
Constraint-based Causal Structure Learning with
Consistent Separating Sets

Honghao Li, Vincent Cabeli, Nadir Sella, Hervé Isambert∗
Institut Curie, PSL Research University, CNRS UMR168, Paris

{honghao.li, vincent.cabeli, nadir.sella, herve.isambert}@curie.fr

Abstract

We consider constraint-based methods for causal structure learning, such as the PC
algorithm or any PC-derived algorithms whose first step consists in pruning a com-
plete graph to obtain an undirected graph skeleton, which is subsequently oriented.
All constraint-based methods perform this first step of removing dispensable edges,
iteratively, whenever a separating set and corresponding conditional independence
can be found. Yet, constraint-based methods lack robustness over sampling noise
and are prone to uncover spurious conditional independences in finite datasets. In
particular, there is no guarantee that the separating sets identified during the itera-
tive pruning step remain consistent with the final graph. In this paper, we propose
a simple modification of PC and PC-derived algorithms so as to ensure that all
separating sets identified to remove dispensable edges are consistent with the final
graph, thus enhancing the explainability of constraint-based methods. It is achieved
by repeating the constraint-based causal structure learning scheme, iteratively,
while searching for separating sets that are consistent with the graph obtained at
the previous iteration. Ensuring the consistency of separating sets can be done at a
limited complexity cost, through the use of block-cut tree decomposition of graph
skeletons, and is found to increase their validity in terms of actual d-separation.
It also significantly improves the sensitivity of constraint-based methods while
retaining good overall structure learning performance. Finally and foremost, ensur-
ing sepset consistency improves the interpretability of constraint-based models for
real-life applications.

1 Introduction

While the oracle versions of constraint-based methods have been demonstrated to be sound and
complete (Zhang, 2008; Spirtes, Glymour, and Scheines, 2000; Pearl, 2009), a major limitation of
these methods is their lack of robustness with respect to sampling noise for finite datasets. This
has largely limited their use to analyze real-life data so far, although important advances have been
made lately, in particular, to limit the order-dependency of constraint-based methods (Colombo
and Maathuis, 2014) or to improve their robustness to sampling noise by recasting them within a
maximum likelihood framework (Affeldt and Isambert, 2015; Affeldt, Verny, and Isambert, 2016).

However, it remains that constraint-based methods still lack graph consistency, in practice, as they do
not guarantee that the learnt structures belong to their presumed class of graphical models, such as a
completed partially directed acyclic graph (CPDAG) model for the PC (Spirtes and Glymour, 1991;
Kalisch and Bühlmann, 2008; Kalisch et al., 2012) or IC (Pearl and Verma, 1991) algorithms, or a
partial ancestral graph (PAG) for FCI or related constraint-based algorithms allowing for unobserved
latent variables (Spirtes, Meek, and Richardson, 1999; Richardson and Spirtes, 2002; Colombo et
al., 2012; Verny et al., 2017; Sella et al., 2018). By contrast, search-and-score structure learning

∗corresponding author

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

methods (Koller and Friedman, 2009) inherently enforce graph consistency by searching structures
within the assumed class of graphs, e.g., within the class of directed acyclic graphs (DAG). Similarly,
hybrid methods such as MMHC (Tsamardinos, Brown, and Aliferis, 2006) can also ensure graph
class consistency by maximizing the likelihood of edge orientation within the class of DAGs.

This paper concerns, more specifically, the inconsistency of separating sets used to remove dis-
pensable edges, iteratively, based on conditional independence tests. This inconsistency arises as
some separating sets might no longer be compatible with the final graph, if they were not already
incompatible with the current skeleton, when testing for conditional independence during the pruning
process. It occurs, for instance, when a node in a separating set is not on any indirect path linking the
extremities of a removed edge, as noted in (Spirtes, Glymour, and Scheines, 2000). Such inconsis-
tencies can be seen as a major shortcoming of constraint-based methods, as the primary motivation
to learn and visualize graphical models is arguably to be able to read off conditional independences
directly from the graph structure (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009).

