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Abstract

In some misspecified settings, the posterior distribution in Bayesian statistics may lead to
inconsistent estimates. To fix this issue, it has been suggested to replace the likelihood
by a pseudo-likelihood, that is the exponential of a loss function enjoying suitable robust-
ness properties. In this paper, we build a pseudo-likelihood based on the Maximum Mean
Discrepancy, defined via an embedding of probability distributions into a reproducing ker-
nel Hilbert space. We show that this MMD-Bayes posterior is consistent and robust to
model misspecification. As the posterior obtained in this way might be intractable, we also
prove that reasonable variational approximations of this posterior enjoy the same proper-
ties. We provide details on a stochastic gradient algorithm to compute these variational
approximations. Numerical simulations indeed suggest that our estimator is more robust
to misspecification than the ones based on the likelihood.

Keywords: Maximum Mean Discrepancy, Robust estimation, Variational inference.

1. Introduction

Bayesian methods are very popular in statistics and machine learning as they provide a
natural way to model uncertainty. Some subjective prior distribution π is updated using
the negative log-likelihood `n via Bayes’ rule to give the posterior πn(θ) ∝ π(θ) exp(−`n(θ)).
Nevertheless, the classical Bayesian methodology is not robust to model misspecification.
There are many cases where the posterior is not consistent (Barron et al., 1999; Grünwald
and Van Ommen, 2017), and there is a need to develop methodologies yielding robust es-
timates. A way to fix this problem is to replace the log-likelihood `n by a relevant risk
measure. This idea is at the core of the PAC-Bayes theory (Catoni, 2007) and Gibbs pos-
teriors (Syring and Martin, 2018); its connection with Bayesian principles are discussed
in Bissiri et al. (2016). Knoblauch et al (2019) builds a general representation of Bayesian
inference in the spirit of Bissiri et al. (2016) and extends the representation to the ap-
proximate inference case. In particular, the use of a robust divergence has been shown
to provide an estimator that is robust to misspecification (Knoblauch et al, 2019). For
instance, Hooker and Vidyashankar (2014) investigated the case of Hellinger-based diver-
gences, Ghosal and Basu (2016), Futami et al (2017), and Nakagawa et al. (2019) used robust
β- and γ-divergences, while Catoni (2012), Baraud and Birgé (2017) and Holland (2019)
replaced the logarithm of the log-likelihood by wisely chosen bounded functions. Refer to
Jewson et al (2018) for a complete survey on robust divergence-based Bayes inference.
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In this paper, we consider the Maximum Mean Discrepancy (MMD) as the alternative
loss used in Bayes’ formula, leading to a pseudo-posterior that we shall call MMD-Bayes in
the following. MMD is built upon an embedding of distributions into a reproducing kernel
Hilbert space (RKHS) that generalizes the original feature map to probability measures,
and allows to apply tools from kernel methods in parametric estimation. Our MMD-Bayes
posterior is related to the kernel-based posteriors in Fukumizu et al. (2013), Park et al.
(2016) and Ridgway (2017), even though it is different. More recently, Briol et al. (2019)
introduced a frequentist minimum distance estimator based on the MMD distance, that is
shown to be consistent and robust to small deviations from the model. We show that our
MMD-Bayes retains the same properties, i.e is consistent at the minimax optimal rate of
convergence as the minimum MMD estimator, and is also robust to misspecification, includ-
ing data contamination and outliers. Moreover, we show that these guarantees are still valid
when considering a tractable approximation of the MMD-Bayes via variational inference,
and we support our theoretical results with experiments showing that our approximation
is robust to outliers for various estimation problems. All the proofs are deferred to the
appendix.

2. Framework and definitions

Let us introduce the background and theoretical tools required to understand the rest of
the paper. We consider in a measurable space

(
X,X

)
a collection of n independent and

identically distributed (i.i.d) random variables X1, ..., Xn ∼ P0 where P0 is the generating
distribution. We index a statistical model {Pθ/θ ∈ Θ} by a parameter space Θ, without
necessarily assuming that the true distribution P0 belongs to the model.

Let us consider some integrally strictly positive definite kernel k 1 bounded by a positive
constant, say 1. We then denote the associated RKHS (Hk, 〈·, ·〉Hk) satisfying the repro-
ducing property f(x) = 〈f, k(x, ·)〉Hk for any f ∈ Hk and any x ∈ X. We define the notion
of kernel mean embedding, a Hilbert space embedding that maps probability distributions
into the RKHS Hk. Given a distribution P , the kernel mean embedding µP ∈ Hk is

µP (·) := EX∼P [k(X, ·)] ∈ Hk.

Then we define the MMD between two probability distributions P and Q simply as the
distance in Hk between their kernel mean embeddings:

Dk(P,Q) = ‖µP − µQ‖Hk .

Under the assumptions we made on the kernel, the kernel mean embedding is injective and
the maximum mean discrepancy is a metric, see Briol et al. (2019). We motivate the use of
MMD as a robust metric in Appendix D.

In this paper, we adopt a Bayesian approach. We introduce a prior distribution π over
the parameter space Θ equipped with some sigma-algebra. Then we define our pseudo-

1. This means that the positive definite kernel satisfies EX,Y∼P [k(X,Y )] 6= 0 for any distribution P . This
includes the Gaussian kernel k(x, y) = exp(−‖x−y‖2/γ2). For this property, and the properties of MMD
discussed in this section, we refer the reader to Muandet et al. (2017).
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Bayesian distribution πβn given a prior π on Θ:

πβn(dθ) ∝ exp

(
−β · D2

k(Pθ, P̂n)

)
π(dθ),

where P̂n = (1/n)
∑n

i=1 δXi is the empirical measure and β > 0 is a temperature parameter.

