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Abstract

Class probabilities predicted by most multiclass classifiers are uncalibrated, often
tending towards over-confidence. With neural networks, calibration can be im-
proved by temperature scaling, a method to learn a single corrective multiplicative
factor for inputs to the last softmax layer. On non-neural models the existing
methods apply binary calibration in a pairwise or one-vs-rest fashion. We propose
a natively multiclass calibration method applicable to classifiers from any model
class, derived from Dirichlet distributions and generalising the beta calibration
method from binary classification. It is easily implemented with neural nets since it
is equivalent to log-transforming the uncalibrated probabilities, followed by one lin-
ear layer and softmax. Experiments demonstrate improved probabilistic predictions
according to multiple measures (confidence-ECE, classwise-ECE, log-loss, Brier
score) across a wide range of datasets and classifiers. Parameters of the learned
Dirichlet calibration map provide insights to the biases in the uncalibrated model.

1 Introduction

A probabilistic classifier is well-calibrated if among test instances receiving a predicted probability
vector p, the class distribution is (approximately) distributed as p. This property is of fundamental
importance when using a classifier for cost-sensitive classification, for human decision making, or
within an autonomous system. Due to overfitting, most machine learning algorithms produce over-
confident models, unless dedicated procedures are applied, such as Laplace smoothing in decision
trees [8]. The goal of (post-hoc) calibration methods is to use hold-out validation data to learn a
calibration map that transforms the model’s predictions to be better calibrated. Meteorologists were
among the first to think about calibration, with [3] introducing an evaluation measure for probabilistic
forecasts, which we now call Brier score; [21] proposing reliability diagrams, which allow us
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to visualise calibration (reliability) errors; and [6] discussing proper scoring rules for forecaster
evaluation and the decomposition of these loss measures into calibration and refinement losses.
Calibration methods for binary classifiers have been well studied and include: logistic calibration,
also known as ‘Platt scaling’ [24]; binning calibration [26] with either equal-width or equal-frequency
bins; isotonic calibration [27]; and beta calibration [15]. Extensions of the above approaches include:
[22] which performs Bayesian averaging of multiple calibration maps obtained with equal-frequency
binning; [23] which uses near-isotonic regression to allow for some non-monotonic segments in the
calibration maps; and [1] which introduces a non-parametric Bayesian isotonic calibration method.

Calibration in multiclass scenarios has been approached by decomposing the problem into k one-
vs-rest binary calibration tasks [27], one for each class. The predictions of these k calibration
models form unnormalised probability vectors, which, after normalisation, are not guaranteed to be
calibrated. Native multiclass calibration methods were introduced recently with a focus on neural
networks, including: matrix scaling, vector scaling and temperature scaling [9], which can all be
seen as multiclass extensions of Platt scaling and have been proposed as calibration layers which
should be applied to the logits of a neural network, replacing the softmax layer. An alternative to
post-hoc calibration is to modify the classifier learning algorithm itself: MMCE [17] trains neural
networks by optimising the combination of log-loss with a kernel-based measure of calibration
loss; SWAG [19] models the posterior distribution over the weights of the neural network and then
samples from this distribution to perform Bayesian model averaging; [20] proposed a method to
transform the classification task into regression and to learn a Gaussian Process model. Calibration
methods have been proposed for the regression task as well, including a method by [13] which
adopts isotonic regression to calibrate the predicted quantiles. The theory of calibration functions and
empirical calibration evaluation in classification was studied by [25], also proposing a statistical test
of calibration.

While there are several calibration methods tailored for deep neural networks, we propose a general-
purpose, natively multiclass calibration method called Dirichlet calibration, applicable for calibrating
any probabilistic classifier. We also demonstrate that the multiclass setting introduces numerous
subtleties that have not always been recognised or correctly dealt with by other authors. For example,
some authors use the weaker notion of confidence calibration (our term), which requires only that the
classifier’s predicted probability for what it considers the most likely class is calibrated. There are
also variations in the evaluation metric used and in the way calibrated probabilities are visualised.
Consequently, Section 2 is concerned with clarifying such fundamental issues. We then propose the
approach of Dirichlet calibration in Section 3, present and discuss experimental results in Section 4,
and conclude in Section 5.

2 Evaluation of calibration and temperature scaling

Consider a probabilistic classifier p̂ : X → ∆k that outputs class probabilities for k classes
1, . . . ,k. For any given instance x in the feature space X it would output some probability vec-
tor p̂(x) = (p̂1(x), . . . , p̂k(x)) belonging to ∆k = {(q1, . . . ,qk) ∈ [0,1]k | ∑k

i=1 qi = 1} which is the
(k−1)-dimensional probability simplex over k classes.

