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ABSTRACT

We introduce a new memory architecture for navigation in previously unseen envi-
ronments, inspired by landmark-based navigation in animals. The proposed semi-
parametric topological memory (SPTM) consists of a (non-parametric) graph with
nodes corresponding to locations in the environment and a (parametric) deep net-
work capable of retrieving nodes from the graph based on observations. The graph
stores no metric information, only connectivity of locations corresponding to the
nodes. We use SPTM as a planning module in a navigation system. Given only 5
minutes of footage of a previously unseen maze, an SPTM-based navigation agent
can build a topological map of the environment and use it to confidently navigate
towards goals. The average success rate of the SPTM agent in goal-directed nav-
igation across test environments is higher than the best-performing baseline by a
factor of three.

1 INTRODUCTION

Deep learning (DL) has recently been used as an efficient approach to learning navigation in complex
three-dimensional environments. DL-based approaches to navigation can be broadly divided into
three classes: purely reactive (Dosovitskiy & Koltun, 2017; Zhu et al., 2017), based on unstructured
general-purpose memory such as LSTM (Mnih et al., 2016; Mirowski et al., 2017), and employing
a navigation-specific memory structure based on a metric map (Parisotto & Salakhutdinov, 2018;
Gupta et al., 2017).

However, extensive evidence from psychology suggests that when traversing environments, animals
do not rely strongly on metric representations (Gillner & Mallot, 1998; Wang & Spelke, 2002; Foo
et al., 2005). Rather, animals employ a range of specialized navigation strategies of increasing com-
plexity. According to Foo et al. (2005), one such strategy is landmark navigation – “the ability to
orient with respect to a known object”. Another is route-based navigation that “involves remember-
ing specific sequences of positions”. Finally, map-based navigation assumes a “survey knowledge
of the environmental layout”, but the map need not be metric and in fact it is typically not: “[. . .] hu-
mans do not integrate experience on specific routes into a metric cognitive map for navigation [. . .]
Rather, they primarily depend on a landmark-based navigation strategy, which can be supported by
qualitative topological knowledge of the environment.”

In this paper, we propose semi-parametric topological memory (SPTM) – a deep-learning-based
memory architecture for navigation, inspired by landmark-based navigation in animals. SPTM con-
sists of two components: a non-parametric memory graph G where each node corresponds to a
location in the environment, and a parametric deep network R capable of retrieving nodes from the
graph based on observations. The graph contains no metric relations between the nodes, only con-
nectivity information. While exploring the environment, the agent builds the graph by appending
observations to it and adding shortcut connections based on detected visual similarities. The net-
work R is trained to retrieve nodes from the graph based on an observation of the environment. This
allows the agent to localize itself in the graph. Finally, we build a complete SPTM-based navigation
agent by complementing the memory with a locomotion network L, which allows the agent to move
between nodes in the graph. The R and L networks are trained in self-supervised fashion, without
any manual labeling or reward signal.
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We evaluate the proposed system and relevant baselines on the task of goal-directed maze navigation
in simulated three-dimensional environments. The agent is instantiated in a previously unseen maze
and given a recording of a walk through the maze (images only, no information about actions taken
or ego-motion). Then the agent is initialized at a new location in the maze and has to reach a goal
location in the maze, given an image of that goal. To be successful at this task, the agent must
represent the maze based on the footage it has seen, and effectively utilize this representation for
navigation.

The proposed system outperforms baseline approaches by a large margin. Given 5 minutes of maze
walkthrough footage, the system is able to build an internal representation of the environment and
use it to confidently navigate to various goals within the maze. The average success rate of the
SPTM agent in goal-directed navigation across test environments is higher than the best-performing
baseline by a factor of three. Qualitative results and an implementation of the method are available
at https://sites.google.com/view/SPTM.

2 RELATED WORK

Navigation in animals has been extensively studied in psychology. Tolman (1948) introduced the
concept of a cognitive map – an internal representation of the environment that supports navigation.
The existence of cognitive maps and their exact form in animals, including humans, has been debated
since. O’Keefe & Nadel (1978) suggested that internal representations take the form of metric maps.
More recently, it has been shown that bees (Cartwright & Collett, 1982; Collett, 1996), ants (Judd
& Collett, 1998), and rats (Sutherland et al., 1987) rely largely on landmark-based mechanisms
for navigation. Bennett (1996) and Mackintosh (2002) question the existence of cognitive maps in
animals. Gillner & Mallot (1998), Wang & Spelke (2002), and Foo et al. (2005) argue that humans
rely largely on landmark-based navigation.

In contrast, navigation systems developed in robotics are typically based on metric maps, constructed
using the available sensory information – sonar, LIDAR, RGB-D, or RGB input (Elfes, 1987; Thrun
et al., 2005; Durrant-Whyte & Bailey, 2006). Particularly relevant to our work are vision-based
simultaneous localization and mapping (SLAM) methods (Cadena et al., 2016). These systems
provide high-quality maps under favorable conditions, but they are sensitive to calibration issues, do
not deal well with poor imaging conditions, do not naturally accommodate dynamic environments,
and can be difficult to scale.