3. Theoretical analysis of MMD-Bayes

In this section, we show that the MMD-Bayes is consistent when the true distribution
belongs to the model, and is robust to misspecification.

To obtain the concentration of posterior distributions in models that contain the gener-
ating distribution, Ghosal et al. (2000) introduced the so-called prior mass condition that
requires the prior to put enough mass to some neighborhood (in Kullback-Leibler diver-
gence) of the true distribution. This condition was widely studied since then for more
general pseudo-posterior distributions (Bhattacharya et al., 2019; Alquier and Ridgway,
2017; Chérief-Abdellatif and Alquier, 2018). Unfortunately, this prior mass condition is (by
definition) restricted to cases when the model is well-specified or at least when the true dis-
tribution is in a very close neighborhood of the model. We formulate here a robust version
of the prior mass condition which is based on a neighborhood of an approximation θ∗ of
the true parameter instead of the true parameter itself. The following condition is suited to
the MMD metric, recovers the usual prior mass condition when the model is well-specified
and still makes sense in misspecified cases with potentially large deviations to the model
assumptions:

Prior mass condition: Let us denote θ∗ = arg minθ∈Θ Dk (Pθ, P0) and its neighborhood
Bn = {θ ∈ Θ/Dk (Pθ, Pθ∗) ≤ n−1/2}. Then (π, β) is said to satisfy the prior mass condition
C(π, β) when π(Bn) ≥ e−β/n.

In the usual Bayesian setting, the computation of the prior mass is a major difficulty
(Ghosal et al., 2000), and it can be hard to know whether the prior mass condition is satisfied
or not. Nevertheless, here the condition does not only hold on the prior distribution π but
also on the temperature parameter β. Hence, it is always possible to choose β large enough
so that the prior mass condition is satisfied. We refer the reader to Appendix E for an
example of computation of such a prior mass and valid values of β. The following theorem
expressed as a generalization bound shows that the MMD-Bayes posterior distribution is
robust to misspecification under the robust prior mass condition. Note that the rate n−1/2

is exactly the one obtained by the frequentist MMD estimator of Briol et al. (2019) and is
minimax optimal (Tolstikhin et al., 2017):

Theorem 1 Under the prior mass condition C(π, β):

E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) +

16

n
. (3.1)

The second theorem investigates concentration of the MMD-Bayes posterior in the well-
specified case. It shows that the prior mass condition C(π, β) ensures that the MMD-Bayes
concentrates to P0 at the minimax rate n−1/2:
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Theorem 2 Let us consider a well-specified model. Then under the prior mass condition
C(π, β), we have in probability for any Mn → +∞:

πβn

(
Dk(Pθ, P0) > Mn · n−1/2

)
−−−−−→
n→+∞

0. (3.2)

Note that we obtain the concentration to the true distribution P0 = Pθ∗ at the minimax
rate n−1/2 for well-specified models.

4. Variational inference

Unfortunately, the MMD-Bayes is not tractable in complex models. In this section, we
provide an efficient implementation of the MMD-Bayes based on VI retaining the same
theoretical properties. Given a variational set of tractable distributions F , we define the
variational approximation of πβn as the closest approximation (in KL divergence) to the
target MMD posterior:

π̃βn = arg min
ρ∈F

KL(ρ‖πβn).

Under similar conditions to those in Theorems 1 and 2, π̃βn is guaranteed to be n−1/2-
consistent as the MMD-Bayes. Most works ensuring the consistency or the concentration of
variational approximations of posterior distributions use the extended prior mass condition,
an extension of the prior mass condition that applies to variational approximations rather
than on the distributions they approximate (Alquier et al., 2016; Alquier and Ridgway,
2017; Bhattacharya et al., 2018; Chérief-Abdellatif and Alquier, 2018; Chérief-Abdellatif,
2019a,b). Here, we extend our previous prior mass condition to variational approximations
but also to misspecification. In addition to the prior mass condition inspired from Ghosal
et al. (2000), the variational set F must contain probability distributions that are concen-
trated around the best approximation Pθ∗ . This robust extended prior mass condition can
be formulated as follows:

Assumption : We assume that there exists a distribution ρn ∈ F such that :∫
D2
k(Pθ, Pθ∗)ρn(dθ) ≤ 1

n
and KL(ρn‖π) ≤ β

n
. (4.1)

Remark 3 When the restriction of π to the MMD-ball Bn centered at θ∗ of radius n−1/2

belongs to F , then Assumption (4.1) becomes the standard robust prior mass condition, i.e.
π(Bn) ≥ e−β/n. In particular, when F is the set of all probability measures – that is, in the
case where there is no variational approximation – then we recover the standard condition.

Now, we can state the following theorem for variational approximations:

Theorem 4 Under the extended prior mass condition (4.1),

E
[∫

D2
k (Pθ, P0) π̃βn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) +

16

n
. (4.2)

Moreover, if the model is well-specified, then under the prior mass condition C(π, β), we
have in probability for any Mn → +∞:

π̃βn

(
Dk(Pθ, P0) > Mn · n−1/2

)
−−−−−→
n→+∞

0. (4.3)
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5. Numerical experiments

In this section, we show that the variational approximation is robust in practice when
estimating a Gaussian mean and a uniform distribution in the presence of outliers. We
consider here a d-dimensional parametric model and a Gaussian mean-field variational set
F = {N (m,diag(s2))/m ∈M, s ∈ S},M⊂ Rd,S ⊂ Rd>0, using componentwise multiplica-
tion. Inspired from the stochastic gradient descent of Dziugaite et al (2015), Li and Zemel
(2015) and Briol et al. (2019) based on a U-statistic approximation of the MMD criterion,
we design a stochastic gradient descent that is suited to our variational objective. The
algorithm is described in details in Appendix G.