Definition 1. A probabilistic classifier p̂ : X → ∆k is multiclass-calibrated, or simply calibrated,
if for any prediction vector q = (q1, . . . ,qk) ∈ ∆k, the proportions of classes among all possible
instances x getting the same prediction p̂(x) = q are equal to the prediction vector q:

P(Y = i | p̂(X) = q) = qi for i = 1, . . . ,k. (1)

One can define several weaker notions of calibration [25] which provide necessary conditions for the
model to be fully calibrated. One of these weaker notions was originally proposed by [27], requiring
that all one-vs-rest probability estimators obtained from the original multiclass model are calibrated.

Definition 2. A probabilistic classifier p̂ : X → ∆k is classwise-calibrated, if for any class i and
any predicted probability qi for this class:

P(Y = i | p̂i(X) = qi) = qi. (2)

Another weaker notion of calibration was used by [9], requiring that among all instances where the
probability of the most likely class is predicted to be c (the confidence), the expected accuracy is c.
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(c) Class 2 reliability (Temp.Scal.)
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(d) Class 2 reliability (Dirichlet Cal.)
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Figure 1: Reliability diagrams of c10_resnet_wide32 on CIFAR-10: (a) confidence-reliability
before calibration; (b) confidence-reliability after temperature scaling; (c) classwise-reliability for
class 2 after temperature scaling; (d) classwise-reliability for class 2 after Dirichlet calibration.

Definition 3. A probabilistic classifier p̂ : X → ∆k is confidence-calibrated, if for any c ∈ [0,1]:

P
(

Y = argmax
(
p̂(X)

) ∣∣∣max
(
p̂(X)

)
= c
)
= c. (3)

For practical evaluation purposes these idealistic definitions need to be relaxed. A common ap-
proach for checking confidence-calibration is to do equal-width binning of predictions according
to confidence level and check if Eq.(3) is approximately satisfied within each bin. This can be
visualised using the reliability diagram (which we will call the confidence-reliability diagram), see
Fig. 1a, where the wide blue bars show observed accuracy within each bin (empirical version of the
conditional probability in Eq.(3)), and narrow red bars show the gap between the two sides of Eq.(3).
With accuracy below the average confidence in most bins, this figure about a wide ResNet trained on
CIFAR-10 shows over-confidence, typical for neural networks which predict probabilities through
the last softmax layer and are trained by minimising cross-entropy.

The calibration method called temperature scaling was proposed by [9] and it uses a hold-out
validation set to learn a single temperature-parameter t > 0 which decreases confidence (if t > 1) or
increases confidence (if t < 1). This is achieved by rescaling the logit vector z (input to softmax σ ),
so that instead of σ(z) the predicted class probabilities will be obtained by σ(z/t). The confidence-
reliability diagram in Fig. 1b shows that the same c10_resnet_wide32 model has come closer to
being confidence-calibrated after temperature scaling, having smaller gaps to the accuracy-equals-
confidence diagonal. This is reflected in a lower Expected Calibration Error (confidence-ECE),
defined as the average gap across bins, weighted by the number of instances in the bin. In fact,
confidence-ECE is low enough that the statistical test proposed by [25] with significance level
α = 0.01 does not reject the hypothesis that the model is confidence-calibrated (p-value 0.017). The
main idea behind this test is that for a perfectly calibrated model, ECE against actual labels is in
expectation equal to the ECE against pseudo-labels which have been drawn from the categorical
distributions corresponding to the predicted class probability vectors. The above p-value was obtained
by randomly drawing 10,000 sets of pseudo-labels and finding 170 of these to have higher ECE than
the actual one.

While the above temperature-scaled model is (nearly) confidence-calibrated, it is far from being
classwise-calibrated. This becomes evident in Fig 1c, demonstrating that it systematically over-
estimates the probability of instances to belong to class 2, with predicted probability (x-axis) smaller
than the observed frequency of class 2 (y-axis) in all the equal-width bins. In contrast, the model
systematically under-estimates class 4 probability (Supplementary Fig. 12a). Having only a single
tuneable parameter, temperature scaling cannot learn to act differently on different classes. We
propose plots such as Fig. 1c,d across all classes to be used for evaluating classwise-calibration, and
we will call these the classwise-reliability diagrams. We propose classwise-ECE as a measure of
classwise-calibration, defined as the average gap across all classwise-reliability diagrams, weighted
by the number of instances in each bin:

classwise−ECE=
1
k

k

∑
j=1

m

∑
i=1

|Bi, j|
n
|y j(Bi, j)− p̂ j(Bi, j)| (4)

where k,m,n are the numbers of classes, bins and instances, respectively, |Bi, j| denotes the size of
the bin, and p̂ j(Bi, j) and y j(Bi, j) denote the average prediction of class j probability and the actual
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proportion of class j in the bin Bi, j. The contribution of a single class j to the classwise-ECE will
be called class- j-ECE. As seen in Fig. 1(d), the same model gets closer to being class-2-calibrated
after applying our proposed Dirichlet calibration. By averaging class- j-ECE across all classes we
get the overall classwise-ECE which for temperature scaling is cwECE = 0.1857 and for Dirichlet
calibration cwECE = 0.1795. This small difference in classwise-ECE appears more substantial when
running the statistical test of [25], rejecting the null hypothesis that temperature scaling is classwise-
calibrated (p < 0.0001), while for Dirichlet calibration the decision depends on the significance level
(p = 0.016). A similar measure of classwise-calibration called L2 marginal calibration error was
proposed in a concurrent work by [16].

Before explaining the Dirichlet calibration method, let us highlight the fundamental limitation of
evaluation using any of the above reliability diagrams and ECE measures. Namely, it is easy to obtain
almost perfectly calibrated probabilities by predicting the overall class distribution, regardless of the
given instance. Therefore, it is always important to consider other evaluation measures as well. In
addition to the error rate, the obvious candidates are proper losses (such as Brier score or log-loss),
as they evaluate probabilistic predictions and decompose into calibration loss and refinement loss
[14]. Proper losses are often used as objective functions in post-hoc calibration methods, which take
an uncalibrated probabilistic classifier p̂ and use a hold-out validation dataset to learn a calibration
map µ̂ : ∆k→ ∆k that can be applied as µ̂(p̂(x)) on top of the uncalibrated outputs of the classifier to
make them better calibrated. Every proper loss is minimised by the same calibration map, known as
the canonical calibration function [25] of p̂, defined as

µ(q) = (P(Y = 1 | p̂(X) = q), . . . ,P(Y = k | p̂(X) = q))

The goal of Dirichlet calibration, as of any other post-hoc calibration method, is to estimate this
canonical calibration map µ for a given probabilistic classifier p̂.

3 Dirichlet calibration

A key decision in designing a calibration method is the choice of parametric family. Our choice
was based on the following desiderata: (1) the family needs enough capacity to express biases
of particular classes or pairs of classes; (2) the family must contain the identity map for the case
where the model is already calibrated; (3) for every map in the family we must be able to provide a
semi-reasonable synthetic example where it is the canonical calibration function; (4) the parameters
should be interpretable to some extent at least.

Dirichlet calibration map family. Inspired by beta calibration for binary classifiers [15], we
consider the distribution of prediction vectors p̂(x) separately on instances of each class, and assume
these k distributions are Dirichlet distributions with different parameters:

p̂(X) | Y = j ∼ Dir(α( j)) (5)

where α( j) =(α
( j)
1 , . . . ,α

( j)
k )∈ (0,∞)k are the Dirichlet parameters for class j. Combining likelihoods

P(p̂(X) |Y ) with priors P(Y ) expressing the overall class distribution π ∈ ∆k, we can use Bayes’ rule
to express the canonical calibration function P(Y | p̂(X)) as follows:

generative parametrisation: µ̂DirGen(q;α,π) = (π1 f1(q), . . . ,πk fk(q))/z (6)

where z = ∑
k
j=1 π j f j(q) is the normaliser, and f j is the probability density function of the Dirichlet

distribution with parameters α( j), gathered into a matrix α . It will also be convenient to have two
alternative parametrisations of the same family: a linear parametrisation for fitting purposes and a
canonical parametrisation for interpretation purposes. These parametrisations are defined as follows:

linear parametrisation: µ̂DirLin(q;W,b) = σ(Wlnq+b) (7)

where W ∈ Rk×k is a k× k parameter matrix, ln is a vector function that calculates the natural
logarithm component-wise and b ∈ Rk is a parameter vector of length k;

canonical parametrisation: µ̂Dir(q;A,c) = σ(Aln
q

1/k
+ lnc) (8)

where each column in the k-by-k matrix A ∈ [0,∞)k×k with non-negative entries contains at least one
value 0, division of q by 1/k is component-wise, and c ∈ ∆k is a probability vector of length k.
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Figure 2: Interpretation of Dirichlet calibration maps: (a) calibration map for MLP on the abalone
dataset, 4 interpretation points shown by black dots, and canonical parametrisation as a matrix with
A,c; (b) canonical parametrisation of a map on SVHN_convnet; (c) changes to the confusion matrix
after applying this calibration map.