In the following, we propose a simple modification of PC or PC-derived algorithms so as to ensure
that all conditional independences identified and used to remove dispensable edges are consistent
with the final graph. It is achieved by repeating the constraint-based causal structure learning scheme,
iteratively, while searching for separating sets that are consistent with the graph obtained at the
previous iteration, until a limit cycle of successive graphs is reached. The union of the graphs over this
limit cycle is then guaranteed to be consistent with the separating sets and corresponding conditional
independences used to remove all dispensable edges from the initial complete graph. Enforcing
sepset consistency of constraint-based methods is found to limit their tendency to uncover spurious
conditional independences early on in the pruning process when the combinatorial space of possible
separating sets is still large. As a result, enforcing sepset consistency reduces the large number
of false negative edges usually predicted by constraint-based methods (Colombo and Maathuis,
2014) and, thereby, achieve a better balance between their sensitivity and precision. Ensuring the
consistency of separating sets is also found to increase their validity in terms of actual d-separation
and, therefore, to improve the interpretability of constraint-based models for real-life applications.
Moreover, ensuring the consistency of separating sets can be done at a limited complexity cost,
through the use of block-cut tree decomposition of graph skeletons, which enables to learn causal
structures with consistent separating sets for a few hundred nodes. By contrast, earlier methods
aiming at reducing the number of d-separation conflicts or other structural inconsistencies through
SAT-based approaches, e.g. (Hyttinen et al., 2013), have a much larger complexity burden, which
limits their applications to very small networks in practice.

2 Result

2.1 Background

2.1.1 Terminology

A graph G(V ,E) consists of a vertex set V = {X1, · · · , Xp} and an edge set E. All graphs
considered here have at most one edge between any pair of vertices. A walk is a sequence of edges
joining a sequence of vertices. A trail is a walk without repeated edge. A path is a trail without
repeated vertices. A cycle is a trail in which the only repeated vertices are the first and last vertices.
Vertices are said to be adjacent if there is an edge between them. If all pairs of vertices in a graph
are adjacent, it is called a complete graph and is denoted by Gc. By constrast, an empty graph,
denoted by G∅, consists of isolated vertices with no edges. The adjacency set of a vertex Xi in a
graph G, denoted by adj(G, Xi), is the set of all vertices in V that are adjacent to Xi in G. If an edge
is directed, as X → Y , X is a parent of Y and Y a child of X . A collider is a triple (Xi, Xj , Xk) in
a graph where the edges are oriented as Xi → Xk ← Xj . A v-structure is a collider for which Xi

and Xj are not adjacent. Given a statistical significance level α, the conditional independence of
a pair of variables (Xi, Xj) given a set of variables C, is denoted by (Xi ⊥⊥ Xj |C)α, where C is
called a separating set or “sepset” for (Xi, Xj).

2.1.2 The PC and PC-stable Algorithms

The PC algorithm (Spirtes and Glymour, 1991), outlined in algorithm 1, is the archetype of constraint-
based structure learning methods (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009), as illustrated

2

in Figure 1. Given a dataset over a set of variables (vertices), it starts from a complete graph G. By
a series of statistical tests on each pair of variables, all dispensable edges X Y are removed if
a (conditional) independence and separating set C can be found, i.e. (X ⊥⊥ Y | C) (step 1). The
resulting undirected graph is called the skeleton. V-structures are then identified, X → Z ← Y ,
if (X ⊥⊥ Y | C) and Z /∈ C (step 2). Additional assumptions (e.g., acyclicity) allow for the
propagation of v-structure orientations to some of the remaining undirected edges (Zhang, 2008)
(step 3).

Algorithm 1 The PC Algorithm
Require: V ,D(V), significance level α

Step 1: Find the graph skeleton and separating sets of removed edges
Step 2: Orient v-structures based on separating sets
Step 3: Propagate orientations of v-structures to as many remaining undirected edges as possible
return Output graph

1 1 1 12 2 2 2

3 3 3 3

4 4 4 45 5 5 5

6 6 6 6

Complete graph Skeleton Identify V-structures Propagation

Step 1 Step 2 Step 3

Figure 1: General procedure of constraint-based structure learning.

While the oracle version of the PC-algorithm has been shown to be sound and complete, its application
is known to be sensitive to the finite size of real life datasets. In particular, the PC-algorithm in its
original implementation (Spirtes, Glymour, and Scheines, 2000) is known to be order-dependent,
in the sense that the output depends on the lexicographic order of the variables. This issue can
be circumvented, however, for the first step of algorithm 1 with a simple modification given in
algorithm 2 and referred to as Step 1 of PC-stable algorithm (Colombo and Maathuis, 2014).

