
Predicting Motion of Vulnerable Road Users
using High-Definition Maps and Efficient ConvNets

Fang-Chieh Chou, Tsung-Han Lin, Henggang Cui, Vladan Radosavljevic,
Thi Nguyen, Tzu-Kuo Huang, Matthew Niedoba, Jeff Schneider, Nemanja Djuric

Uber Advanced Technologies Group
{fchou, hanklin, hcui2, vradosavljevic, thi,

tkhuang, mniedoba, jschneider, ndjuric}@uber.com

Abstract

Following detection and tracking of traffic actors, prediction of their future motion
is the next critical component of a self-driving vehicle (SDV), allowing the SDV to
move safely and efficiently in its environment. This is particularly important when
it comes to vulnerable road users (VRUs), such as pedestrians and bicyclists. We
present a deep learning method for predicting VRU movement where we rasterize
high-definition maps and actor’s surroundings into bird’s-eye view image used as
input to convolutional networks. In addition, we propose a fast architecture suitable
for real-time inference, and present an ablation study of rasterization choices.

1 Introduction

Recent advances in high-performance hardware and software led to unprecedented breakthroughs
in AI applications. Computers have surpassed human performance in centuries old games such
as go [29], understand health conditions and suggest medical treatment [35], and can even reason
about complex relationships conveyed through images [39]. This progress also prompted renewed
enthusiasm and work on self-driving vehicles (SDVs), a nascent technology holding a potential to
transform the way we live and work. While interest in SDVs goes as far back as the 1980s [24], only
in the last decade government agencies and large industry players turned their focus towards the field,
leading to a new era of research that caused leaps in real-world performance of SDVs [36].

Predicting actor movement is a critical part of the autonomous technology. Once a self-driving vehicle
successfully detects and tracks a traffic actor in its vicinity, it needs to understand how they will move
in the near future for both actors and SDV to be safe during operation [6]. This particularly holds true
for vulnerable road users (VRUs), defined as traffic actors with increased risk of injury, unprotected
by an outside shield [21]. Road planners and policy makers have recognized this problem many
decades ago, and attempted to mitigate it through several means. This included legal frameworks,
designing new road types (e.g., segregating VRUs from motorized actors), educating both drivers and
VRUs with particular focus on children and elderly that are at an even greater risk than others [5, 21],
to name a few. These efforts however have given limited results, and in the US proportion of VRUs
within overall traffic deaths actually increased between 2008 and 2017 from 14% to 19% [19].

In the current study we address a critical aspect of SDV technology, and focus on predicting motion
for VRUs, namely pedestrians and bicyclists. The main contributions are summarized below:

• We present a system for motion prediction of VRU traffic actors, relying on recently proposed
context rasterization techniques [6];

• We propose a fast convolutional neural network (CNN) architecture suitable for running in
real-time onboard the SDV;

• We present an ablation study of various rasterization settings.

Preprint. Work in progress.



2 Related work

Efficient and accurate detection, tracking and motion prediction of VRUs are one of the key factors
for autonomous vehicles to be safely deployed in complex urban environments. With greatly
improved detection and tracking of VRUs [22], research on motion prediction of VRUs has been
gaining lot of traction recently. Although most of the studies on VRU motion prediction focuses on
pedestrians with only a very few focusing on bicyclists, recent work showed importance of predicting
bicyclists at crossings [3] and signalized intersections [32]. In this section we provide an overview
of motion prediction of pedestrians and bicyclists with respect to autonomous driving, while more
comprehensive review that includes research on motion prediction of vehicles can be found in [6].

Motion prediction. A common approach for prediction of VRUs’ motion in autonomous driving
systems is to use motion model from tracking component to predict their future states. Most of
the autonomous system’s pedestrian tracking components use either the Brownian or the constant
velocity motion models [31]. Those models don’t take into account scene context and therefore
fail in long-term prediction tasks as VRU motion follows complex patterns constrained by static
and dynamic obstacles along the path. Traditionally, hand-crafted features were used for motion
prediction of VRUs with respect to a surrounding context. The social force model for pedestrian
motion prediction incorporated interactive forces that guide pedestrians towards their goals and
enforce collision avoidance among pedestrians, as well as between pedestrians and static obstacles
[10, 41]. Similar approach was applied for bicyclist motion prediction [13]. [25] introduced a
motion model for bicyclist motion prediction that incorporates knowledge of the road topology. The
authors were able to improve prediction accuracy by using specific motion models for a pre-specified
set of canonical directions. [8] obtained more accurate predictions of pedestrian trajectories by
incorporating semantic features from a scene such as relative distance to curbside and status of
pedestrian traffic lights in the Gaussian Process (GP) model. A significant number of studies has been
devoted to modeling pedestrian motion using maximum entropy Inverse Reinforcement Learning
(IRL) [43]. [44] introduced an IRL model based on a set of manually designed feature functions that
capture interaction and collision avoidance behavior of pedestrians. While all of these approaches are
capable of predicting the pedestrian and bicyclist motions in many scenarios, the need for manual
design of features makes them hard to scale in complex driving environments [37].