We perform short simulations to provide empirical support to our theoretical results.
Indeed, we consider the problem of Gaussian mean estimation in the presence of outliers.
The experiment consists in randomly sampling n = 200 i.i.d observations from a Gaussian
distribution N (2, 1) but some corrupted observations are replaced by samples from a stan-
dard Cauchy distribution C(0, 1). The fraction of outliers used was ranging from 0 to 0.20
with a step-size of 0.025. We repeated each experiment 100 times and considered the square
root of the mean square error (MSE). The plots we obtained demonstrate that our method
performs comparably to the componentwise median (MED) and even better as the number
of outliers increases, and clearly outperforms the maximum likelihood estimator (MLE). We
also conducted the simulations for multidimensional Gaussians and for the robust estima-
tion of the location parameter of a uniform distribution. We refer the reader to Appendix
H for more details on these simulations.

Figure 1 - Comparison of the square root of the MSE for the MMD estimator, the MLE
and the median in the robust Gaussian mean estimation problem for various values of the
proportion of outliers. The MMD estimator is the mean of the variational approximation.

6. Conclusion

In this paper, we showed that the MMD-Bayes posterior concentrates at the minimax
convergence rate and is robust to model misspecification. We also proved that reasonable
variational approximations of this posterior retain the same properties, and we proposed
a stochastic gradient algorithm to compute such approximations that we supported with
numerical simulations. An interesting future line of research would be to investigate if
the i.i.d assumption can be relaxed and if the MMD-based estimator is also robust to
dependency in the data.
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Appendix A. Proof of Theorem 1.

In order to prove Theorem 1, we first need two preliminary lemmas. The first one ensures
the convergence of the empirical measure P̂n to the true distribution P0 (in MMD distance
Dk) at the minimax rate n−1/2, and which is an expectation variant of Lemma 1 in Briol
et al. (2019) that holds with high probability:

Lemma 5 We have

E
[
D2
k

(
P̂n, P0

)]
≤ 1

n
.

Proof

E
[
D2
k

(
P̂n, P0

)]
= E

∥∥∥∥∥ 1

n

n∑
i=1

[k(Xi, ·)− µP0 ]

∥∥∥∥∥
2

Hk


=

1

n2
E

 n∑
i=1

‖k(Xi, ·)− µP0‖
2
Hk + 2

∑
1≤i<j≤n

〈k(Xi, ·)− µP0 , k(Xj , ·)− µP0〉Hk


≤ 1

n2

n+ 2
∑

1≤i<j≤n
0

 =
1

n
.

The rate n−1/2 is known to be minimax in this case, see Theorem 1 in Tolstikhin et al.
(2017).

The second lemma is a simple triangle-like inequality that will be widely used throughout
the proofs of the paper:

Lemma 6 We have for any distributions P , P ′ and Q:

D2
k

(
P, P ′

)
≤ 2D2

k (P,Q) + 2D2
k

(
Q,P ′

)
.

Proof The chain of inequalities follow directly from the triangle inequality and inequality
2ab ≤ a2 + b2.

D2
k

(
P, P ′

)
≤
(
Dk (P,Q) + Dk

(
Q,P ′

))2

= D2
k (P,Q) + D2

k

(
Q,P ′

)
+ 2Dk (P,Q)Dk

(
Q,P ′

)
≤ D2

k (P,Q) + D2
k

(
Q,P ′

)
+ D2

k (P,Q) + D2
k

(
Q,P ′

)
= 2D2

k (P,Q) + 2D2
k

(
Q,P ′

)
.

Let us come back to the proof of Theorem 1. An important point is that the MMD-
Bayes can also be defined using an argmin over the setM1

+(Θ) of all probability distributions
absolutely continuous with respect to π and the Kullback-Leibler divergence KL(·‖·):

πβn = arg min
ρ∈M1

+(Θ)

{∫
D2
k(Pθ, P̂n)ρ(dθ) +

KL(ρ‖π)

β

}
.
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This is an immediate consequence of Donsker and Varadhan’s variational inequality, see e.g
Catoni (2007). Using the triangle inequality, Lemma 5, Lemma 6 for different settings of
P , P ′ and Q, and Jensen’s inequality:

E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤ 2E

[∫
D2
k

(
Pθ, P̂n

)
πβn(dθ)

]
+ 2E

[
D2
k

(
P̂n, P0

)]
≤ 2E

[∫
D2
k

(
Pθ, P̂n

)
πβn(dθ)

]
+

2

n

≤ 2E

[∫
D2
k

(
Pθ, P̂n

)
πβn(dθ) +

KL(πβn‖π)

β

]
+

2

n

= 2E
[
inf
ρ

{∫
D2
k

(
Pθ, P̂n

)
ρ(dθ) +

KL(ρ‖π)

β

}]
+

2

n

≤ 2 inf
ρ
E
[∫

D2
k

(
Pθ, P̂n

)
ρ(dθ) +

KL(ρ‖π)

β

]
+

2

n
,

which gives, using Lemma 5 and the triangle inequality again:

E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤ 2 inf

ρ
E
[∫

D2
k

(
Pθ, P̂n

)
ρ(dθ) +

KL(ρ‖π)

β

]
+

2

n

≤ 2 inf
ρ
E
[∫

D2
k (Pθ, P0) ρ(dθ) +

KL(ρ‖π)

β

]
+ 4E

[
D2
k

(
P̂n, P0

)]
+

2

n

= 2 inf
ρ
E
[
2

∫
D2
k (Pθ, P0) ρ(dθ) +

KL(ρ‖π)

β

]
+

6

n

≤ 8D2
k (Pθ∗ , P0) + 2 inf

ρ
E
[
4

∫
D2
k (Pθ, Pθ∗) ρ(dθ) +

KL(ρ‖π)

β

]
+

6

n

We remind that θ∗ = arg minθ∈Θ Dk (Pθ, P0).
This bound can be formulated in the following way when ρ is chosen to be equal to π

restricted to Bn :

E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) +

8

n
+ 2
− log π(B)

β
+

6

n
.