Modern deep learning (DL) methods allow for end-to-end learning of sensorimotor control, directly
predicting control signal from high-dimensional sensory observations such as images (Mnih et al.,
2015). DL approaches to navigation vary both in the learning method – reinforcement learning or
imitation learning – and in the memory representation. Purely reactive methods (Dosovitskiy &
Koltun, 2017; Zhu et al., 2017) lack explicit memory and do not navigate well in complex environ-
ments (Savva et al., 2017). Systems equipped with general-purpose LSTM memory (Mnih et al.,
2016; Pathak et al., 2017; Jaderberg et al., 2017; Mirowski et al., 2017) or episodic memory (Blun-
dell et al., 2016; Pritzel et al., 2017) can potentially store information about the environment. How-
ever, these systems have not been demonstrated to perform efficient goal-directed navigation in
previously unseen environments, and empirical results indicate that LSTM-based systems are not up
to the task (Savva et al., 2017). Oh et al. (2016) use an addressable memory for first-person-view
navigation in three-dimensional environments. The authors demonstrate that the proposed memory
structure supports generalization to previously unseen environments. Our work is different in that
Oh et al. (2016) experiment with relatively small discrete gridworld-like environments, while our
approach naturally applies to large continuous state spaces.

Most related to our work are DL navigation systems that use specialized map-like representations.
Bhatti et al. (2016) augment a DL system with a metric map produced by a standard SLAM algo-
rithm. Parisotto & Salakhutdinov (2018) use a 2D spatial memory that represents a global map of the
environment. Gupta et al. (2017) build a 2D multi-scale metric map using the end-to-end trainable
planning approach of Tamar et al. (2016). Our method differs from these approaches in that we are
not aiming to build a global metric map of the environment. Rather, we use a topological map. This
allows our method to support navigation in a continuous space without externally provided camera
poses or ego-motion information.
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Figure 1: A navigation agent equipped with semi-parametric topological memory (SPTM). Given
the inputs – the current observation o and the goal observation og – SPTM provides a waypoint
observation ow. This waypoint and the current observation o are fed into the locomotion network
L, which outputs the action a to be executed in the environment.

While contemporary approaches in robotics are dominated by metric maps, research on topological
maps has a long history in robotics. Models based on topological maps have been applied to navi-
gation in simple 2D mazes (Kuipers & Byun, 1991; Meng & Kak, 1993; Schölkopf & Mallot, 1995)
and on physical systems (Hong et al., 1992; Bachelder & Waxman, 1995; Franz et al., 1998; Thrun,
1998; Fraundorfer et al., 2007). Trullier et al. (1997) provide a review of biologically-inspired nav-
igation systems, including landmark-based ones. Milford and colleagues designed SLAM systems
inspired by computational models of the hippocampus (Milford & Wyeth, 2008; 2010; Ball et al.,
2013). We reinterpret this line of work in the context of deep learning.

3 METHOD

We consider an agent interacting with an environment in discrete time steps. At each time step t,
the agent gets an observation ot of the environment and then takes an action at from a set of actions
A. In our experiments, the environment is a maze in a three-dimensional simulated world, and the
observation is provided to the agent as a tuple of several recent images from the agent’s point of
view.

The interaction of the agent with a new environment is set up in two stages: exploration and goal-
directed navigation. During the first stage, the agent is presented with a recording of a traversal of the
environment over a number of time steps Te, and builds an internal representation of the environment
based on this recording. In the second stage, the agent uses this internal representation to reach goal
locations in the environment. This goal-directed navigation is performed in an episodic setup, with
each episode lasting for a fixed maximum number of time steps or until the goal is reached. In each
episode, the goal location is provided to the agent by an observation of this location og . The agent
has to use the goal observation and the internal representation built during the exploration phase to
effectively reach the goal.

3.1 SEMI-PARAMETRIC TOPOLOGICAL MEMORY

We propose a new form of memory suitable for storing internal representations of environments.
We refer to it as semi-parametric topological memory (SPTM). It consists of a (non-parametric)
memory graph G where each node represents a location in the environment, and a (parametric) deep
networkR capable of retrieving nodes from the graph based on observations. A high-level overview
of an SPTM-based navigation system is shown in Figure 1. Here SPTM acts as a planning module:
given the current observation o and the goal observation og , it generates a waypoint observation ow,
which lies on a path to the goal and can be easily reached from the agent’s current location. The
current observation and the waypoint observation are provided to a locomotion network L, which
is responsible for short-range navigation. The locomotion network then guides the agent towards
the waypoint, and the loop repeats. The networks R and L are trained in self-supervised fashion,
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Figure 2: The use of semi-parametric topological memory for navigation. (a) The retrieval network
R localizes in the graph the vertices va (blue) and vg (orange), corresponding to the current agent’s
observation o and the goal observation og , respectively. (b) The shortest path on the graph between
these vertices is computed (red arrows). (c) The waypoint vertex vw (yellow) is selected as the vertex
in the shortest path that is furthest from the agent’s vertex va but can still be confidently reached by
the agent. The output of the SPTM is the corresponding waypoint observation ow = ovw .

without any externally provided labels or reinforcement signals. We now describe each component
of the system in detail.