Deep learning motion prediction. Inspired by the success in the various areas of computer vision
and robotics, many deep learning-based approaches have been proposed recently for the motion
prediction task in order to model object-object and object-scene interactions which may not have
been straightforward to represent manually. Most of deep learning approaches are based on Long
Short-Term Memory (LSTM) variant of recurrent neural networks (RNNs) [11]. [33] used a sequence-
to-sequence LSTM encoder-decoder architecture to predict the pedestrian position and angle of
direction. Incorporating the angular information in addition to the temporal information led to a
significant improvement in the prediction accuracy. With respect to modeling of dynamic context, [2]
proposed an approach for pedestrian motion prediction based on LSTM architecture and a “social
pooling layer” that uses spatial information of nearby pedestrians to implicitly model interactions
among them. [38] proposed “social attention” method to predict future motion based on estimation
of the relative importance of pedestrians through an attention layer. Recently, [7] proposed an
LSTM-based Generative Adversarial Network (GAN) to generate and predict socially feasible
motions. With respect to modeling of static context, [23] proposed an LSTM-based model for
pedestrian’s motion prediction that incorporates the map of static obstacles and position of surrounding
pedestrians. [26] presented SoPhie, an LSTM-based GAN system for predicting physically and
socially acceptable pedestrian trajectories using an RGB image from the scene and the trajectory
information of surrounding pedestrians. [18, 37] incorporated scene information as well as human
movement trajectories in the pedestrian motion prediction process. In addition to LSTM-based
approaches, [20] proposed CNN-based approach where convolutional layers are utilized to handle
temporal dependencies. Authors of [16] use CNNs for joint detection, tracking, and prediction.
However, these models do not take into account scene context information. Authors of [4] include map
information to predict high-level intent of vehicle actors, unlike our model that predicts trajectories.

Efficient CNN architectures. Since the introduction of AlexNet [15], researchers made significant
progress in improving CNN architectures to make them more accurate and efficient. State-of-the-art
architectures, such as VGG [30] or ResNet [9], tend to have a large number of layers running expensive
computations, making them unsuitable for real-time inference. Recent proposals such as MobileNet

2



[12] and ShuffleNet [42] replace regular convolutional operator with more efficient depthwise
separable or group convolutions, making them small and fast for mobile applications. MobileNet-v2
(MNv2) [27] further improves the original MobileNet by combining depthwise convolution with
residual connections and bottleneck layers proposed in ResNet. One problem of this prior work is their
focus on reducing computational FLOPs instead of optimizing for inference latency on devices. More
recently, MnasNet [34] applied network architecture search algorithms [45] to optimize MNv2 for
both accuracy and inference latency on mobile devices, and is able to improve both while maintaining
similar FLOPs. ShuffleNet v2 [17] proposed several guidelines for designing fast networks beyond
counting FLOPs, and applied these guidelines to design architectures that are both fast and accurate
on GPUs and mobile CPUs. In this paper we propose modifications to MNv2 that make it much
faster on GPU without compromising accuracy.

3 Proposed approach

In this section we discuss our approach to trajectory prediction of VRU actors. Note that we followed
the same setup used in the previous work [6] (originally applied to vehicle actors), where the same
loss functions are used to train the CNN models. However, in this paper we demonstrate that the
methodology can be successfully applied to VRU actors, and explore two aspects of the existing
approach that are critical to model’s accuracy and inference speed. First, we experimented with
different variations of the CNN architectures, and proposed a novel architecture that reduces inference
latency without affecting accuracy. Second, we performed ablation study of different rasterization
configurations, and measured their impact on the prediction accuracy for VRU actors.

