen et al., 2018), the proposed model
has some common building blocks, however, it is impossible to compare the performance
of the proposed model with the model in (Christiansen et al., 2018), since the data is not
public available. However, we believe the proposed model shows state-of-the performance
due to the high dice coefficient presented in Table 1.

Nevertheless, the model performance has certain limitations. In Figure 2 we see a big air
bubble in the bottom right corner of the input bright-field image. Since cell nuclei and
cytoplasms are not visible in this image, it is impossible for the model to correctly predict
the labels. Future work will explore methods for mitigating problems with air bobbles and
other difficulties in the data. Sophisticated pre-processing pipelines could be introduced to
remove samples with air bobbles or other artifacts. Other input modalities can be acquired
eg. phase-contrast of differential interference contrast, which can serve as input features
and might improve the performance of the proposed models.

5. Conclusion

In this this work, we show proof of concept of cell nuclei and cytoplasms prediction from
bright-field images with convincing results. A comparison of three state-of-the-art networks
shows that the DeepLabv3+ is the best performing network but also the one with the highest
number of parameters. Compared to other medical image segmentation tasks, we have a
sufficient number of training samples making it possible to train the DeepLabv3+, which
has a high number of parameters. The smaller networks also give usable results. We also
show that the current limitations are due to noise in the acquisition that potentially could
be resolved by adding information form other input modalities. Future work would reveal
the impact of adding modalities like phase-contrast and differential interference contrast
microscopy imaging. However, the results presented in this paper might be sufficient for
research, drug discovery and medical diagnosis in which other sources of error might have
greater impact.
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