Retrieval network. The network R estimates the similarity of two observations (o1,o2). The
network is trained on a set of environments in self-supervised manner, based on trajectories of a
randomly acting agent. Conceptually, the network is trained to assign high similarity to pairs of
observations that are temporally close, and low similarity to pairs that are temporally distant. We
cast this as a classification task: given a pair of observations, the network has to predict whether
they are temporally close or not.

To generate the training data, we first let a random agent explore the environment, resulting in a
sequence of observations {o1, . . .oN} and actions {a1, . . . aN}. We then automatically generate
training samples from these trajectories. Each training sample is a triple 〈oi,oj , yij〉 that consists
of two observations and a binary label. Two observations are considered close (yij = 1) if they are
separated by at most l = 20 time steps: |i − j| ≤ l. Negative examples are pairs where the two
observations are separated by at least M · l steps, where M = 5 is a constant factor that determines
the margin between positive and negative examples.

We use a siamese architecture for the network R, akin to Zagoruyko & Komodakis (2015). Each
of the two input observations is first processed by a deep convolutional encoder based on ResNet-
18 (He et al., 2016), which outputs a 512-dimensional embedding vector. These two vectors are
concatenated and further processed by a small 5-layer fully-connected network, ending with a 2-
way softmax. The network is trained in supervised fashion with the cross-entropy loss. Further
details are provided in the supplement.

Memory graph. The graph is populated based on an exploration sequence provided to the agent.
Denote the observations in the sequence by (oe

1, . . . ,o
e
Te

). Each vertex vi in the graph stores an
observation of the environment, ovi = om

i . Two vertices vi and vj are connected by an edge in one
of two cases: if they correspond to consecutive time steps, or if the corresponding observations are
very close, as judged by the retrieval network R:

eij = 1 ⇔ |i− j| = 1 ∨ R(ovi , ovj ) > sshortcut, (1)

where 0 < sshortcut < 1 is a similarity threshold for creating a shortcut connection. The first type
of edge corresponds to natural spatial adjacency between locations, while the second type can be
seen as a form of loop closure.

Two enhancements improve the quality of the graph. First, we only connect vertices by a “visual
shortcut” edge if |i−j| > ∆T`, so as to avoid adding trivial edges. Second, to improve the robustness
of visual shortcuts, we find these by matching sequences of observations, not single observations:

median{R(ovi−∆Tw
, ovj−∆Tw

), . . . , R(ovi+∆Tw
, ovj+∆Tw

)} > sshortcut. (2)

4



Published as a conference paper at ICLR 2018

Finding the waypoint. At navigation time, we use SPTM to provide waypoints to the locomotion
network. As illustrated in Figure 2, the process includes three steps: localization, planning, and
waypoint selection.

In the localization step, the agent localizes itself and the goal in the graph based on its current
observation o and the goal observation og , as illustrated in Figure 2(a). We have experimented with
two approaches to localization. In the basic variant, the agent’s location is retrieved as the median
of k = 5 nearest neighbors of the observation in the memory. The siamese architecture of the
retrieval network allows for efficient nearest neighbor queries by pre-computing the embeddings of
observations in the memory.

An issue with this simple technique is that localization is performed per frame, and therefore the
result can be noisy and susceptible to perceptual aliasing – inability to discriminate two locations
with similar appearance. We therefore implement a modified approach allowing for temporally
consistent self-localization, inspired by localization approaches from robotics (Milford & Wyeth,
2012). We initially perform the nearest neighbor search only in a local neighborhood of the previous
agent’s localization, and resort to global search in the whole memory only if this initial search fails
(that is, the similarity of the retrieved nearest neighbor to the current observation is below a certain
threshold slocal). This simple modification improves the performance of the method while also
reducing the search time.

In the planning step, we find the shortest path on the graph between the two retrieved nodes va and
vg , as shown in Figure 2 (b). We used Dijkstra’s algorithm in our experiments.

Finally, the third step is to select a waypoint on the computed shortest path, as depicted in Fig-
ure 2(c). We denote the shortest path by

〈vsp0 , v
sp
1 , . . . , v

sp
n 〉 , v

sp
0 = va, vspn = vg (3)

A naive solution would be to set the waypoint to vspD , with a fixed D. However, depending on the
actions taken in the exploration sequence, this can lead to selecting a waypoint that is either too
close (no progress) or too far (not reachable). We therefore follow a more robust adaptive strategy.
We choose the furthest vertex along the shortest path that is still confidently reachable:

vw = vspl , l = max
i
{i, s.t. R(o,ovsp

i
) > sreach}, (4)

where 0 < sreach < 1 is a fixed similarity threshold for considering a vertex reachable. In practice,
we limit the waypoint search to a fixed window i ∈ [Hmin, Hmax]. The output of the planning
process is the observation ow = ovw that corresponds to the retrieved waypoint.