Let us assume that we have access to real-time data streams coming from sensors such as lidar, radar,
or camera, installed aboard a self-driving vehicle. In addition, assume that these inputs are used by
an existing detection and tracking system, outputting state estimates S for all surrounding actors
(state comprises the bounding box, position, velocity, acceleration, heading, and heading change rate).
Denote a set of discrete times at which tracker outputs state estimates as T = {t1, t2, . . . , tT }, where
time gap between consecutive time steps is constant (e.g., the gap is equal to 0.1s for tracker running
at a frequency of 10Hz). Then, we denote state output of a tracker for the i-th actor at time tj as sij ,
where i = 1, . . . , Nj with Nj being a number of unique actors tracked at tj . Moreover, we assume
access to detailed, high-definition map informationM of the SDV’s operating area, including road
and crosswalk locations, lane directions, and other relevant map information.

Using the state estimates and high-definition map, we rasterize an actor-specific bird’s-eye view raster
image encoding the actor’s surrounding map and traffic actors for each actor of interest (see Figure
2 for examples). Then, given i-th actor’s raster image and state estimate sij at time step tj , we use
a CNN model to predict its future state sequences up to H steps of horizon [si(j+1), . . . , si(j+H)].
Without the loss of generality, in this work we simplify the task to infer i-th actor’s future x- and
y-positions instead of full state estimates, while the remaining states can be derived by considering
sij and the future position estimates. Both past and future positions at time tj are represented in
the actor-centric coordinate system derived from actor’s state at time tj , where forward direction is
x-axis, left-hand direction is y-axis, and actor’s bounding box centroid is the origin.

Following the approach in [6] we use a MNv2 model architecture to compute future positions from
the input raster image. Below we describe improvements to this model architecture, followed by
discussion of variations in the rasterization process that were considered during the ablation study.

3.1 Improved MobileNet-v2 architecture for fast inference

In this section we propose simple modifications to the MNv2 architecture that significantly speed
up GPU inference. MNv2 is based on the inverted bottleneck block illustrated in Figure 1a. In each
block, the input feature map is first upsampled to k times more channels (k is set to 6 in the original
MNv2) with 1× 1 convolution, followed by 3× 3 depthwise convolution (DwConv) applied to the
upsampled feature map. Then, the feature map is compressed back to the original channel size using
1 × 1 convolution, and summed with the initial input through residual connection. Non-linearity
(e.g., ReLU) is applied only in the upsampled phase, as non-linearity in the bottlenecked phase
(before the upsampling or after the compression) causes too much information loss and hurts model
performance. Batch-norm (BN) is used in all 3 layers. While the majority of the FLOPs are in the
1 × 1 convolutions (i.e., 87%), the other operations are still non-negligible. As discussed in [17],

3



Inputs

Conv 1×1, BN, ReLU

DwConv 3×3, BN, ReLU

Conv 1×1, BN

Add

H×W×C

H×W×kC

H×W×kC

H×W×C

Inputs

Conv 1×1, ReLU

Conv 1×1

DwConv 3×3, Bias

Add

H×W×C

H×W×kC

H×W×C

H×W×C

Inputs

Conv 1×1, ReLU

Conv 1×1

DwConv 3×3, 
stride=2, Bias

Add

H×W×Cin

H×W×kCin

H×W×Cout

H/2×W/2×Cout

DwConv
3×3, stride=2

Conv 1×1

(a) Regular block of MNv2 (b) Regular block of FMNet (c) Stride=2 block of FMNet

Figure 1: Building blocks of MobileNet-v2 and FastMobileNet

Table 1: Base CNN architecture of FastMobileNet (upsample=6 for all FMNet blocks)

Layer Output Stride Repeats
Raster image 300× 300× 3 − −
Conv 3× 3 150× 150× 24 2 1

DwConv 3× 3 75× 75× 24 2 1
FMNet block 1 75× 75× 12 1 2
FMNet block 2 38× 38× 16 2 3
FMNet block 3 19× 19× 32 2 4
FMNet block 4 19× 19× 48 1 3
FMNet block 5 10× 10× 80 2 3
FMNet block 6 10× 10× 160 1 1

Conv 1× 1 10× 10× 640 1 1
Global average pooling 1× 1× 640 1 1

FLOPs itself is not an accurate estimator of actual latency, and another important factor is the number
of memory access operations (MAC). Operations such as DwConv, BatchNorm, ReLU, and BiasAdd,
while having small FLOPs, typically incur heavy MAC. Especially in MNv2, the operations in the
upsampled phase have k times more MAC than the same operations in the bottlenecked phase.