Finally, as soon as the prior mass condition C(π, β) is satisfied, we get:

E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) +

16

n
.

Appendix B. Proof of Theorem 2.

In case of well-specification, Formula (3.1) simply becomes according to Jensen’s inequality:

E
[∫

Dk (Pθ, P0)πβn(dθ)

]
≤

√
E
[∫

D2
k (Pθ, P0)πβn(dθ)

]
≤
√

16

n
=

4√
n
.
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Hence, it is sufficient to show that the inequality above implies the concentration of the
MMD-Bayes to the true distribution. This is a simple consequence of Markov’s inequality.
Indeed, for any Mn → +∞:

E
[
πβn

(
Dk(Pθ, P0) > Mn · n−1/2

)]
≤

E
[ ∫

Dk(Pθ, P0)πβn(dθ)

]
Mn · n−1/2

≤ 4n−1/2

Mn · n−1/2
−−−−−→
n→+∞

0,

which guarantees the convergence in mean of πβn
(
Dk(Pθ, P0) > Mn ·n−1/2

)
to 0, which leads

to the convergence in probability of πβn
(
Dk(Pθ, P0) > Mn ·n−1/2

)
to 0, i.e. the concentration

of MMD-Bayes to P0 at rate n−1/2.

Appendix C. Proof of theorem 4.

Formula (4.2) can be proven easily as for the proof of Theorem 1. Indeed, we use the
expression of the variational approximation of the MMD-Bayes using an argmin over the
set F :

π̃βn = arg min
ρ∈F

{∫
D2
k(Pθ, P̂n)ρ(dθ) +

KL(ρ‖π)

β

}
.

This is yet an application of Donsker and Varadhan’s lemma. Then, as previously:

E
[∫

D2
k (Pθ, P0) π̃βn(dθ)

]
≤ E

[∫
D2
k

(
Pθ, P̂n

)
π̃βn(dθ)

]
+

2

n
by Lemma 5

≤ 2E

[∫
D2
k

(
Pθ, P̂n

)
π̃βn(dθ) +

KL(πβn‖π)

β

]
+

2

n

= 2E
[
inf
ρ

{∫
D2
k

(
Pθ, P̂n

)
ρ(dθ) +

KL(ρ‖π)

β

}]
+

2

n

≤ 2 inf
ρ
E
[∫

D2
k

(
Pθ, P̂n

)
ρ(dθ) +

KL(ρ‖π)

β

]
+

2

n

≤ 2 inf
ρ
E
[
2

∫
D2
k (Pθ, P0) ρ(dθ) +

KL(ρ‖π)

β

]
+

6

n

≤ 8D2
k (Pθ∗ , P0) + 2 inf

ρ
E
[
4

∫
D2
k (Pθ, Pθ∗) ρ(dθ) +

KL(ρ‖π)

β

]
+

6

n
.

Hence, under the extended prior mass condition (4.1), we have directly:

E
[∫

D2
k (Pθ, P0) π̃βn(dθ)

]
≤ 8 inf

θ∈Θ
D2
k (Pθ, P0) +

16

n
.

The proof of Formula (4.3) follows the lines of the proof of Theorem 2.

Appendix D. An example of robustness of the MMD distance.

In this appendix, we try to give some intuition on the choice of MMD-Bayes rather than the
classical regular Bayesian distribution. To do so, we show a simple misspecified example for

11
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which the MMD distance is more suited than the classical Kullback-Leibler (KL) divergence
used in the Bayes rule in the definition of the classical Bayesian posterior.

We consider the Huber’s contamination model described as follows. We observe a
collection of random variables X1, ..., Xn. There are unobserved i.i.d random variables
Z1, ..., Zn ∼ Ber(ε) and a distribution Q, such that the distribution of Xi given Zi = 0 is a
GaussianN (θ0, σ2) where the distribution ofXi given Zi = 0 isQ. The observationsXi’s are
independent. This is equivalent to considering a true distribution P0 = (1−ε)N (θ0, σ2)+εQ.
Here, ε ∈ (0, 1/2) is the contamination rate, σ2 is a known variance and Q is the contam-
ination distribution that is taken here as N (θc, σ

2), where θc is the mean of the corrupted
observations. The true parameter of interest is θ0 and the model is composed Gaussian
distributions {Pθ = N (θ, σ2)/θ ∈ Rd}. The goal in this appendix is to show that we exactly
recover the true parameter θ0 with the minimizer of the MMD distance to the true distri-
bution P0, whereas it is not the case with the KL divergence. We use a Gaussian kernel
k(x, y) = exp(−‖x− y‖2/γ2).

Computation of the MMD distance to the true distribution:

We have remind that Pθ = N (θ, σ2Id) where θ ∈ Θ = Rd. For independent X and Y
following respectively Pθ and Pθ′ , we get (X − Y ) ∼ N (θ − θ′, σ2Id). Hence,

X − Y√
2σ2

∼ N
(
θ − θ′√

2σ2
, Id

)
and the square of this random variable is a noncentral chi-square random variable:

‖X − Y ‖2

2σ2
∼ χ2

(
d,
‖θ − θ′‖2

2σ2

)
.