Algorithm 2 Find skeleton and separating sets (Step 1 of PC-stable algorithm)
Require: Conditional independence assessment between all variables V with significance level α
G ← Gc

� ← −1
repeat

� ← �+ 1
for all vertices Xi ∈ G do
end for
a(Xi) = adj(G, Xi)
repeat

select a new pair of vertices (Xi, Xj) adjacent in G and satisfying |a(Xi)\{Xj}| ≥ �
repeat

choose new C⊆a(Xi)\{Xj}, |C|=�
if (Xi ⊥⊥ Xj |C)α then

Delete edge Xi Xj from G
Sepset(Xi, Xj | G) = Sepset(Xj , Xi | G) ← C

end if
until Xi and Xj are no longer adjacent in G or all C ⊆ a(Xi)\{Xj} with |C| = � have

been considered
until all pairs of adjacent vertices (Xi, Xj) in G with |a(Xi)\{Xj}| ≥ � have been considered

until all pairs of adjacent vertices (Xi, Xj) in G satisfy |a(Xi)\{Xj}| ≤ �
return G, sepsets

3

2.2 The Consistent PC Algorithm

2.2.1 Lack of Robustness and Consistency of Constraint-based Methods

Beyond the order-dependence of the PC Algorithm, the general lack of robustness of constraint-based
methods stems from their tendency to uncover spurious conditional independences (false negatives)
between variables. This trend originates from the fact that conditioning on other variables amounts to
“slicing” the available data into smaller and smaller subsets, corresponding to different combinations
of categories or discrete values of the conditioning variables, over which independence tests are
essentially “averaged” to assess conditional independence.

Hence, by making sure that all separating sets are actually consistent with the final graph, one expects
to reduce the number of false negative edges due to spurious conditional independences inferred
during the edge pruning process and, thereby, to improve the sensitivity (or recall) of the PC or
PC-stable algorithms.

The inconsistency of separating sets can be of different forms, regarding either the skeleton (type I)
or the final (partially) oriented graph (type II), as illustrated on Figure 1.

A type I inconsistency corresponds to a conditional independence relation such as (2 ⊥⊥ 6 | 3) in
Figure 1, for which there is no path between vertex 2 and 6 that passes through 3. This type of
inconsistency often involves edges evaluated early on in the pruning process when few edges have
been removed, and thus the combinatorial space of possible separating sets is still large. In particular,
edge 3 6, which is eventually removed in the final graph, may still exist when the edge 2 6 is
under consideration.

A type II inconsistency is a different kind of incompatibility originating from the orientation of the
skeleton. It occurs, in particular, when a conditional independence relation is conditioned on at least
one common descendant of the pair of interest in the final graph, e.g. (3 ⊥⊥ 6 | 1) in Figure 1. Since it
stems from the orientation of edges (steps 2&3), the origin of type II inconsistencies is generally more
complex and results from a cascade of errors in both conditional independence tests and orientation.

These two types of inconsistency help define the following consistent set for candidate nodes of
separating sets in absence of latent variables:

Definition 1 (Consistent set). Given a graph G(V ,E) and a set of variables {X,Y, Z } ⊆ V ,

Consist(X,Y | G) = {Z ∈ adj(X) \ {Y } | 1. at least one path γZ
XY exists in G;

2. Z is not a child of X in G }
where γZ

XY is a path from X to Y passing through Z. Note that for an undirected graph, the second
condition is always satisfied.

2.2.2 Consistent PC Pseudocodes

Definition 2. NewStep1(G1|G2) is a modified version of PC-stable step 1 (algorithm 2) where,

1. Gc is replaced by G1, and

2. a(Xi) \ {Xj} is replaced by a(Xi) \ {Xj} ∩ Consist(Xi, Xj | G2)

Note that algorithm NewStep1(Gc|Gc) corresponds to the unmodified step 1 of original PC-stable
algorithm 2. By constrast, algorithm NewStep1(Gc|G∅) removes all edges corresponding to indepen-
dence without conditioning, as no separating set is involved. This unconditional independence search
will be noted step 1a, while the subsequent conditional independence search will be referred to as
step 1b, thereafter.