Compared to MNv2, in the proposed novel architecture called FastMobileNet (FMNet) we move
most of the operations originally in the upsampled phase into the bottlenecked phase, reducing their
FLOPs and MAC k times, see Figure 1b. The only remaining operation in the upsampled phase is a
ReLU. Similarly to MNv2, no ReLU is applied in the bottlenecked phase. As the layers are linear
in the bottlenecked phase we only apply one BiasAdd at the end of the block, as applying multiple
BiasAdd in consecutive linear layers does not increase model expressiveness. Note that we do not use
batch-norm in FMNet as we found the model converges well during training without it, and excessive
batch-norm operations cost additional computation time. The stride=2 block of FMNet is similar to
the regular block (see Figure 1c), except the original input is downsampled to the correct output size
for residual connection. The FMNet architecture before fully-connected and output layers (see [6] for
more details) used in this work is shown in Table 1, where the layer sizes and block repeats of the
model are based on MNv2-0.5 (i.e., MNv2 with halved channel sizes in all layers).

3.2 Rasterization

To describe rasterization, let us first introduce a concept of a vector layer, formed by a collection of
polygons and lines that belong to a common type. For example, in the case of map elements we have
vector layer of roads, of crosswalks, and so on. To rasterize vector layer into an RGB space, each
vector layer is manually assigned a color from a set of distinct RGB colors that make a difference
among layers more prominent. Once the colors are defined, vector layers are rasterized one by
one on top of each other, in the order from layers that represent larger areas such as road polygons
towards layers that represent finer structures such as lanes or actor bounding boxes. To represent
context around the i-th actor tracked at time step tj we create a rasterized image Iij of size n× n
such that the actor is positioned at pixel (w, h) within Iij , where w represents width and h height

4



Figure 2: Raster images for bicyclist actor (colored red) using resolution of 0.1m, 0.2m, and 0.3m

Figure 3: Different rasterization settings with 0.2m resolution for bicyclist example: (a) no rotation,
(b) no lane heading, (c) no traffic light, (d) learned colors

measured from the bottom-left corner of the image. We color the actor of interest differently so that it
is distinguishable from other actors.

In this study we tested several different choices of rasterization for the prediction of VRU actors. For
all rasterization methods, we maintain a constant RGB raster dimension of 300 × 300 pixels (i.e.,
n = 300). The details of each rasterization choice are discussed below.

Raster frame rotation. In the previous work [6] the raster was rotated separately for each actor,
such that the heading of each actor points up and the target actor is placed at w = 150, h = 50 (see
Fig. 2). In this way heading of the actor is encoded directly into the input, and the raster encodes more
context in front of the actor. We tested an alternative scheme where the raster frame is unrotated so
that north direction points up, and the actor is placed in the center (w = 150, h = 150, see Fig. 3a).

Raster pixel resolution. The resolution governs the extent of surrounding context seen by the model.
At 0.1m resolution, the model sees 25m in front and 5m behind the actor (assuming the rotated raster
discussed above). Larger resolution allows for larger context around the actor, however the raster
loses finer details which may be critical for accuracy. Thus, we experimented with resolutions of
0.1m, 0.2m and 0.3m, illustrated in Figure 2.

Lane direction. In the previous work [6] the direction of each lane segment was encoded as a hue
value in HSV color space with saturation and value set to maximum, followed by conversion of HSV
to RGB color space. Alternatively we can encode all lanes with a constant color, such that the raster
does not contain lane direction information (see Figure 3b without using HSV approach, as opposed
to Figure 2b where lane color indicates its heading).

Traffic lights. We use an existing traffic light classification algorithm to extract current traffic light
states from sensor inputs. To encode this info in the input raster, we plot traffic light states as a
colored circle at location where lane meets a traffic-light controlled intersection. Furthermore, we
identify inactive crosswalks and paint them green (see Figure 3c without traffic light info, as opposed
to Figure 2b). We tested if traffic light information impacts model accuracy.