3.2 LOCOMOTION NETWORK

The network L is trained to navigate towards target observations in the vicinity of the agent. The
network maps a pair (o1,o2), which consists of a current observation and a goal observation, into
action probabilities: L(o1,o2) = p ∈ R|A|. The action can then be produced either deterministi-
cally by choosing the most probable action, or stochastically by sampling from the distribution. In
what follows we use the stochastic policy.

Akin to the retrieval network R, the network L is trained in self-supervised manner, based on tra-
jectories of a randomly acting agent. Random exploration produces a sequence of observations
{o1, . . .oN} and actions {a1, . . . aN}. We generate training samples from these trajectories by tak-
ing a pair of observations separated by at most l = 20 time steps and the action corresponding to
the first observation: ((oi, oj), ai). The network is trained in supervised fashion on this data, with
a softmax output layer and the cross-entropy loss. The architecture of the network is the same as the
retrieval network.

Why is it possible to learn a useful controller based on trajectories of a randomly acting agent?
The proposed training procedure leads to learning the conditional action distribution P (a|ot,ot+k).
Even though the trajectories are generated by a random actor, this distribution is generally not uni-
form. For instance, if k = 1, the network would learn actions to be taken to perform one-step
transitions between neighboring states. For k > 1, training data is more noisy, but there is still
useful training signal, which turns out to be sufficient for short-range navigation.
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Figure 3: SPTM-based agent navigating towards a goal in a three-dimensional maze (a). The agent
aims to reach the goal, denoted by a star. Given the current agent’s observation (b) and the goal
observation (d), SPTM produces a waypoint observation (c). The locomotion network is then used
to navigate towards the waypoint.

3.3 IMPLEMENTATION DETAILS

Inputs to the retrieval network R and the locomotion network L are observations of the environment
o, represented by stacks of two consecutive RGB images obtained from the environment, at resolu-
tion 160×120 pixels. Both networks are based on ResNet-18 (He et al., 2016). Note that ResNet-18
is much larger than networks typically used in navigation agents based on reinforcement learning.
The use of this high-capacity architecture is made possible by the self-supervised training of our
model. Training of a network of this size from scratch with pure reinforcement learning would be
problematic and, to our knowledge, has never been demonstrated.

The training setup is similar for both networks. We generate training data online by executing a
random agent in the training environment, and maintain a replay buffer B of recent samples. At
each training iteration, we sample a mini-batch of 64 observation pairs at random from the buffer,
according to the conditions described in Sections 3.1 and 3.2. We then perform an update using the
Adam optimizer (Kingma & Ba, 2015), with learning rate λ = 0.0001. We train the networks R
and L for a total of 1 and 2 million mini-batch iterations, respectively. Further details are provided
in the supplement.

We made sure that all operations in the SPTM are implemented efficiently. Goal localization is only
performed once in the beginning of a navigation episode. Shortest paths to the goal from all vertices
of the graph can therefore also be computed once in the beginning of navigation. The only remaining
computationally expensive operations are nearest-neighbor queries for agent self-localization in the
graph. However, thanks to the siamese architecture of the retrieval network, we can precompute the
embedding vectors of observations in the memory and need only evaluate the small fully-connected
network during navigation.

4 EXPERIMENTS

We perform experiments using a simulated three-dimensional environment based on the classic game
Doom (Kempka et al., 2016). An illustration of an SPTM agent navigating towards a goal in a maze
is shown in Figure 3. We evaluate the proposed method on the task of goal-directed navigation in
previously unseen environments and compare it to relevant baselines from the literature.

4.1 SETUP

We are interested in agents that are able to generalize to new environments. Therefore, we used dif-
ferent mazes for training, validation, and testing. We used the same set of textures for all labyrinths,
but the maze layouts are very different, and the texture placement is randomized. During train-
ing, we used a single labyrinth layout, but created 400 versions with randomized goal placements
and textures. In addition, we created 3 mazes for validation and 7 mazes for testing. Layouts of
the training and test labyrinths are shown in Figure 4; the validation mazes are shown in the sup-
plement. Each maze is equipped with 4 goal locations, marked by 4 different special objects. The
appearance of these special objects is common to all mazes. We used the validation mazes for tuning
the parameters of all approaches, and used fixed parameters when evaluating in the test mazes.
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Figure 4: Layouts of training and test mazes.

The overall experimental setup follows Section 3. When given a new maze, the agent is provided
with an exploration sequence of the environment, with a duration of approximately 5 minutes of
in-simulation time (equivalent to 10,500 simulation steps). In our experiments, we used sequences
generated by a human subject aimlessly exploring the mazes. The same exploration sequences were
provided to all algorithms – the proposed method and the baselines. Example exploration sequences
are shown on the project page, https://sites.google.com/view/SPTM.