Theorem 1 (Equivalence of generative, linear and canonical parametrisations). The parametric
families µ̂DirGen(q;α,π), µ̂DirLin(q;W,b) and µ̂Dir(q;A,c) are equal, i.e. they contain exactly the
same calibration maps.

Proof. All proofs are given in the Supplemental Material.

The benefit of the linear parametrisation is that it can be easily implemented as (additional) layers
in a neural network: a logarithmic transformation followed by a fully connected layer with softmax
activation. Out of the three parametrisations only the canonical parametrisation is unique, in the sense
that any function in the Dirichlet calibration map family can be represented by a single pair of matrix
A and vector c satisfying the requirements set by the canonical parametrisation µ̂Dir(q;A,c).

Interpretability. In addition to providing uniqueness, the canonical parametrisation is to some
extent interpretable. As demonstrated in the proof of Thm. 1 provided in the Supplemental Material,
the linear parametrisation W,b obtained after fitting can be easily transformed into the canonical
parametrisation by ai j = wi j −mini wi j and c = σ(Wlnu+b), where u = (1/k, . . . ,1/k). In the
canonical parametrisation, increasing the value of element ai j in matrix A increases the calibrated
probability of class i (and decreases the probabilities of all other classes), with effect size depending
on the uncalibrated probability of class j. E.g., element a3,9 = 0.63 of Fig.2b increases class 2
probability whenever class 8 has high predicted probability, modifying decision boundaries and
resulting in 26 less confusions of class 2 for 8 as seen in Fig.2c. Looking at the matrix A and vector
c, it is hard to know the effect of the calibration map without performing the computations. However,
at k+ 1 ‘interpretation points’ this is (approximately) possible. One of these is the centre of the
probability simplex, which maps to c. The other k points are vectors where one value is (almost) zero
and the other values are equal, summing up to 1. Figure 2a shows the 3+1 interpretation points in an
example for k = 3, where each arrow visualises the result of calibration (end of arrow) at a particular
point (beginning of arrow). The result of calibration map at the interpretation points in the centres of
sides (facets) is each determined by a single column of A only. The k columns of matrix A and the
vector c determine, respectively, the behaviour of the calibration map near the k+1 points(

ε,
1− ε

k−1
, . . . ,

1− ε

k−1

)
, . . . ,

(
1− ε

k−1
, . . . ,

1− ε

k−1
,ε

)
, and

(
1
k
, . . . ,

1
k

)
The first k points are infinitesimally close to the centres of facets of the probability simplex, and the
last point is the centre of the whole simplex. For 3 classes these 4 points have been visualised on the
simplex in Fig. 2a. The Dirichlet calibration map µ̂Dir(q;A,c) transforms these k+1 points into:

(εa11 , . . . ,εak1)/z1 , . . . , (ε
a1k , . . . ,εakk)/zk , and (c1, . . . ,ck)
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where zi are normalising constants, and ai j,c j are elements of the matrix A and vector c, respectively.
However, the effect of each parameter goes beyond the interpretation points and also changes classi-
fication decision boundaries. This can be seen for the calibration map for a model SVHN_convnet
in Fig. 2b where larger off-diagonal coefficients ai j often result in a bigger change in the confusion
matrix as seen in Fig. 2c (particularly in the 3rd row and 9th column).

Relationship to other families. For 2 classes, the Dirichlet calibration map family coincides with
the beta calibration map family [15]. Although temperature scaling has been defined on logits z,
it can be expressed in terms of the model outputs p̂ = σ(z) as well. It turns out that temperature
scaling maps all belong to the Dirichlet family, with µ̂TempS(q; t) = µ̂DirLin(q; 1

t I,0), where I is the
identity matrix and 0 is the zero vector (see Prop.1 in the Supplemental Material). The Dirichlet
calibration family is also related to the matrix scaling family µ̂MatS(z;W,b) = σ(Wz+b) proposed
by [9] alongside with temperature scaling. Both families use a fully connected layer with softmax
activation, but the crucial difference is in the inputs to this layer. Matrix scaling uses logits z, while the
linear parametrisation of Dirichlet calibration uses log-transformed probabilities ln(p̂) = ln(σ(z)).
As softmax followed by log-transform is losing information, matrix scaling has an informational
advantage over Dirichlet calibration on deep neural networks, which we will turn back to in the
experiments section.