Learning raster colors. In the previous work colors for each raster layer type were picked manually
[6]. An alternative approach is to have the DNN learn the colors by itself. In this study, we provided
all raster layers (e.g., road and vehicle polygons, tracked objects) to the network as separate binary-
valued channels, and added a 1× 1 convolution layer with 3 output channels and linear activation to
generate the RGB raster image (see Figure 3d for example of a learned raster). The generated RGB
image is then passed to the rest of the network as before.

5



Table 2: Comparison of various CNN architectures

Architecture Pred. error [m] Latency [ms] FLOPs Num. parameters
AlexNet 1.36 15.8 2.84G 70.3M

ResNet18 1.29 36.2 6.80G 11.7M
MNv2-0.5 1.27 21.3 322M 581k

MnasNet-0.5 1.28 18.3 335M 825k
FMNet 1.28 12.1 363M 564k

Model pre-training. We also tested one modification not related to rasterization. As the majority of
road actors are vehicles, our training dataset has a much larger number of such actors. We can thus
initialize our VRU models with a pre-trained vehicle model trained using more examples. The model
is then fine-tuned with VRU training examples until convergence.

4 Experiments

We collected 240 hours of data by manually driving SDV in various traffic conditions (e.g., varying
times of day, days of the week). The data contains significantly different number of examples for
various actor types, namely 7.8 million vehicles, 2.4 million pedestrians, and 520 thousand bicyclists.
Traffic actors were tracked using Unscented Kalman filter (UKF) [40], taking raw sensor data from
the camera, lidar, and radar, and outputting state estimates for each object at 10Hz. We considered
prediction horizon of 6s (i.e., H = 60) for VRU actors. For the default rasterization scheme (used in
the architecture experiments and as a base setting in the ablation study), we rotated raster to actor
frame with resolution of 0.2m, including both lane heading and traffic light raster layers.

We implemented models in TensorFlow [1] and trained on 16 Nvidia Titan X GPU cards. We used
open-source distributed framework Horovod [28] for training, completing in around 24 hours. We
used a per-GPU batch size of 64 and Adam optimizer [14], setting initial learning rate to 10−4 further
decreased by a factor of 0.9 every 20,000 iterations. Models were trained end-to-end from scratch.

4.1 Comparison of CNN architectures

In the first set of experiments we compared a number of CNN architectures, summarizing results
in Table 2. We trained the models on vehicle actors and set the prediction horizon to 6s. Average
prediction error and latency are reported in the table. The inference latency is measured at a batch of
32 actors on a GTX 1080Ti GPU. As our prediction algorithm performs inference for each actor in
the scene, having such a large batch size is not uncommon when SDV is driving on crowded roads.

We compared the prediction accuracy and inference latency on several base CNN architectures. We
found that our FMNet gives similar prediction accuracy as other modern architectures such as ResNet,
MNv2 and MnasNet, while being much faster in inference. In terms of the number of FLOPs and
parameters, FMNet is similar to MNv2-0.5 (which it is based on) and MnasNet-0.5, while AlexNet
and ResNet18 have much more FLOPs and parameters. It is interesting to note that AlexNet is the
second fastest CNN in our experiment while having large FLOPs (possibly because it has much fewer
layers than other considered CNNs), although its accuracy is not on par with the competing networks.
Following these results in the rasterization ablation studies we use FMNet as the model architecture.

4.2 Ablation studies on rasterization

We conducted ablation study regarding the rasterization setup, modifying various parameters of the
rasterization configuration of the base setup. Empirical results in terms of average prediction error, as
well as short- and long-term errors are given in Table 3. We see that the all variants of the proposed
CNN approach (referred to as RasterNet) significantly outperform UKF, especially at longer horizons.

First, we analyzed accuracy of the base 0.2m resolution, as compared to other resolution choices.
Resolution of 0.1m has smaller coverage, and is expected to benefit slow-moving objects such as
pedestrians. On the other hand, 0.3m resolution may benefit fast-moving objects requiring larger
coverage. For pedestrians 0.1m-resolution indeed resulted in lower error, while setting 0.3m gave
the worst performance. We observed that 0.1m showed no significant difference for bicyclists, while

6



Table 3: Comparison of prediction errors (in meters) for various experimental settings