Definition 3. S(G1|G2) is a modified version of the PC-stable algorithm, where step 1 in algorithm 1
is replaced by NewStep1(G1|G2) from definition 2.

Then, definition 3 allows to define algorithm 3, which ensures a consistent constraint-based algorithm
through an iterative call of S algorithms, (Sk)k∈N� , following an initial step 1a, NewStep1(Gc|G∅).
As illustrated on Figure 2 and proved below, algorithm 3 achieves separating set consistency by
repeating step 1b and step 2&3, iteratively, while searching for separating sets that are consistent
with the graph obtained at the previous iteration, until a limit cycle of successive graphs is reached.

4

1 1 1 12 2 2 2

3 3 3 3

4 4 4 45 5 5 5

6 6 6 6

Gc G0 = NewStep1(Gc|G∅) Gk = NewStep1(G0|Gk−1) Gk = Sk(G0|Gk−1)

Step 1a Step 1b Step 2&3

Algorithm 4

Algorithm 3

Figure 2: Illustration of the iterative procedure to learn graphical models with orientation-consistent
(algorithm 3) or skeleton-consistent (algorithm 4) separating sets. Dashed edges mark the difference
between two successive iterations. Proof of separating set consistency is given in theorem 4.

Algorithm 3 Sepset consistent PC algorithm (1st version, orientation consistency)
Require: V ,D(V), significance level α
Ensure: G with consistent separating sets
G0 ← NewStep1(Gc|G∅)
k ← 0
repeat

k ← k + 1
Gk ← Sk(G0|Gk−1)

until loop detected, i.e., ∃n > 0,Gk−n = Gk

G ← �
(Gj)

k
j=k−n, with discarded conflicting orientations

return G and consistent separating sets

Alternatively, one may require a separating set consistency at the level of the skeleton only, i.e., before
the orientation steps, which corresponds to algorithm 4, below. Indeed, early sepset inconsistencies at
the level of the skeleton might cause orientation errors, which in turn can lead to the rejection of valid
consistent separating sets in algorithm 3. As outlined in Figure 2, the modification of algorithm 4
only concerns step 1b, which is called iteratively until a limit cycle is reached. Then, the orientation
steps 2&3 are performed as for classical PC or PC-derived algorithms, but using consistent separating
sets with respect to the union of skeletons returned by the iterative call of step 1b in algorithm 4.
However, as the orientation steps 2&3 might induce additional type II inconsistencies, algorithm 4
requires a final consistency check for all separating sets with respect to the final graph G.

Algorithm 4 Sepset consistent PC algorithm (2nd version, skeleton consistency)
Require: V ,D(V), significance level α
Ensure: G with consistent separating sets
G0 ← NewStep1(Gc|G∅)
k ← 0
repeat

k ← k + 1
Gk ← NewStep1(G0|Gk−1)

until loop detected, i.e., ∃n > 0,Gk−n = Gk

G ← �
(Gj)

k
j=k−n and consistent separating sets with respect to the graph skeleton G

Step 2 (orientation of v-structures in G)
Step 3 (propagation of orientations in G)
for all removed edges (X,Y) in G do

Sepset(X,Y | G) ← Sepset(X,Y | Gk)
if Sepset(X,Y | G) � Consist(X,Y | G) and Sepset(X,Y | G) � Consist(Y,X | G) then

Add undirected edge (X,Y) to G
end if

end for
return G and consistent separating sets

5

Theorem 4. The separating sets returned by algorithms 3 and 4 are consistent with respect to the
final graph G.

Proof. Firstly, the limit cycles in algorithms 3 and 4 are warranted to be finite by the deterministic
nature of these algorithms and the finite set of graphs Gj .

In algorithm 3, as the union of graphs
�

(Gj)
k
j=k−n does not remove any edge from the last graph

Gk and discards all conflicting orientations with previous graphs Gj , j ∈ { k − n, k − 1 }, taking the
union of graphs does not create any new conditional independence relation, nor any inconsistency
regarding the final separating sets. More precisely, all removed edges in Gk have separating sets
consistent with respect to at least one graph in the union (Gk−1), which is thus also consistent with
respect to the union of graphs G.