It is known that for U ∼ χ2(d,m), we have E[exp(tU)] = exp(mt/(1− 2t))/(1− 2t)d/2, and
then t = −(2σ2)/γ2 gives:

〈µPθ , µPθ′ 〉Hk = EX∼Pθ,Y∼Pθ′
[
exp

(
−‖X − Y ‖

2

γ2

)]
=

(
γ2

4σ2 + γ2

) d
2

exp

(
−‖θ − θ

′‖2

4σ2 + γ2

)
.

Thus,

〈µPθ , µPθ〉Hk =

(
γ2

4σ2 + γ2

) d
2

,

〈µPθ , µP0〉Hk = (1− ε)〈µPθ , µPθ0 〉Hk + ε〈µPθ , µPθc 〉Hk

= (1− ε)
(

γ2

4σ2 + γ2

) d
2

exp

(
−‖θ − θ

0‖2

4σ2 + γ2

)
+ ε

(
γ2

4σ2 + γ2

) d
2

exp

(
−‖θ − θc‖

2

4σ2 + γ2

)
,

12
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and

〈µP0 , µP0〉Hk = (1− ε)2〈µPθ0 , µPθ0 〉Hk + 2ε(1− ε)〈µPθ0 , µPθc 〉Hk + ε2〈µPθc , µPθc 〉Hk

= (1− ε)2

(
γ2

4σ2 + γ2

) d
2

+ ε2
(

γ2

4σ2 + γ2

) d
2

+ 2ε(1− ε)
(

γ2

4σ2 + γ2

) d
2

exp

(
−‖θ

0 − θc‖2

4σ2 + γ2

)
=

(
1− 2ε(1− ε)

)(
γ2

4σ2 + γ2

) d
2

+ 2ε(1− ε)
(

γ2

4σ2 + γ2

) d
2

exp

(
−‖θ

0 − θc‖2

4σ2 + γ2

)
.

Hence

D2
k (P0, Pθ) = ‖µPθ − µP0‖2Hk = 〈µPθ , µPθ〉Hk − 2〈µPθ , µP0〉Hk + 〈µP0 , µP0〉Hk

= 2

(
1− ε(1− ε)

)(
γ2

4σ2 + γ2

) d
2

− 2ε

(
γ2

4σ2 + γ2

) d
2

exp

(
−‖θ − θc‖

2

4σ2 + γ2

)
+ 2ε(1− ε)

(
γ2

4σ2 + γ2

) d
2

exp

(
−‖θ

0 − θc‖2

4σ2 + γ2

)
− 2(1− ε)

(
γ2

4σ2 + γ2

) d
2

exp

(
−‖θ − θ

0‖2

4σ2 + γ2

)
= 2(1− ε)

(
γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

0‖2

4σ2 + γ2

)]
+ 2ε

(
γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θc‖

2

4σ2 + γ2

)]
− 2ε(1− ε)

(
γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ

0 − θc‖2

4σ2 + γ2

)]
.

Hence, the minimizer of Dk (P0, Pθ) w.r.t θ, i.e the maximizer of:

(1− ε) exp

(
−‖θ − θ

0‖2

4σ2 + γ2

)
+ ε exp

(
−‖θ − θc‖

2

4σ2 + γ2

)
.

is θ0 itself as ε ≤ 1/2.

Computation of the KL divergence to the true distribution:

In this case, easy computations lead for any θ to:

KL(P0‖Pθ) = KL

(
(1− ε)N (θ0, σ2) + εN (θc, σ

2)‖N (θ, σ2)

)
= C + (1− ε)H(θ0‖θ) + εH(θc‖θ)

= C +
d log(2πσ2)

2
+
dσ2

2
+ (1− ε)‖θ − θ

0‖2

2σ2
+ ε
‖θ − θc‖2

2σ2
,

13
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where

H(θ′‖θ) = −
∫

log
(
N (x|θ, σ2)

)
N (x|θ′, σ2)dx

=
d log(2πσ2)

2
+
dσ2

2
+
‖θ − θ′‖2

2σ2

is the cross-entropy of Pθ and Pθ′ , and

C = (1− ε)
∫

log

(
(1− ε)N (x|θ0, σ2) + εN (x|θc, σ2)

)
N (x|θ0, σ2)dx

+ ε

∫
log

(
(1− ε)N (x|θ0, σ2) + εN (x|θc, σ2)

)
N (x|θc, σ2)dx,

where N (x|m,σ2) is the probability density function of N (m,σ2) evaluated at x.
Hence, the minimizer of KL (P0‖Pθ) w.r.t θ, i.e the minimizer of:

(1− ε)‖θ − θ0‖2 + ε‖θ − θc‖2.

is (1− ε)θ0 + εθc, which can be far away from θ0 in situations when the corrupted mean θc
is very far from the true parameter θ0.

Appendix E. An example of computation of a robust prior mass.

In this appendix, we tackle the computation of a prior mass in the Gaussian mean estimation
problem, and we show that it leads to a wide range of values of β satisfying the prior mass
condition C(π, β) for a standard normal prior π.

We recall that the prior mass condition C(π, β) is satisfied as soon as there exists a
function f such that:

β ≥ − log π(Bn)n.

In practice, lower bounds of the form π(Bn) ≥ Le−f(θ∗) naturally appear when computing
the prior mass π(Bn). Only f(θ∗) depends on the parameter θ∗ corresponding to the best
approximation in the model of the true distribution in the MMD sense, that is the true
parameter itself when the model is well-specified. Hence, it is sufficient to choose a value of
the temperature parameter β ≥

(
f(θ∗)−logL

)
n in order to obtain the prior mass condition.