Bicyclists Pedestrians
Approach Resolution Average @1s @5s Average @1s @5s

UKF − 2.89 0.80 6.60 0.67 0.22 1.22
RasterNet 0.1m 1.07 0.43 2.73 0.51 0.17 0.90
RasterNet 0.2m 1.07 0.44 2.72 0.52 0.18 0.93
RasterNet 0.3m 1.09 0.45 2.80 0.53 0.18 0.95

RasterNet w/o rotation 0.2m 1.29 0.49 3.30 0.58 0.20 1.02
RasterNet w/o traffic lights 0.2m 1.11 0.44 2.86 0.55 0.20 0.96

RasterNet w/o lane headings 0.2m 1.07 0.43 2.72 0.52 0.18 0.93
RasterNet with learned colors 0.2m 1.05 0.42 2.70 0.53 0.18 0.93
RasterNet with car pretraining 0.2m 1.05 0.42 2.70 0.59 0.20 1.05

0.3m resulted in slightly higher error. This may be attributed to the fact that bicyclists are not fast
enough to benefit from larger context.

Next, we evaluated the impact of not rotating raster such that actor heading points up, as discussed
in Section 3.2, which resulted in a significant drop of accuracy for both actor types. This can be
explained by the fact that, when raster is not rotated such that actor heading points up, there is a large
number of input data variations that network needs to observe to learn how actors move. In other
words, for such setup actors may move in any direction, which is not the case for rotated raster where
actors initially always move upwards, resulting in a simplified prediction problem.

We further investigated the affect of encoding traffic light info. The traffic light is important for
predicting longitudinal movement, as it can provide info about whether an actor may or may not
pass through an intersection. We observed error increase without traffic light rasterization for both
actor types, matching this intuition. Furthermore, we removed lane heading information provided in
raster images, encoded by using different colors to indicate different directions. Without lane heading
bicyclist model degraded slightly in performance, while pedestrian model was unaffected. This again
matches intuition, as bicyclists may behave as vehicles and follow lane direction, while pedestrians
do not normally use lanes. Finally, we tried learning raster colors instead of setting them manually.
The results show that learned colors slightly improved accuracy for bicyclists, whereas the pedestrian
model slightly degraded compared to the baseline. This indicates that our manual rasterization setup
captured sufficient signal when it comes to pedestrians, while for bicyclists it can be further improved.

Lastly, due to larger amount of vehicle data as compared to VRUs, instead of training from scratch
we finetuned VRU models using preloaded weights from the vehicle model. The results show that
bicyclist performance improved over the baseline, indicating that bicyclists may exhibit similar
behavior to vehicles. On the other hand the pedestrian model regressed, explained by the fact that
pedestrian motion is very different from vehicle motion making vehicle pretraining ineffective.

5 Conclusion

We presented an efficient and effective solution to motion prediction of VRU actors. This is a critical
problem in autonomous driving, as such actors have higher risk of injury and are less predictable
since they may change behavior faster than vehicles. We applied recently proposed rasterization
technique to generate raster images of actors’ surroundings encoding their context, used as input to
deep CNN trained to predict actor trajectory. Moreover, we proposed a fast architecture suitable for
real-time operations, and finally presented a detailed ablation study of various rasterization choices.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, et al. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015.

[2] A. Alahi, K. Goel, et al. Social LSTM: Human Trajectory Prediction in Crowded Spaces. IEEE, Jun 2016.

[3] I. Cara and E. d. Gelder. Classification for safety-critical car-cyclist scenarios using machine learning. In
2015 IEEE 18th International Conference on Intelligent Transportation Systems, pages 1995–2000, Sept
2015.

7



[4] S. Casas, W. Luo, and R. Urtasun. Intentnet: Learning to predict intention from raw sensor data. In
Conference on Robot Learning (CoRL), 2018.

[5] A. Constant and E. Lagarde. Protecting vulnerable road users from injury. PLOS Medicine, 7(3):1–4, 03
2010.

[6] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin, and J. Schneider. Short-term motion
prediction of traffic actors for autonomous driving using deep convolutional networks. arXiv preprint
arXiv:1808.05819, 2018.

[7] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. Social gan: Socially acceptable trajectories
with generative adversarial networks. CoRR, abs/1803.10892, 2018.

[8] G. Habibi, N. Jaipuria, and J. P. How. Context-aware pedestrian motion prediction in urban intersections.
CoRR, abs/1806.09453, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[10] D. Helbing and P. Molnár. Social force model for pedestrian dynamics. Phys. Rev. E, 51:4282–4286, May
1995.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR, abs/1704.04861,
2017.