In algorithm 4, the consistency of separating sets is guaranteed by similar arguments, but only with
respect to the skeleton. As the orientation and propagation steps 2&3 might induce additional type II
inconsistencies, algorithm 4 requires a final consistency check for all separating sets. Adding back
edges with inconsistent separating sets in the final graph G then guarantees that all the separating sets
are consistent with respect to definition 1.

2.2.3 Tests of Consistency

A unitary operation of algorithms 3 and 4 is to test, for a vertex Z ∈ adj(X) \ {Y } in G, if
Z ∈ Consist(X,Y | G), which requires that 1) at least one path from X to Y passing through Z
(i.e. γZ

XY) exists in G and 2) Z is not a child of X in G (definition 1).

To test the first condition, it is conceptually simple to first get all paths between X and Y , then check
if Z lies in at least one of them, This is however unfeasible as the complexity of getting all paths
between two vertices can be large, depending on the edge density of the graph. Fortunately, it is
possible to get directly the set of all Z for which at least on path γZ

XY exists. This can be done very
efficiently with the help of biconnected component analysis based on block-cut tree decomposition,
as detailed in Supplementary Material.

The second condition assumes the absence of latent variables, which allows for condition indepen-
dence tests on adjacent nodes only in algorithm 2. It is thus straightforward to test without additional
complexity burden.

Hence, the overall complexity of the consistency tests of separating sets relies on the block-cut tree
decomposition, which can be done beforehand within a single depth first search with complexity
O(|V |+ |E|). Thus for each pair (X,Y), the complexity of finding all candidate Z depends on the
size of the block-cut tree, which is in the worst case (when the underlying skeleton is a forest) linear
in the size of the graph, O(|V |+ |E|), see Supplementary Material.

2.3 Empirical Evaluation

We conducted a series of benchmark structure learning simulations to study the differences between
the original PC-stable algorithm and the proposed modifications ensuring consistent separating sets.

For each simulation setting, we first quantified the fraction of inconsistent separating sets predicted
by the original PC-stable algorithm, Figure 3. We then compared the performance of the original
PC-stable (algorithm 1 and algorithm 2), orientation-consistent PC-stable (algorithm 3) and skeleton-
consistent PC-stable (algorithm 4), for different significance levels α, in terms of the precision and
recall of the adjacencies found in the inferred graph with respect to the true skeleton, Figures 4 and 5.
Figure 4 highlights situations for which the original PC manages to recover a DAG that is already
closely related to the ground truth but produces inconsistent separating sets, as shown in Figure 3. By
constrast, Figure 5 highlights standard benchmarks from the BNlearn repository (Scutari, 2010) for
which the original PC show a poor Recall due to too many spurious conditional independences, and
ultimately outputs a graph with only a few obvious edges. Finally, we also measured the fraction
of the separating sets used for discarding edges by the three approaches that correspond to true
D-separation in the ground-truth DAG, Figure 6.

6

2.3.1 Data generation and benchmarks

The data-sets used for the numerical experiments were generated with the following scheme. The
underlying DAGs were generated with TETRAD (Scheines et al., 1998) as scale-free DAGs with
50 nodes (α = 0.05, β = 0.4, average total degree d(G) = 1.6) using a preferential attachment
model and orienting its edges based on a random topological ordering of the vertices. Data-sets
were simulated with linear structural equation models for three settings : strong, medium and weak
interactions (with respective coefficient ranges [0.2, 0.7], [0.1, 0.5], and [0, 0.3] and covariance ranges
[0.5, 1.5], [0.5, 1], and [0.2, 0.7]). In addition, we also generated data-sets for the classical benchmarks
Insurance (27 nodes, 52 links, 984 paramaters), Hepar2 (70 nodes, 123 links, 1453 paramaters) and
Barley (48 nodes, 84 links, 114005 paramaters) networks from the Bayesian Network repository
(Scutari, 2010).