We conduct the computation in a misspecified case, where we assume that a propor-
tion 1 − ε of the observations are sampled i.i.d from a σ2-variate Gaussian distribution of
interest Pθ0 , but that the remaining observations are corrupted and can take any arbitrary
value. We consider the model of Gaussian distributions {Pθ = N (θ, σ2)/θ ∈ Rd}. This
adversarial contamination model is more general than Huber’s contamination model pre-
sented in Appendix D. Note that when ε = 0, then the model is well-specified and the
distribution of interest Pθ0 is also the true distribution P0. We use the Gaussian kernel
k(x, y) = exp(−‖x− y‖2/γ2) and the standard normal prior π = N (0, Id).

We write the inequality defining parameters θ belonging to Bn:

D2
k (Pθ∗ , Pθ) ≤ n−1. (E.1)

14
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Note that when the model is well-specified, the we get θ∗ = θ0.
According to derivations performed in Appendix D, we have for any θ:

D2
k (Pθ, Pθ∗) = 〈µPθ , µPθ〉Hk − 2〈µPθ , µPθ∗ 〉Hk + 〈µPθ∗ , µPθ∗ 〉Hk

= 2

(
γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

∗‖2

4σ2 + γ2

)]
.

Hence, Inequality (E.1) is equivalent to:

2

(
γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

∗‖2

4σ2 + γ2

)]
≤ 1

n

i.e to

1− 1

2n

(
1 +

4σ2

γ2

) d
2

≤ exp

(
−‖θ − θ

∗‖2

4σ2 + γ2

)
We denote sn =

√
4σ2+γ2

2n

(
1 + 4σ2

γ2

) d
4

and B(θ, sn) the ball of radius sn and centered at θ.

Let us compute the prior mass of Bn:

π(Bn) = π

(
1− 1

2n

(
1 +

4σ2

γ2

) d
2

≤ exp

(
−‖θ − θ

∗‖2

4σ2 + γ2

))
≥ π

(
1− 1

2n

(
1 +

4σ2

γ2

) d
2

≤ 1− ‖θ − θ
∗‖2

4σ2 + γ2

)
using inequality e−x ≥ 1− x

= π

(
‖θ − θ∗‖2 ≤ (4σ2 + γ2)

1

2n

(
1 +

4σ2

γ2

) d
2
)

= π
(
θ ∈ B(θ∗, sn)

)
=

∫
B(θ∗,sn)

(2π)−d/2e−‖θ‖
2/2dθ.

Actually, the point that minimizes θ → e−‖θ‖
2/2 on B(θ∗, sn) is θ∗(1 + sn/‖θ∗‖). Thus:

π(Bn) ≥
∫
B(θ∗,sn)

(2π)−d/2 exp

(
−‖θ‖2

2

)
dθ

≥ (2π)−d/2 exp

(
−(‖θ∗‖+ sn)2

2

)
vol
(
B(θ∗, sn)

)
.

We recall the formula of the volume of the d-dimensional ball:

vol
(
B(θ∗, sn)

)
=

πd/2

Γ(d/2 + 1)
sdn.

Hence:

π(Bn) ≥

(
4σ2 + γ2

) d
2

(
1 + 4σ2

γ2

) d2
4

Γ(d/2 + 1)
exp

(
− 1

2

{
‖θ∗‖+

√
4σ2 + γ2

2n

(
1 +

4σ2

γ2

) d
4
}2) 1

nd/2
.
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As could be expected for a standard normal prior, the larger the value of ‖θ∗‖, the smaller
can be the prior mass.

We denote

L =

(
4σ2 + γ2

) d
2

(
1 + 4σ2

γ2

) d2
4

Γ(d/2 + 1)
· 1

nd/2

and

f(x) =
1

2

{
‖x‖+

√
4σ2 + γ2

2n

(
1 +

4σ2

γ2

) d
4
}2

so that π(Bn) ≥ Le−f(θ∗).
Hence, for the standard normal prior π, values of β leading to consistency of the MMD-

Bayes are:

β ≥ (f(θ∗)− logL)n

=
n

2

{
‖θ∗‖+

√
4σ2 + γ2

2n

(
1 +

4σ2

γ2

) d
4
}2

+
dn log n

2

− dn

2
log(4σ2 + γ2)− d2n

4
log

(
1 +

4σ2

γ2

)
+ n log Γ(d/2 + 1).

In particular, when γ2 is of order d, then using Stirling’s approximation, we get a lower
bound on the valid values of β of order (up to a logarithmic factor):

nmax
(
‖θ∗‖2, d

)
. β.

Appendix F. Computation of the extended prior mass.

The computation of Condition (4.1) is of major interest. We investigate here the case of
a Gaussian model Pθ = N (θ, σ2), a Gaussian mean-field variational approximation F =
{N (m,diag(s2))/m ∈ Rd, s ∈ Rd>0}, a standard Gaussian prior π = N (0, 1) and a Gaussian
kernel k(x, y) = exp(−‖x− y‖2/γ2).