Given an exploration sequence, the agent attempts a series of goal-directed navigation trials. In
each of these, the agent is positioned at a new location in the maze and is presented with an image
of the goal location. In our experiments, we used 4 different starting locations, 4 goals per maze,
and repeated each trial 6 times (results in these vary due to the use of randomized policies for all
methods), resulting in 96 trials for each maze. A trial is considered successfully completed if the
agent reaches the goal within 5,000 simulation steps, or 2.4 minutes of in-simulation time.

4.1.1 HYPERPARAMETERS

We set the hyperparameters of the SPTM agent based on an evaluation on the validation set, as
reported in Table S1 in the supplement. We find that the method performs well for a range of hyper-
parameter values. Interestingly, the approach is robust to temporal subsampling of the walkthrough
sequence. Therefore, in the following experiments we subsample the walkthrough sequence by a
factor of 4 when building the SPTM graph. Another important parameter is the threshold sshortcut
for creating shortcuts in the graph. We set this threshold as a percentile of the set of all pairwise dis-
tances between observations in the memory, or, in other words, as the desired number of shortcuts to
be created. We set this number to 2000 in what follows. When making visual shortcuts in the graph,
we set the minimum shortcut distance ∆T` = 5 and the smoothing window size ∆Tw = 10. The
threshold values for waypoint selection are set to slocal = 0.7 and sreach = 0.95. The minimum
and maximum waypoint distances are set to Hmin = 1 and Hmax = 7, respectively.

4.2 BASELINES

We compare the proposed method to a set of baselines that are representative of the state of the
art in deep-learning-based navigation. Note that we study an agent operating in a realistic setting:
a continuous state space with no access to ground-truth information such as depth maps or ego-
motion. This setup excludes several existing works from our comparison: the full model of Mirowski
et al. (2017) that uses ground-truth depth maps and ego-motion, the method of Gupta et al. (2017)
that operates on a discrete grid given ground-truth ego-motion, and the approach of Parisotto &
Salakhutdinov (2018) that requires the knowledge of ground-truth global coordinates of the agent.
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Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Test-7 mean

Goal-agnostic feedforward 26 25 27 23 32 20 20 24.7
Goal-agnostic LSTM 53 39 45 18 27 36 19 33.9
Goal-seeking feedforward 30 24 29 18 24 27 22 24.9
Goal-seeking LSTM 34 27 15 25 16 33 4 22
Ours 100 100 100 100 100 100 100 100

Table 1: Comparison of the SPTM agent to baseline approaches. We report the percentage of
navigation trials successfully completed in 5,000 steps (higher is better).

The first baseline is a goal-agnostic agent without memory. The agent is not informed about the
goal, but may reach it by chance. We train this network in the training maze using asynchronous
advantage actor-critic (A3C) (Mnih et al., 2016). The agent is trained on the surrogate task of
collecting invisible beacons around the labyrinth. (The beacons are made invisible to avoid providing
additional visual guidance to the agents.) In the beginning of each episode, the labyrinth is populated
with 1000 of these invisible beacons, at random locations. The agent receives a reward of 1 for
collecting a beacon and 0 otherwise. Each episode lasts for 5,000 simulation steps. We train the
agent with the A3C algorithm and use an architecture similar to Mnih et al. (2016). Further details
are provided in the supplement.

The second baseline is a feedforward network trained on goal-directed navigation, similar to Zhu
et al. (2017). The network gets its current observation, as well as an image of the goal, as input. It
gets the same reward as the goal-agnostic agent for collecting invisible beacons, but in addition it
gets a large reward of 800 for reaching the goal. This network can go towards the goal if the goal
is within its field of view, but it lacks memory, so it is fundamentally unable to make use of the
exploration phase. The network architecture is the same as in the first baseline, but the input is the
concatenation of the 4 most recent frames and the goal image.

The third and fourth baseline approaches are again goal-agnostic and goal-directed agents, but
equipped with LSTM memory. The goal-directed LSTM agent is similar to Mirowski et al. (2017).
At test time, we feed the exploration sequence to the LSTM agent and then let it perform goal-
directed navigation without resetting the LSTM state. When training these networks, we follow a
similar protocol. First, the agent navigates the environment for 10,000 steps in exploration mode;
that is, with rewards for collecting invisible beacons, but without a goal image given and with no
reward for reaching a goal. Next, the agent is given a goal image and spends another 5,000 steps in
goal-directed navigation mode; that is, with a goal image given and with a high reward for reaching
the goal (while also continuing to receive rewards for collecting the invisible beacons). We do not
reset the state of the memory cells between the two stages. This way, the agent can learn to store the
layout of the environment in its memory and use it for efficient navigation.

4.3 RESULTS

Table 1 shows, for each test maze, the percentage of navigation trials successfully completed within
5,000 steps, equivalent to 2.4 minutes of real-time simulation. Figure 5 presents the results on the
test mazes in more detail, by plotting the percentage of completed episodes as a function of the trial
duration. Qualitative results are available at https://sites.google.com/view/SPTM.