Reconstruction benchmarks were performed with pcalg’s (Kalisch et al., 2012) PC-stable imple-
mentation, modified for enforcing separating set consistency either taking into account orientations
(algorithm 3) or at the level of the skeleton (algorithm 4). The (conditional) independence test used
in all simulations is a linear (partial) correlation with Fisher’s z-transformation. Performances are
obtained with relation to the true skeleton by measuring the Precision (positive predictive value),
Prec = TP/(TP + FP) and Recall or Sensitivity (true positive rate), Rec = TP/(TP + FN)
where TP is a correctly predicted adjacency, FP an incorrectly predicted adjacency and FN an
incorrectly discarded adjacency.

2.3.2 Benchmark Results

The fraction of inconsistent separating sets that were used to remove edges was first estimated for
increasing sample size and varying parent-child interaction strength, using the original PC-stable
algorithm for random and scale-free DAGs of 50 nodes, Figure 3. We note that in typical settings, a
significant fraction of the separating sets that were used to remove edges during Step 1 of the PC-stable
algorithm cannot be "read off" the returned graph, either because there is no path containing Z that
connects X and Y (skeleton inconsistency, green in Figure 3) or because there is a conditioning on an
invalid child node (orientation inconsistency, i.e., difference between blue and green inconsistencies
in Figure 3). Both increasing the sample size and increasing the interaction strength reduces the
number of inconsistent sepsets. We attribute this in part to the severity of the PC-stable algorithm
which tends to remove to many false negative edges because of spurious inconsistencies. With a
larger sample size N and stronger interactions, consistent separating sets are still not guaranteed
by the original algorithm but these settings decrease the number of spurious independencies and
leads to denser reconstructed graphs, thus making it more likely for potential separating sets to be
consistent. Orientation consistency is particularly difficult to obtain with respect to the returned
CPDAG, as orientation and propagation steps generally suffer even more from sampling noise and
previous mistakes than the skeleton reconstruction (Step 1). Notably, the orientation depends on
the order in which separating sets are tested in PC-stable (in pcalg it depends on the ordering of the
variables in the data-set).

0

25

50

75

100

100 1000 10000
N

Pe
rc

en
t o

f i
nc

on
si

st
en

t s
ep

ar
at

io
n

se
ts

0

25

50

75

100

100 1000 10000
N

er
ce

nt
 o

f i
nc

on
si

st
en

t s
ep

ar

0

25

50

75

100

100 1000 10000
N

er
ce

nt
 o

f i
nc

on
si

st
en

t s
ep

ar

Figure 3: Sepset inconsistency of the original PC-stable algorithm. In each subplot the fraction of inconsis-
tent separating sets with respect to the skeleton (green) or CPDAG (blue) obtained with the original PC-stable
algorithm with a fixed α = 0.05 is displayed for increasing sample size N . Data-sets were generated from 100
scale-free graphs of 50 nodes and d(G) = 1.6 with different parent-child interaction strengths : strong (left),
medium (middle) and weak (right).

7

We then compared the performance of the original PC-stable (algorithm 1 and algorithm 2),
orientation-consistent PC-stable (algorithm 3) and skeleton-consistent PC-stable (algorithm 4), for
different significance levels α, in terms of the precision and recall of the adjacencies found in the
inferred graph with respect to the true skeleton, Figures 4, 5 and S1. Enforcing the sepset consistency
is shown to significantly improve the sensitivity of constraint-based methods, for a given α, while
achieving equivalent or better overall structure learning performance.

It is particularly the case for standard benchmark networks from the BNlearn repository (Scutari,
2010), Figure 5, for which the original PC-stable algorithm shows good precision but poor recall
(Rec<0.15-0.35 and Prec>0.65 at maximum Fscore, see iso-Fscore dotted lines in Figure 5), while con-
sistent PC-stable achieves a better balance between precision and recall (Rec�0.5 and Prec�0.5-0.6
at maximum Fscore, Figure 5).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

Figure 4: Precision-recall curves for the original PC-stable (yellow), skeleton-consistent PC-stable
(green) and orientation-consistent PC-stable (blue). The mean performances and standard deviations (error
bars) obtained over 100 networks are shown for 7 values of the (conditional) independence significance threshold
α between 10−5 and 0.2 Data-sets with N=500 samples were generated from the same graphs as in Figure 3
with strong (left), medium (middle) and weak (right) interactions. See Figure S1 for N=100, 1000.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

Figure 5: Precision-recall curves for the original PC-stable (yellow), skeleton-consistent PC-stable
(green) and orientation-consistent PC-stable (blue). The mean performances and standard deviations (error
bars) obtained over 100 networks are shown for 12 values of the (conditional) independence significance
threshold α between 10−25 and 0.5 (1e-25 1e-20 1e-17 1.0e-15 1.0e-13 1.0e-10 8.7e-09 7.6e-07 6.6e-05 5.7e-03
5.0e-02 5.0e-01). Data-sets with N=1000 samples were generated for the standard benchmarks Hepar2 (left),
Insurance (middle) and Barley (right) networks from the BNlearn repository (Scutari, 2010).