Fitting and ODIR regularisation. The results of [9] showed poor performance for matrix scal-
ing (with ECE, log-loss, error rate), leading the authors to the conclusion that “[a]ny calibration
model with tens of thousands (or more) parameters will overfit to a small validation set, even when
applying regularization”. We agree that some overfitting happens, but in our experiments a simple
L2 regularisation suffices on non-neural models, whereas for deep neural nets we propose a novel
ODIR (Off-Diagonal and Intercept Regularisation) scheme, which is efficient enough in fighting
overfitting to make both Dirichlet calibration and matrix scaling outperform temperature scaling on
many occasions, including cases with 100 classes and hence 10100 parameters. Fitting of Dirichlet
calibration maps is performed by minimising log-loss, and by adding ODIR regularisation terms to
the loss function as follows:

L =
1
n

n

∑
i=1

logloss
(

µ̂DirLin(p̂(xi);W,b),yi

)
+λ ·

(
1

k(k−1) ∑
i 6= j

w2
i j

)
+µ ·

(
1
k ∑

j
b2

j

)
where (xi,yi) are validation instances and wi j,b j are elements of W and b, respectively, and λ ,µ are
hyper-parameters tunable with internal cross-validation on the validation data. The intuition is that
the diagonal is allowed to freely follow the biases of classes, whereas the intercept is regularised
separately from the off-diagonal elements due to having different scales (additive vs. multiplicative).

Implementation details. Implementation of Dirichlet calibration is straightforward in standard
deep neural network frameworks (we used Keras [5] in the neural experiments). Alternatively, it is
also possible to use the Newton–Raphson method on the L2 regularised objective function, which is
constructed by applying multinomial logistic regression with k features (log-transformed predicted
class probabilities). Both the gradient and Hessian matrix can be calculated either analytically or
using automatic differentiation libraries (e.g. JAX [2]). Such implementations normally yield faster
convergence given the convexity of the multinomial logistic loss, which is a better choice with a small
number of target classes (tractable Hessian). One can also simply adopt existing implementations
of logistic regression (e.g. scikit-learn) with the log transformed predicted probabilities. If the
uncalibrated model outputs zero probability for some class, then this needs to be clipped to a small
positive number (we used 2.2e−308, the smallest positive usable number for the type float64 in
Python).

4 Experiments

The main goals of our experiments are to: (1) compare performance of Dirichlet calibration with other
general-purpose calibration methods on a wide range of datasets and classifiers; (2) compare Dirichlet
calibration with temperature scaling on several deep neural networks and study the effectiveness
of ODIR regularisation; and (3) study whether the neural-specific calibration methods outperform
general-purpose calibration methods due to the information loss going from logits to softmax outputs.
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Table 1: Ranking of calibration methods for p-cw-ECE
(Friedman’s test significant with p-value 7.54e−85).

DirL2 Beta FreqB Isot WidB TempS Uncal

adas 2.4 3.2 4.1 4.2 3.9 5.0 5.2
forest 3.5 2.3 5.7 3.0 3.6 5.0 5.0
knn 2.5 4.0 4.5 2.1 3.2 5.8 6.0
lda 1.9 3.1 5.8 3.0 3.5 5.0 5.8
logistic 2.2 2.8 6.4 3.0 4.2 3.9 5.5
mlp 2.2 2.9 6.7 4.0 5.2 3.0 4.1
nbayes 1.4 3.6 4.8 2.6 4.2 5.3 6.1
qda 2.2 2.8 6.3 2.5 3.8 4.8 5.6
svc-linear 2.3 2.7 6.7 3.8 4.0 3.7 4.8
svc-rbf 2.9 3.0 6.3 3.5 4.1 3.9 4.3
tree 2.4 4.3 5.9 4.2 5.2 3.0 3.0

avg rank 2.34 3.15 5.73 3.27 4.11 4.37 5.02

Table 2: Ranking of calibration methods
for log-loss (p-value 4.39e−77).