The proposed SPTM agent is superior to the baselines in all mazes. As Table 1 demonstrates, its
average success rate across the test mazes is three times higher than the best-performing baseline.
Figure 5 demonstrates that the proposed approach is not only successful overall, but that the agent
typically reaches the goal much faster than the baselines.

The difference in performance between feedforward and LSTM baseline variants is generally small
and inconsistent across mazes. This suggests that standard LSTM memory is not sufficient to effi-
ciently make use of the provided walkthrough footage. One reason can be that recurrent networks,
including LSTMs, struggle with storing long sequences (Goodfellow et al., 2016). The duration
of the walkthrough footage, 10,000 time steps, is beyond the capabilities of standard recurrent net-
works. SPTM is at an advantage, since it stores all the provided information by design.
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Figure 5: Percentage of successful navigation trials as a function of trial duration. Higher is better.

Walkthrough Track 1 Track 2 Track 3

Figure 6: A walkthrough trajectory (left) and three goal-directed navigation tracks in the Val-3 maze
(right). In the walkthrough trajectory, the shortcuts automatically found in the SPTM graph are
shown in red. Goal-directed navigation trials shown in Tracks 1, 2, and 3 were all successful, but
Track 3 was excessively long. Start positions are shown in green, goals in red.

Why is the performance of the baseline approaches in our experiments significantly weaker than
reported previously (Mirowski et al., 2017)? The key reason is that we study generalization of
agents to previously unseen environments, while Mirowski et al. (2017) train and evaluate agents
in the same environment. The generalization scenario is much more challenging, but also more
realistic. Our results indicate that existing methods struggle with generalization.

Interestingly, the best-performing baseline is goal-agnostic, not goal-directed. We see two main
explanations for this. First, generalization performance has high variance and may be dominated
by spurious correlations in the appearance of training and test mazes. Second, even in the training
environments the goal-directed baselines do not necessarily outperform the goal-agnostic ones, since
the large reward for reaching the goal makes reinforcement learning unstable. This effect has been
observed by Mirowski et al. (2017), and to avoid it the authors had to resort to reward clipping; in
our setting, reward clipping would effectively lead to ignoring the goals.

Figure 6 (left) shows a trajectory of a walkthrough provided to the algorithms in the Val-3 maze. The
shortcut connections made automatically in the SPTM graph are marked in red. We selected a con-
servative threshold for making shortcut connections to ensure that there are no false positives. Still,
the automatically discovered shortcut connections greatly increase the connectivity of the graph: for
instance, in the Val-3 maze the average length of the shortest path to the goal, computed over all
nodes in the graph, drops from 990 to 155 steps after introducing the shortcut connections.

Figure 6 (right) demonstrates three representative trajectories of the SPTM agent performing goal-
directed navigation. In Tracks 1 and 2, the agent deliberately goes for the goal, making use of the
environment representation stored in SPTM. Track 3 is less successful and the agent’s trajectory
contains unnecessary loops; we attribute this to the difficulty of vision-based self-localization in
large environments.

Table 2 reports an ablation study of the SPTM agent on the validation set. Removing vision-based
shortcuts from the graph leads to dramatic decline in performance. The agent with independent
per-frame localization performs quite well on two of the three mazes, but underperforms on the
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Val-1 Val-2 Val-3

Ours – no visual shortcuts 85 55 50
Ours – per-frame localization 95 87 52
Ours – full 100 98 100

Table 2: Ablation study on the SPTM agent. We report the percentage of navigation trials success-
fully completed in 5,000 steps in validation mazes (higher is better).

more challenging Val-3 maze. A likely explanation is that perceptual aliasing gets increasingly
problematic in larger mazes.

Additional experiments are reported in the supplement: performance in the validation environments,
robustness to hyperparameter settings, an additional ablation study evaluating the performance of the
R and L networks compared to simple alternatives, experiments in environments with homogeneous
textures, and experiments with automated (non-human) exploration.

5 CONCLUSION

We have proposed semi-parametric topological memory (SPTM), a memory architecture that con-
sists of a non-parametric component – a topological graph, and a parametric component – a deep
network capable of retrieving nodes from the graph given observations from the environment. We
have shown that SPTM can act as a planning module in a navigation system. This navigation agent
can efficiently reach goals in a previously unseen environment after being presented with only 5
minutes of footage. We see several avenues for future work. First, improving the performance of
the networks R and L will directly improve the overall quality of the system. Second, while the cur-
rent system explicitly avoids using ego-motion information, findings from experimental psychology
suggest that noisy ego-motion estimation and path integration are useful for navigation. Incorpo-
rating these into our model can further improve robustness. Third, in our current system the size
of the memory grows linearly with the duration of the exploration period. This may become prob-
lematic when navigating in very large environments, or in lifelong learning scenarios. A possible
solution is adaptive subsampling, by only retaining the most informative or discriminative observa-
tions in memory. Finally, it would be interesting to integrate SPTM into a system that is trainable
end-to-end.
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SUPPLEMENTARY MATERIAL

S1 METHOD DETAILS

S1.1 NETWORK ARCHITECTURES

The retrieval network R and the locomotion network L are both based on ResNet-18 (He et al.,
2016). Both take 160×120 pixel images as inputs. The networks are initialized as proposed by He
et al. (2016). We used an open ResNet implementation: https://github.com/raghakot/
keras-resnet/blob/master/resnet.py.