[13] L. Huang, J. Wu, F. You, Z. Lv, and H. Song. Cyclist social force model at unsignalized intersections with
heterogeneous traffic. IEEE Transactions on Industrial Informatics, 13(2):782–792, April 2017.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[16] W. Luo, B. Yang, and R. Urtasun. Fast and furious: Real time end-to-end 3d detection, tracking and
motion forecasting with a single convolutional net. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3569–3577, 2018.

[17] N. Ma, X. Zhang, H. Zheng, and J. Sun. Shufflenet V2: practical guidelines for efficient CNN architecture
design. CoRR, abs/1807.11164, 2018.

[18] H. Manh and G. Alaghband. Scene-LSTM: A Model for Human Trajectory Prediction. ArXiv e-prints,
Aug. 2018.

[19] NCSA. 2017 fatal motor vehicle crashes: Overview. Technical Report DOT HS 812 603, National Center
for Statistics and Analysis, October 2018.

[20] N. Nikhil and B. Tran Morris. Convolutional Neural Network for Trajectory Prediction. ArXiv e-prints,
Sept. 2018.

[21] OECD. Safety of vulnerable road users. Technical Report 68074, Organisation for Economic Co-operation
and Development, Augist 1998.

[22] E. Ohn-Bar and M. M. Trivedi. Looking at humans in the age of self-driving and highly automated vehicles.
IEEE Transactions on Intelligent Vehicles, 1(1):90–104, March 2016.

[23] M. Pfeiffer, G. Paolo, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena. A data-driven model for
interaction-aware pedestrian motion prediction in object cluttered environments. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1–8, May 2018.

[24] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in neural
information processing systems, pages 305–313, 1989.

[25] E. A. I. Pool, J. F. P. Kooij, and D. M. Gavrila. Using road topology to improve cyclist path prediction. In
2017 IEEE Intelligent Vehicles Symposium (IV), pages 289–296, June 2017.

8



[26] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, S. H. Rezatofighi, and S. Savarese. SoPhie: An
Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints. ArXiv e-prints, June
2018.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and
linear bottlenecks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[28] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

[29] D. Silver, A. Huang, et al. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[30] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[31] L. Spinello, R. Triebel, and R. Siegwart. Multimodal people detection and tracking in crowded scenes. In
AAAI, 2008.

[32] J. Strauss, L. F. Miranda-Moreno, and P. Morency. Mapping cyclist activity and injury risk in a network
combining smartphone gps data and bicycle counts. Accident; analysis and prevention, 83:132–42, 2015.

[33] L. Sun, Z. Yan, S. M. Mellado, M. Hanheide, and T. Duckett. 3dof pedestrian trajectory prediction learned
from long-term autonomous mobile robot deployment data. 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1–7, 2018.

[34] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. Mnasnet: Platform-aware neural architecture
search for mobile. CoRR, abs/1807.11626, 2018.

[35] E. J. Topol. The patient will see you now: the future of medicine is in your hands. Tantor Media, 2015.

[36] C. Urmson et al. Self-driving cars and the urban challenge. IEEE Intelligent Systems, 23(2), 2008.

[37] D. Varshneya and G. Srinivasaraghavan. Human trajectory prediction using spatially aware deep attention
models. CoRR, abs/1705.09436, 2017.

[38] A. Vemula, K. Muelling, and J. Oh. Social attention: Modeling attention in human crowds. 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 1–7, 2018.

[39] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: Lessons learned from the 2015 mscoco
image captioning challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4):652–
663, 2017.

[40] E. A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In Adaptive
Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000,
pages 153–158. Ieee, 2000.

[41] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg. Who are you with and where are you going? In
CVPR 2011, pages 1345–1352, June 2011.

[42] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural network
for mobile devices. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[43] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement learning.
In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3, AAAI’08, pages
1433–1438. AAAI Press, 2008.

[44] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert, A. K. Dey, and
S. Srinivasa. Planning-based prediction for pedestrians. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3931–3936, Oct 2009.

[45] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. CoRR, abs/1611.01578,
2016.

9


	Introduction
	Related work
	Proposed approach
	Improved MobileNet-v2 architecture for fast inference
	Rasterization

	Experiments
	Comparison of CNN architectures
	Ablation studies on rasterization

	Conclusion