DirL2 Beta FreqB Isot WidB TempS Uncal

1.4 3.1 3.2 4.3 3.5 5.9 6.6
4.2 1.9 4.7 4.1 2.9 5.2 5.2
3.8 4.8 3.0 1.6 2.0 6.5 6.5
1.6 2.2 5.2 5.2 3.5 4.6 5.7
1.3 2.1 5.8 6.1 3.5 3.6 5.6
2.2 2.3 6.5 6.2 4.7 2.9 3.4
1.1 3.4 3.4 4.0 4.4 5.5 6.3
1.7 2.7 5.6 4.6 3.4 4.2 5.8
1.3 2.3 6.1 6.1 4.3 3.0 4.8
2.6 2.2 4.3 4.8 4.5 4.0 5.6
3.9 5.1 3.4 2.1 2.4 5.6 5.6

2.25 2.92 4.66 4.48 3.54 4.61 5.54

4.1 Calibration of non-neural models

Experimental setup. Calibration methods were compared on 21 UCI datasets (abalone, balance-
scale, car, cleveland, dermatology, glass, iris, landsat-satellite, libras-movement, mfeat-karhunen,
mfeat-morphological, mfeat-zernike, optdigits, page-blocks, pendigits, segment, shuttle, vehicle,
vowel, waveform-5000, yeast) with 11 classifiers: multiclass logistic regression (logistic), naive
Bayes (nbayes), random forest (forest), adaboost on trees (adas), linear discriminant analysis (lda),
quadratic discriminant analysis (qda), decision tree (tree), K-nearest neighbours (knn), multilayer
perceptron (mlp), support vector machine with linear (svc-linear) and RBF kernel (svc-rbf ).

In each of the 21×11 = 231 settings we performed nested cross-validation to evaluate 6 calibration
methods: one-vs-rest isotonic calibration (OvR_Isotonic) which learns an isotonic calibration map on
each class vs rest separately and renormalises the individual calibration map outputs to add up to one
at test time; one-vs-rest equal-width binning (OvR_Width_Bin) where one-vs-rest calibration maps
predict the empirical proportion of labels in each of the equal-width bins of the range [0,1]; one-vs-rest
equal-frequency binning (OvR_Freq_Bin) constructing bins with equal numbers of instances; one-
vs-rest beta calibration (OvR_Beta); temperature scaling (Temp_Scaling); and Dirichlet Calibration
with L2 regularisation (Dirichlet_L2). We used 3-fold internal cross-validation to train the calibration
maps within the 5 times 5-fold external cross-validation. Following [24], the 3 calibration maps
learned in the internal cross-validation were all used as an ensemble by averaging their predictions.
For calibration methods with hyperparameters we used the training fold of the classifier to choose the
hyperparameter values with the lowest log-loss.

We used 8 evaluation measures: accuracy, log-loss, Brier score, maximum calibration error (MCE),
confidence-ECE (conf-ECE), classwise-ECE (cw-ECE), as well as significance measures p-conf-ECE
and p-cw-ECE evaluating how often the respective ECE measures are not significantly higher than
when assuming calibration. For p-conf-ECE and p-cw-ECE we used significance level α = 0.05 in
the test of [25] as explained in Section 2, and counted the proportion of significance tests accepting the
model being calibrated out of 5×5 cases of external cross-validation. With each of the 8 evaluation
measures we ranked the methods on each of the 21×11 tasks and performed Friedman tests to find
statistical differences [7]. When the p-value of the Friedman test was under 0.005 we performed a
post-hoc one-tailed Bonferroni-Dunn test to obtain Critical Differences (CDs) which indicated the
minimum ranking difference to consider the methods significantly different. Further details of the
experimental setup are provided in the Supplemental Material.

Results. The results showed that Dirichlet_L2 was among the best calibrators for every measure.
In particular, it was the best calibration method based on log-loss, p-cw-ECE and accuracy, and in the
group of best calibrators for the other measures. The rankings have been averaged into grouping by
classifier learning algorithm and shown for log-loss in Table 2, and for p-cw-ECE in Table 1. The
critical difference diagram for p-cw-ECE is presented in Fig. 3a. Fig. 3b shows the average p-cw-ECE
for each calibration method across all datasets and shows how frequently the statistical test accepted
the null hypothesis of classifier being calibrated (higher p-cw-ECE is better). The results show that
Dirichlet_L2 was considered calibrated on more than 60% of the p-cw-ECE tests. An evaluation of
classwise-calibration without post-hoc calibration is given in Fig. 3c. Note that svc-linear and svc-rbf
have an unfair advantage because their sklearn implementation uses Platt scaling with 3-fold internal
cross-validation to provide probabilities.
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(a) p-cw-ECE critical difference
(b) p-cw-ECE for calibrators (c) p-cw-ECE for classifiers

Figure 3: Summarised results for p-cw-ECE: (a) CD diagram; (b) proportion of times each calibrator
was calibrated (α = 0.05); (c) proportion of times each classifier was already calibrated (α = 0.05).