The network R admits two observations as input. Each of these is processed by a convolutional
ResNet-18 encoder. Each of the encoders produces a 512-dimensional embedding vector. These are
concatenated and fed through a fully-connected network with 4 hidden layers with 512 units each
and ReLU nonlinearities.

The network L also admits two observations, but in contrast with the network R it processes them
jointly, after concatenating them together. A convolutional ResNet-18 encoder is followed by a
single fully-connected layer with 7 outputs and a softmax. The 7 outputs correspond to all available
actions: do nothing, move forward, move backward, move left, move right, turn left, and turn right.

S1.2 TRAINING

We implemented the training in Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2016). The
training setup is similar for both networks. We generate training data online by executing a random
agent in the environment, and maintain a replay buffer B of size |B| = 10,000. We run the random
agent for 10,000 steps and then perform 50 mini-batch iterations of training. For the random agent,
as well as for all other agents, we use action repeat of 4 – that is, every selected action is repeated 4
times. At each training iteration, we sample a mini-batch of 64 training observation pairs at random
from the buffer, according to the conditions described in Sections 3.2 and 3.1. We then perform an
update using the Adam optimizer (Kingma & Ba, 2015), with learning rate λ = 0.0001, momentum
parameters β1 = 0.9 and β2 = 0.999, and the stabilizing parameter ε = 10−8.

S2 BASELINE DETAILS

The baselines are based on an open A3C implementation: https://github.com/pathak22/
noreward-rl. We have used the architectures of Mnih et al. (2016) and Mirowski et al. (2017).
The feedforward model consists of two convolutional layers and two fully-connected layers, from
which the value and the policy are predicted. In the LSTM model the second fully connected layer
is replaced by LSTM. The input to the networks is a stack of 4 most recent observed frames, resized
to 84×84 pixels. We experimented with using RGB and grayscale frames, and found the baselines
trained with grayscale images to perform better. We therefore always report the results for baselines
with grayscale inputs. We train the baselines for 80 million action steps, which corresponds to 320
million simulation steps because of action repeat. We selected the snapshot to be used at test time
based on the training reward.

S3 ADDITIONAL RESULTS

Layouts of the validation mazes are shown in Figure S1. Plots of success rate as a function of trial
duration on each validation maze are shown in Figure S2. Performance of an SPTM agent with
varying hyperparameters is shown in Table S1.

S3.1 HOMOGENEOUS TEXTURES AND AUTOMATED EXPLORATION

To evaluate the robustness of the approach, we tried varying the texture distribution in the environ-
ment and the properties of the exploration sequence.
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Val-1 Val-2 Val-3

Figure S1: Layouts of the mazes used for validation.
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Figure S2: Percentage of successful navigation trials as a function of trial duration, in the validation
mazes. Higher is better.

In the experiments in the main paper we used mazes with relatively diverse (although repetitive)
textures, see for example Figure 3 in the main paper. We re-textured several mazes to be qualitatively
similar to Mirowski et al. (2017): with mainly homogeneous textures and only relatively sparse
inclusions of more discriminative textures. When testing the method with these textures, we re-
trained the networks R and L in a training maze with similar texture distribution, but kept all other
parameters of the method fixed.

For experiments in the main paper we used walkthrough sequences recorded from humans explor-
ing the maze. An intelligent agent should be able to explore and map an environment fully au-
tonomously. Effective exploration is a challenging task in itself, and a comprehensive study of this
problem is outside the scope of the present paper. However, as a first step, we experiment with
providing our method with walkthrough sequences generated fully autonomously – by our base-
line agents trained with reinforcement learning. This is only possible in simple mazes, where these
agents were able to reach all goals. We used the best-performing baseline for each maze and repeated
exploration multiple times, until all goals were located.

The results are reported in Table S2. The use of automatically generated trajectories leads to only a
minor decrease in the final performance, although qualitatively the trajectories of the SPTM agent
become much noisier (not shown). The different texture distribution affects the results more, since
visual self-localization becomes challenging with sparser textures. Yet the method still performs
quite well and outperforms the baselines by a large margin.

S3.2 ADDITIONAL ABLATION STUDY

To better understand the importance of the locomotion and retrieval networks, we performed two ex-
periments. First, we substituted the retrieval networkR with simple per-pixel matching. Second, we
substituted actions predicted by the locomotion network L by actions from the exploration sequence
(teach-and-repeat). Note that this second approach uses information unavailable to our method –
actions performed during the walkthrough sequence. It thus cannot be considered a proper baseline.
We further discuss the exact settings and the results.