Finally, we also compared the fraction of valid separating sets used for discarding edges, which entail
true d-separation in the ground-truth DAG, Figures 6 and S2. Ensuring the consistency of separating
sets tends to increase, although not guarantee, their validity in terms of actual d-separation. Consistent
sepsets with invalid d-separation are primarily caused by edge mis-orientations rather than skeleton
errors. In particular, skeleton-consistent separating sets yield better performance in terms of valid
d-separation than orientation-consistent separating sets with the setting of the PC-stable algorithm
used here. This is, however, expected to depend on the specific settings for conditional independence
test, orientation and propagation rules, used in different constraint-based methods.

3 Conclusion
In this paper, we propose and implement simple modifications of the PC algorithm also applicable to
any PC-derived constraint-based methods, in order to enforce the consistency of the separating sets

8

0.4

0.6

0.8

1.0

Original PC Orientation Skeleton

P(
Tr

ue
 D

−s
ep

ar
at

io
n)

0.00

0.25

0.50

0.75

1.00

Original PC Orientation Skeleton

P(
T

ue
 D

−s
ep

ar
at

io
n)

0.00

0.25

0.50

0.75

1.00

Original PC Orientation Skeleton

P(
T

ue
 D

−s
ep

ar
at

io
n)

0.5

0.6

0.7

0.8

0.7 0.8 0.9 1.0
Recall

P(
Tr

ue
 D

−s
ep

ap
ra

tio
n)

0.2

0.4

0.6

0.8

0.6 0.7 0.8 0.9 1.0
Recall

P(
T

ue
 D

−s
ep

ap
ra

tio
n)

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8
Recall

P(
T

ue
 D

−s
ep

ap
ra

tio
n)

Figure 6: Proportion of valid d-separation sepsets among edge-removing sepsets. Top row shows the
proportion of sepsets that correspond to a valid d-separation in the true DAG that were used for removing edges
during Step 1 of original, orientation-consistent and skeleton-consistent PC-stable algorithms for all tested α.
Bottom row shows the average proportion of valid d-separation for a given average recall over all tested values of
α. Data-sets with N=500 were generated from 100 DAGs with linear SEMs with strong (left), medium (middle)
and weak (right) interaction (see Figure S2 for N=100, 1000).

of discarded edges with respect to the final graph, which is an actual shortcoming of constraint-based
approaches, Figure 3. Enforcing sepset consistency is shown to significantly improve the sensitivity of
constraint-based methods, while achieving equivalent or better overall structure learning performance,
Figures 4, 5 and S1. In addition, ensuring the consistency of separating sets increases also their
validity in terms of actual d-separation, Figures 6 and S2.

The existence of sepset inconsistencies with constraint-based methods originates from their tendency
to uncover spurious conditional independences early on in the pruning process when the combinatorial
space of possible separating sets is still large, unlike in the final typically sparse skeleton. Such
spurious conditional independences are responsible, in particular, for the large number of false
negative edges and, therefore, frequently poor sensitivity of constraint-based methods (Colombo
and Maathuis, 2014). By contrast, enforcing sepset consistency enables to achieve a better balance
between sensitivity and precision.

To circumvent this inconsistency issue during the skeleton step, we have shown that one can either use
sepset consistency taking into account orientations to help reject inconsistent sepsets (algorithm 3)
or use sepset consistency of the skeleton to help determine the orientations (algorithm 4). The later
approach tends to yield slightly better performance with the setting of the PC-stable algorithm used
here but this is expected to be dependent on the specific settings used, for conditional independence
test, orientation and propagation rules, in different constraint-based methods.