Supplemental material contains the final ranking tables and CD diagrams for every metric, an analysis
of the best calibrator hyperparameters, and a more detailed comparison of the classwise calibration
for the 11 classifiers.

4.2 Calibration of deep neural networks

Experimental setup. We used 3 datasets (CIFAR-10, CIFAR-100 and SVHN), training 11 deep
convolutional neural nets with various architectures: ResNet 110 [10], ResNet 110 SD [12], ResNet
152 SD [12], DenseNet 40 [11], WideNet 32 [28], LeNet 5 [18], and acquiring 3 pretrained models
from [4]. For the latter we set aside 5,000 test instances for fitting the calibration map. On other models
we followed [9], setting aside 5,000 training instances (6,000 in SVHN) for calibration purposes and
training the models as in the original papers. For calibration methods with hyperparameters we used
5-fold cross-validation on the validation set to find optimal regularisation parameters. We used all 5
calibration models with the optimal hyperparameter values by averaging their predictions as in [24].

Among general-purpose calibration methods we compared 2 variants of Dirichlet calibration (with
L2 regularisation and with ODIR) against temperature scaling (as discussed in Section 3, it can
equivalently act on probabilities instead of logits and is therefore general-purpose). Other methods
from our non-neural experiment were not included, as these were outperformed by temperature
scaling in the experiments of [9]. Among methods that use logits (neural-specific calibration methods)
we included matrix scaling with ODIR regularisation, and vector scaling, which restricts the matrix
scaling family, fixing off-diagonal elements to 0. As reported by [9], the non-regularised matrix
scaling performed very poorly and was not included in our comparisons. Full details and source code
for training the models are in the Supplemental Material.

Results. Tables 3 and 4 show that the best among three general-purpose calibration methods
depends heavily on the model and dataset. Both variants of Dirichlet calibration (with L2 and with
ODIR) outperformed temperature scaling in most cases on CIFAR-10. On CIFAR-100, Dir-L2 is poor,
but Dir-ODIR outperforms TempS in cw-ECE, showing the effectiveness of ODIR regularisation.
However, this comes at the expense of minor increase in log-loss. According to the average rank
across all deep net experiments, Dir-ODIR is best, but without statistical significance.

The full comparison including calibration methods that use logits confirms that information loss going
from logits to softmax outputs has an effect and MS-ODIR (matrix scaling with ODIR) outperforms
Dir-ODIR in 8 out of 14 cases on cw-ECE and 11 out of 14 on log-loss. However, the effect is
numerically usually very small, as average relative reduction of cw-ECE and log-loss is less than 1%
(compared to the average relative reduction of over 30% from the uncalibrated model). According
to the average rank on cw-ECE the best method is vector scaling, but this comes at the expense of
increased log-loss. According to the average rank on log-loss the best method is MS-ODIR, while its
cw-ECE is on average bigger than for vector scaling by 2%.

As the difference between MS-ODIR and vector scaling was on some models quite small, we further
investigated the importance of off-diagonal coefficients in MS-ODIR. For this we introduced a new
model MS-ODIR-zero which was obtained from the respective MS-ODIR model by replacing the off-
diagonal entries with zeroes. In 6 out of 14 cases (c10_convnet, c10_densenet40, c10_resnet110_SD,
c100_convnet, c100_resnet110_SD, SVHN_resnet152_SD) MS-ODIR-zero and MS-ODIR had
almost identical performance (difference in log-loss of less than 0.0001), indicating that ODIR
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Table 3: Scores and ranking of calibration
methods for cw-ECE.

general-purpose calibrators calibrators using logits
Uncal TempS Dir-L2 Dir-ODIR VecS MS-ODIR