Let us define ρn = N
(
θ∗, s2Id

)
where s2 = 4σ2+γ2

2dn

(
1 + 4σ2

γ2

) d
2
. Then:

KL(ρn‖π) =
1

2

d∑
j=1

{
θ∗2j + s2 − log(s2)− 1

}

=
4σ2 + γ2

2dn

(
1 +

4σ2

γ2

) d
2

+
d log(2dn) + ‖θ∗‖2 − d− d log(4σ2 + γ2)

2

− d2

4
log

(
1 +

4σ2

γ2

)
,
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and ∫
D2
k(Pθ∗ , Pθ)ρn(dθ) = 2

(
γ2

4σ2 + γ2

) d
2
(

1−
∫

exp

(
−‖θ − θ

∗‖2

4σ2 + γ2

)
ρn(dθ)

)
= 2

(
γ2

4σ2 + γ2

) d
2
(

1−
∫
e−‖θ‖

2N
(
dθ

∣∣∣∣0, s2

4σ2 + γ2
Id

))
= 2

(
γ2

4σ2 + γ2

) d
2
(

1−Det

(
Id + 2

s2

4σ2 + γ2
Id

)−1/2)
= 2

(
γ2

4σ2 + γ2

) d
2
(

1−
d∏
j=1

(
1 +

2s2

4σ2 + γ2

)−1/2)

= 2

(
γ2

4σ2 + γ2

) d
2
(

1−

(
1 +

(
1 +

4σ2

γ2

) d
2 1

dn

)−d/2)

≤ 2

(
γ2

4σ2 + γ2

) d
2
(

1−

(
1− d

2

(
1 +

4σ2

γ2

) d
2 1

dn

))
=

1

n
.

Hence, the robust extended prior mass condition is satisfied as soon as

β ≥ 4σ2 + γ2

2d

(
1 +

4σ2

γ2

) d
2

+
n(d log(2dn) + ‖θ∗‖2 − d− d log(4σ2 + γ2))

2

− d2n

4
log

(
1 +

4σ2

γ2

)
.

When γ2 is of order d, this leads to a bound of order (up to a logarithmic factor):

nmax
(
‖θ∗‖2, d

)
. β,

and we recover the bound that we found for the exact MMD-Bayes.

Appendix G. Projected Stochastic Gradient Algorithm for VI.

In this section, we provide details of a stochastic gradient algorithm (PSGAVI) to compute
the Gaussian mean-field approximation, with a necessary projection step if M ( Rd and
S ( Rd>0. We assume that M ⊂ Rd and S ⊂ Rd>0 are closed and convex sets so that the
orthogonal projection ΠM on M and ΠS on S are well-defined. We choose a standard
Gaussian prior π = N (0, 1).

Another important assumption is that the model is generative, i.e that one can eas-
ily sample from distributions belonging to the model {Pθ, θ ∈ Θ}. The main idea of the
algorithm (Dziugaite et al, 2015; Li and Zemel, 2015; Briol et al., 2019) is then to approx-

imate the gradient of the criterion to minimize KL(N (m,diag(s2))‖πβn) using an unbiased
U-statistic estimate based on random samples from the generative model, and to use a
projected stochastic gradient algorithm. We recall that we use the componentwise multi-
plication.
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Criterion to minimize:

As explained in Appendix F, the optimization program is equivalent to minimizing:

arg min
(m,s)∈M×S

{∫
D2
k(Pθ, P̂n)N (dθ|m,diag(s2)) +

1

2β

d∑
j=1

[
m2
j + s2

j − log(s2
j )− 1

]}
.

We know that:

D2
k(Pθ, P̂n) = EX,X′∼Pθ [k(X,X ′)]− 2

n

n∑
i=1

EX∼Pθ [k(Xi, X)] +
1

n2

∑
1≤i,j≤n

k(Xi, Xj).

Hence, the criterion to minimize is:

Rn(m, s) :=

∫
EX,X′∼Pθ [k(X,X ′)]N (dθ|m,diag(s2))

−
∫

2

n

n∑
i=1

EX∼Pθ [k(Xi, X)]N (dθ|m,diag(s2)) +
1

2β

d∑
j=1

{
m2
j + s2

j − log(s2
j )− 1

}
.

Gradient computation:

The first-order gradient algorithm PSGAVI requires the computation of the gradient of
the criterion Rn with respect to m and s. In the following, we will use componentwise
operations.

The expression of Rn contains two terms that can be written as
∫
f(θ)N (dθ|m,diag(s2)),

and the derivative of this expectation can be hard to evaluate. We use the so-called repa-
rameterization trick which is very popular in the variational inference community and ap-
proximate the expectation by a stochastic gradient estimator:∫

∇mf(m+ sθ)N (dθ|0, Id) ≈
1

M

M∑
k=1

∇mf(m+ sθk)

and ∫
∇sf(m+ sθ)N (dθ|0, Id) ≈

1

M

M∑
k=1

∇sf(m+ sθk)

where M denotes the number of samples θk drawn from the standard Gaussian.
Hence, the gradients of the criterion are:

∇mRn(m, s) ≈ 1

M

M∑
k=1

∇mEX,X′∼P
m+sθk

[k(X,X ′)]

− 1

M

2

n

M∑
k=1

n∑
i=1

∇mEX∼P
m+sθk

[k(Xi, X)] +
1

β
·m,
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∇sRn(m, s) ≈ 1

M

M∑
k=1

∇sEX,X′∼P
m+sθk

[k(X,X ′)]

− 1

M

2

n

M∑
k=1

n∑
i=1

∇sEX∼P
m+sθk

[k(Xi, X)] +
1

β
(s− s−1).

Moreover, using the log-derivative trick for differentiable log-densities:

∇θEX,X′∼Pθ [k(X,X ′)] = 2EX,X′∼Pθ

[
k(X,X ′)∇θ[log pθ(X)]

]
,

∇θEX∼Pθ [k(Xi, X)] = EX∼Pθ

[
k(Xi, X)∇θ[log pθ(X)]

]
.

Hence, we obtain stochastic gradients using i.i.d samples (Y1, . . . , YM ) from Pθ:

∇̂mRn(m, s) =
2

M2

M∑
k=1

M∑
j=1

{
1

M − 1

∑
`6=j

k(Yj , Y`)−
1

n

n∑
i=1

k(Xi, Yj)

}
∇m[log pm+sθk(Yj)]

+
1

β
·m

and

∇̂sRn(m, s) =
2

M2

M∑
k=1

M∑
j=1

{
1

M − 1

∑
`6=j

k(Yj , Y`)−
1

n

n∑
i=1

k(Xi, Yj)

}
∇s[log pm+sθk(Yj)]

+
1

β
(s− s−1).