14



Published as a conference paper at ICLR 2018

With normalization Without normalization

Figure S3: Graphs constructed using per pixel matching. Shortcut connections are shown in red.
Most shortcuts connections are wrong – they connect distant locations.

S3.2.1 PER-PIXEL COMPARISON

This experiment was inspired by the approach of Milford & Wyeth (2012). To compute the localiza-
tion score, we downsample images to the resolution 40×30, convert to grayscale and then compute
cosine distances between them. We experiment with two variants of this method: with local contrast
normalization (similar to Milford & Wyeth (2012)) and without. To perform the normalization, we
split the downsampled grayscale image into patches of size 10×10. In each patch, we subtract the
mean and divide by the standard deviation.

As Table S3 indicates, the per-pixel comparison baseline performs poorly. As shown in Figure S3,
the visual shortcuts made with this technique are catastrophically wrong. Local normalization only
makes the results worse because it discards information about absolute color intensity, which can be
a useful cue in our environments.

S3.2.2 TEACH-AND-REPEAT

To be able to use actions from the exploration sequence, a few modification to our method are
necessary. First, we introduce no shortcut connections in the graph, as we would not know the
actions for them. The graph thus turns into a path, making the shortest paths longer. Second, to
allow the agent to move along this path in both directions, we select an opposite for every action:
for example, the opposite of moving forward is moving backward. Finally, we found that taking
a fraction of completely random actions helps the agent not to get stuck when it diverges far from
the exploration track and the recorded actions are not useful anymore. We found 10% of random
actions to lead to good results. Overall, the method works as follows. First, the goal and the agent
are localized using the same procedure as our method. Then the agent has to move either forward or
backward along the exploration graph-line. If forward, then the action corresponding to the agent’s
localized observation is taken, if backward – the opposite of the recorded action.

As Table S3 suggests, this method works significantly worse than our method, even though it makes
use of extra information – the recorded actions. We see two reasons for this. First, there are no
shortcut connections, which makes the path to the goal longer. Second, as soon as the agent di-
verges from the exploration trajectory, the actions do not match the states any more, and there is no
mechanism for the agent to get back on track. For instance, imagine a long corridor: if the agent is
oriented at a small angle to the direction of the corridor, it will inevitably crash into a wall. Why
does the approach not fail completely due to the latter problem? This is most likely because the
environment is forgiving: it allows the agent to slide along walls when facing them at an angle less
than 90 degrees. This way, even if the agent diverges from the exploration path, it does not break
down completely and still makes progress towards the goal. Videos of successful navigation trials
for this agent can be found at https://sites.google.com/view/SPTM.
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Parameters Environment

Loc. smooth. #shortcuts Mem. subsamp. slocal sreach Val-1 Val-2 Val-3

0 2000 4 - 0.95 95 88 52
10 2000 4 0.7 0.95 100 98 100

10 1000 4 0.7 0.95 99 92 90
10 2000 4 0.7 0.95 100 98 100
10 4000 4 0.7 0.95 100 98 100

1 2000 4 0.7 0.95 100 70 26
5 2000 4 0.7 0.95 100 96 99
10 2000 4 0.7 0.95 100 98 100

10 2000 4 0.7 0.9 100 95 100
10 2000 4 0.7 0.95 100 98 100
10 2000 4 0.7 0.97 100 97 100

10 2000 4 0.6 0.95 100 95 100
10 2000 4 0.7 0.95 100 98 100
10 2000 4 0.8 0.95 100 97 99

10 2000 1 0.7 0.95 76 47 73
10 2000 2 0.7 0.95 97 85 95
10 2000 4 0.7 0.95 100 98 100
10 2000 8 0.7 0.95 66 92 66

5 8000 1 0.7 0.95 99 84 93
10 4000 2 0.7 0.95 100 95 98
20 2000 4 0.7 0.95 100 98 100
40 1000 8 0.7 0.95 97 94 85

Table S1: Effect of hyperparameters, evaluated on the validation set. We report the percentage of
navigation trials successfully completed in 5,000 steps (higher is better).

Val-3 Test-1 Test-4 Test-5

Ours - homogeneous textures 55 98 76 75
Ours - automated exploration - 94 93 91
Ours - full 100 100 100 100

Table S2: Evaluation of the SPTM navigation agent with homogeneous textures and automated
exploration. We report the percentage of navigation trials successfully completed in 5,000 steps
(higher is better).

Val-1 Val-2 Val-3

Per-pixel comparison with normalization 6 2 1
Per-pixel comparison without normalization 10 8 7
Teach-and-repeat 45 36 30
Ours - full 100 98 100

Table S3: Additional ablation study of the SPTM navigation agent. We report the percentage of
navigation trials successfully completed in 5,000 steps in validation mazes (higher is better).
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