c10_convnet 0.1046 0.0444 0.0432 0.0455 0.0431 0.0443
c10_densenet40 0.1146 0.0405 0.0341 0.0374 0.0362 0.0373
c10_lenet5 0.1986 0.1715 0.0521 0.0594 0.0572 0.0593
c10_resnet110 0.0986 0.0435 0.0321 0.0394 0.0373 0.0362
c10_resnet110_SD 0.0866 0.0314 0.0315 0.0293 0.0272 0.0271
c10_resnet_wide32 0.0956 0.0485 0.0323 0.0292 0.0324 0.0291
c100_convnet 0.4246 0.2271 0.4025 0.2403 0.2414 0.2402
c100_densenet40 0.4706 0.1872 0.3305 0.1861 0.1893 0.1914
c100_lenet5 0.4736 0.3855 0.2194 0.2132 0.2031 0.2143
c100_resnet110 0.4166 0.2013 0.3595 0.1861 0.1942 0.2034
c100_resnet110_SD 0.3756 0.2034 0.3735 0.1893 0.1701 0.1862
c100_resnet_wide32 0.4206 0.1864 0.3335 0.1802 0.1711 0.1803
SVHN_convnet 0.1596 0.0384 0.0435 0.0262 0.0251 0.0273
SVHN_resnet152_SD 0.0192 0.0181 0.0226 0.0203 0.0215 0.0214

Average rank 5.71 3.71 3.79 2.79 2.29 2.71

Table 4: Scores and ranking of calibration
methods for log-loss.

general-purpose calibrators calibrators using logits
Uncal TempS Dir-L2 Dir-ODIR VecS MS-ODIR

0.3916 0.1951 0.1974 0.1952 0.1975 0.1963
0.4286 0.2255 0.2201 0.2244 0.2233 0.2222
0.8236 0.8005 0.7442 0.7443 0.7474 0.7431
0.3586 0.2095 0.2031 0.2053 0.2064 0.2042
0.3036 0.1785 0.1774 0.1763 0.1752 0.1751
0.3826 0.1915 0.1854 0.1822 0.1833 0.1821
1.6416 0.9421 1.1895 0.9612 0.9644 0.9613
2.0176 1.0572 1.2535 1.0594 1.0583 1.0511
2.7846 2.6505 2.5954 2.4902 2.5163 2.4871
1.6946 1.0923 1.2125 1.0964 1.0892 1.0741
1.3536 0.9423 1.1985 0.9454 0.9231 0.9272
1.8026 0.9453 1.0875 0.9534 0.9372 0.9331
0.2056 0.1515 0.1423 0.1382 0.1444 0.1381
0.0856 0.0791 0.0855 0.0802 0.0814 0.0813

6.0 3.5 3.79 2.93 3.14 1.64

regularisation had forced the off-diagonal entries to practically zero. However, MS-ODIR-zero
was significantly worse in the remaining 8 out of 14 cases, indicating that the learned off-diagonal
coefficients in MS-ODIR were meaningful. In all of those cases MS-ODIR outperformed VecS in
log-loss. To eliminate the potential explanation that this could be due to random chance, we retrained
each of these networks on 2 more train-test splits (except for SVHN_convnet which we had used as
pretrained). In all the reruns MS-ODIR remained better than VecS, confirming that it is important to
model the pairwise effects between classes in these cases. Detailed results have been presented in the
Supplemental Material.

5 Conclusion

In this paper we proposed a new parametric general-purpose multiclass calibration method called
Dirichlet calibration, which is a natural extension of the two-class beta calibration method. Dirichlet
calibration is easy to implement as a layer in a neural net, or as multinomial logistic regression on
log-transformed class probabilities, and its parameters provide insights into the biases of the model.
While derived from Dirichlet-distributed likelihoods, it does not assume that the probability vectors
are actually Dirichlet-distributed within each class, similarly as logistic calibration (Platt scaling)
does not assume that the scores are Gaussian-distributed, while it can be derived from Gaussian
likelihoods.

Comparisons with other general-purpose calibration methods across 21 datasets × 11 models showed
best or tied best performance for Dirichlet calibration on all 8 evaluation measures. Evaluation with
our proposed classwise-ECE measures how calibrated are the predicted probabilities on all classes,
not only on the most likely predicted class as with the commonly used (confidence-)ECE. On neural
networks we advance the state-of-the-art by introducing the ODIR regularisation scheme for matrix
scaling and Dirichlet calibration, leading these to outperform temperature scaling on many deep
neural networks.

Interestingly, on many deep nets Dirichlet calibration learns a map which is very close to being in a
temperature scaling family. This raises a fundamental theoretical question of which neural architec-
tures and training methods result in a classifier with its canonical calibration function contained in
the temperature scaling family. But even in those cases Dirichlet calibration can become useful after
any kind of dataset shift, learning an interpretable calibration map to reveal the shift and recalibrate
the predictions for the new context.

Deriving calibration maps from Dirichlet distributions opens up the possibility of using other distribu-
tions of the exponential family to obtain new calibration maps designed for various score types, as
well as investigating scores coming from mixtures of distributions inside each class.
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