Note that when the log-density log pθ(x) is not differentiable, it is often possible to
compute the stochastic gradients involving θ1, ..., θM directly, without using the Monte
Carlo samples Y1, ..., YM . For instance, when the model is a uniform distribution Pθ =
U([θ−a, θ+a]) and when the kernel can be written as k(x, y) = K(x−y) for some function
K (such as Gaussian kernels), we have:

EX,X′∼Pθ [k(X,X ′)] =

∫ θ+a

θ−a

∫ θ+a

θ−a
K(x− x′)dxdx′ =

∫ +a

−a

∫ +a

−a
K(x− x′)dxdx′,

and

EX∼Pθ [k(Xi, X)] =

∫ θ+a

θ−a
K(x−Xi)dx =

∫ θ+a−Xi

θ−a−Xi
K(x)dx.

Hence,
∇mEX,X′∼P

m+sθk
[k(X,X ′)] = 0,

∇sEX,X′∼Pθ [k(X,X ′)] = 0,

and
∇mEX∼P

m+sθk
[k(Xi, X)] = K(m+ sθk + a−Xi)−K(m+ sθk − a−Xi),

∇sEX∼P
m+sθk

[k(Xi, X)] = sK(m+ sθk + a−Xi)− sK(m+ sθk − a−Xi).
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PSGAVI algorithm:

The Projected Stochastic Gradient Algorithm for Variational Inference is the following:

Algorithm 1: PSGAVI

Input: A dataset (X1, ..., Xn), a model {Pθ, θ ∈ Θ ⊂ Rd}, a kernel k, a sequence of
steps (ηt)t≥1, a batch size M , a stopping time T , closed and convex sets
M⊂ Rd and S ⊂ Rd>0, an initial mean m(0) ∈M, an initial covariance matrix
diag(s(T )2) where s(0) ∈ S.

Output: A variational Gaussian density N (θ|m(T ),diag(s(T )2))
for t← 1 to T do

draw (Y1, . . . , YM ) i.i.d from Pm(t−1) ;

m(t) = ΠM

(
m(t−1) − ηt∇̂mRn(m(t−1), s(t−1))

)
;

s(t) = ΠS

(
s(t−1) − ηt∇̂sRn(m(t−1), s(t−1))

)
;

end

A theoretical analysis of the algorithm, in the spirit of Chérief-Abdellatif et al (2019),
goes beyond the scope of this paper and will be the object of future works.

Appendix H. Numerical simulations.

In this section, we provide numerical experiments that support our theoretical results. We
studied three different and simple problems: the robust unidimensional Gaussian mean es-
timation, the robust multidimensional Gaussian mean estimation, and the uniform location
parameter estimation.

In each experiment, we compared the mean of the variational approximation of the
MMD-Bayes to other estimators: the median estimator and the MLE in the Gaussian
mean estimation problem, i.e the componentwise median and the arithmetic mean, and the
method of moments and the MLE in the uniform location parameter estimation problem,
i.e the arithmetic mean and the average between the largest and the lowest values. We
chose a value of β of end, a number of Monte-Carlo samples equal to n and a step-size of
ηt = 1/

√
t. We used the Gaussian kernel k(x, y) = e−‖x−y‖

2/d where d is the dimension and
we repeated each experiment 100 times.

Gaussian mean estimation problem: for both the uni- and the multidimensional
cases, we randomly sampled n = 200 i.i.d observations from a Gaussian distributionN (θ, Id)
where Id is the identity matrix of dimension d and θ is the vector with all components equal
to 2. Some proportion ε ∈ [0, 0.2] of corrupted observations is replaced by independent
samples which components are independently sampled from a standard Cauchy distribution
C(0, 1). We compared the mean of the variational approximation with the MLE (i.e the
arithmetic mean) and the componentwise median using the squared root of the MSE.

Uniform location parameter estimation problem: we randomly sampled n = 200
i.i.d observations from a uniform distribution U

(
[θ − 1

2 , θ + 1
2 ]
)

where θ = 1. Following the
previous set of experiments, the proportion ε ∈ [0, 0.2] of data is replaced by outliers from a
Gaussian N (20, 1). We compared the mean of the variational approximation with the MLE
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Figure 2 - Comparison of the square root of the MSE for the MMD estimator, the MLE and
the median in the robust multidimensional Gaussian mean estimation problem for various
values of the proportion of outliers. Here d = 15.

(i.e the average between the largest and the lowest values) and the method of moments
estimator (i.e the arithmetic mean) using again the square root of the MSE.

Figure 3 - Comparison of the square root of the MSE for the MMD estimator, the MLE
and the method of moments in the robust estimation of the location parameter of a uniform
distribution for various values of the proportion of outliers.

Results: The error of our estimators as a function of the contamination ratio ε is
plotted in Figures 1, 2 and 3. These plots show that our method is applicable to various
problems and leads to a good estimator for all of them. Indeed, the plots in Figures 1
and 2 show that the MSE for the MMD estimator performs as well as the componentwise
median and even better when the number of outliers in the dataset increases, much better
than the MLE in the robust Gaussian mean estimation problem, and is not affected that
much by the presence of outliers in the data. For the uniform location parameter estimation
problem addressed in Figure 3, the MMD estimator is clearly the one that performs the
best and is not affected by a reasonable proportion of outliers, contrary to the method of
moments which square root of MSE is increasing linearly with ε and to the MLE that gives
inconsistent estimates as soon as there is an outlier in the data.
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