Indeed, the methods and algorithmic implementations presented here are not primarily meant to out-
compete a specific PC or PC-derived algorithm but rather to improve the explainability of constraint-
based methods, by ensuring the consistency of all separating sets in the final causal graphs.

The approach is very general and applicable to the large variety of constraint-based methods, starting
with a complete graph and discarding dispensable edges iteratively based on conditional independence
search. Beyond the formal interest of guaranteeing sepset consistency, this is also especially important,
in practice, for the interpretability of constraint-based models for real-life applications.

Acknowledgements
The authors acknowledge financial support from the French Ministry of Higher Education and
Research, PSL Research University and Sorbonne University.

9

References
Affeldt, S., and Isambert, H. 2015. Robust reconstruction of causal graphical models based on

conditional 2-point and 3-point information. In Proceedings of the Thirty-First Conference on
Uncertainty in Artificial Intelligence, UAI 2015, 42–51.

Affeldt, S.; Verny, L.; and Isambert, H. 2016. 3off2: A network reconstruction algorithm based on
2-point and 3-point information statistics. BMC Bioinformatics 17(S2).

Colombo, D., and Maathuis, M. H. 2014. Order-independent constraint-based causal structure
learning. Journal of Machine Learning Research 15:3741–3782.

Colombo, D.; Maathuis, M. H.; Kalisch, M.; and Richardson, T. S. 2012. Learning high-dimensional
directed acyclic graphs with latent and selection variables. Ann. Statist. 40(1):294–321.

Hyttinen, A.; Hoyer, P. O.; Eberhardt, F.; and Järvisalo, M. 2013. Discovering cyclic causal
models with latent variables: A general sat-based procedure. In Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence, UAI’13, 301–310. Arlington, Virginia, United
States: AUAI Press.

Kalisch, M., and Bühlmann, P. 2008. Robustification of the pc-algorithm for directed acyclic graphs.
Journal Of Computational And Graphical Statistics 17(4):773–789.

Kalisch, M.; Mächler, M.; Colombo, D.; Maathuis, M. H.; and Bühlmann, P. 2012. Causal inference
using graphical models with the R package pcalg. J. Stat. Softw. 47(11):1–26.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques.
MIT Press.

Pearl, J., and Verma, T. 1991. A theory of inferred causation. In Proceedings of the Second
International Conference on Principles of Knowledge Representation and Reasoning, 441–452.
Morgan Kaufmann Publishers Inc.

Pearl, J. 2009. Causality: models, reasoning and inference. Cambridge University Press, 2nd edition.

Richardson, T., and Spirtes, P. 2002. Ancestral graph markov models. Ann. Statist. 30(4):962–1030.

Scheines, R.; Spirtes, P.; Glymour, C.; Meek, C.; and Richardson, T. 1998. The tetrad project:
Constraint based aids to causal model specification. Multivariate Behavioral Research 33(1):65–
117.

Scutari, M. 2010. Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical
Software 35(3):1–22.

Sella, N.; Verny, L.; Uguzzoni, G.; Affeldt, S.; and Isambert, H. 2018. Miic online: a web
server to reconstruct causal or non-causal networks from non-perturbative data. Bioinformatics
34(13):2311–2313.

Spirtes, P., and Glymour, C. 1991. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review 9:62–72.

Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation, Prediction, and Search. The MIT Press,
Cambridge, Massachusetts, 2nd edition.

Spirtes, P.; Meek, C.; and Richardson, T. 1999. An algorithm for causal inference in the presence of
latent variables and selection bias. In Computation, Causation, and Discovery. Menlo Park, CA:
AAAI Press. 211–252.

Tsamardinos, I.; Brown, L. E.; and Aliferis, C. F. 2006. The Max-Min Hill-Climbing Bayesian
Network Structure Learning Algorithm. Machine Learning 65(1):31–78.

Verny, L.; Sella, N.; Affeldt, S.; Singh, P. P.; and Isambert, H. 2017. Learning causal networks with la-
tent variables from multivariate information in genomic data. PLoS Comput. Biol. 13(10):e1005662.

Zhang, J. 2008. On the completeness of orientation rules for causal discovery in the presence of
latent confounders and selection bias. Artif. Intell. 172(16-17):1873–1896.

10

