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ABSTRACT

We present a simple nearest-neighbor (NN) approach that synthesizes high-
frequency photorealistic images from an “incomplete” signal such as a low-
resolution image, a surface normal map, or edges. Current state-of-the-art deep
generative models designed for such conditional image synthesis lack two impor-
tant things: (1) they are unable to generate a large set of diverse outputs, due
to the mode collapse problem. (2) they are not interpretable, making it difficult
to control the synthesized output. We demonstrate that NN approaches poten-
tially address such limitations, but suffer in accuracy on small datasets. We design
a simple pipeline that combines the best of both worlds: the first stage uses a
convolutional neural network (CNN) to map the input to a (overly-smoothed) im-
age, and the second stage uses a pixel-wise nearest neighbor method to map the
smoothed output to multiple high-quality, high-frequency outputs in a control-
lable manner. Importantly, pixel-wise matching allows our method to compose
novel high-frequency content by cutting-and-pasting pixels from different train-
ing exemplars. We demonstrate our approach for various input modalities, and for
various domains ranging from human faces, pets, shoes, and handbags.

1 INTRODUCTION

We consider the task of generating high-resolution photo-realistic images from incomplete input
such as a low-resolution image, sketches, surface normal map, or label mask. Such a task has a
number of practical applications such as upsampling/colorizing legacy footage, texture synthesis for
graphics applications, and semantic image understanding for vision through analysis-by-synthesis.
These problems share a common underlying structure: a human/machine is given a signal that is
missing considerable details, and the task is to reconstruct plausible details.

Consider the edge map of cat in Figure 1-c. When we humans look at this edge map, we can easily
imagine multiple variations of whiskers, eyes, and stripes that could be viable and pleasing to the
eye. Indeed, the task of image synthesis has been well explored, not just for its practical applications
but also for its aesthetic appeal.

GANs: Current state-of-the-art approaches rely on generative adversarial networks (GANs) (Good-
fellow et al., 2014), and most relevant to us, conditional GANS that generate image conditioned on
an input signal (Denton et al., 2015; Radford et al., 2015; Isola et al., 2016). We argue that there are
two prominent limitations to such popular formalisms: (1) First and foremost, humans can imag-
ine multiple plausible output images given a incomplete input. We see this rich space of potential
outputs as a vital part of the human capacity to imagine and generate. Conditional GANs are in
principle able to generate multiple outputs through the injection of noise, but in practice suffer from
limited diversity (i.e., mode collapse) (Fig. 2). Recent approaches even remove the noise altogether,
treating conditional image synthesis as regression problem (Chen & Koltun, 2017). (2) Deep net-
works are still difficult to explain or interpret, making the synthesized output difficult to modify.
One implication is that users are not able to control the synthesized output. Moreover, the right
mechanism for even specifying user constraints (e.g., “generate a cat image that looks like my cat”)
is unclear. This restricts applicability, particularly for graphics tasks.

Nearest-neighbors: To address these limitations, we appeal to a classic learning architecture
that can naturally allow for multiple outputs and user-control: non-parametric models, or nearest-
neighbors (NN). Though quite a classic approach (Efros & Leung, 1999; Efros & Freeman, 2001;
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12x12 Input (x8)  Our Approach 
(a) Low-Resolution to High-Resolution 

Surface Normal Map Our Approach 
(b) Normals-to-RGB 

Edges Our Approach 

(c) Edges-to-RGB 

(d) Edges-to-RGB (Multiple Outputs) (e) Normals-to-RGB (Multiple Outputs) 
(d) Edges-to-Shoes (Multiple Outputs) (e) Edges-to-Handbags (Multiple Outputs) 

Figure 1: Our approach generates photorealistic output for various “incomplete” signals such as
a low resolution image, a surface normal map, and edges/boundaries for human faces, cats, dogs,
shoes, and handbags. Importantly, our approach can easily generate multiple outputs for a given in-
put which was not possible in previous approaches (Isola et al., 2016) due to mode-collapse problem.
Best viewed in electronic format.

(a) Edges-to-Shoes 

(b) Edges-to-Cats-and-Dogs 

(a) Edges-to-Shoes 

(b) Edges-to-Cats-and-Dogs 

Figure 2: Mode collapse problem for GANs: We ran pix-to-pix pipeline of Isola et al. (2016) 72
times. Despite the random noise set using dropout at test time, we observe similar output generated
each time. Here we try to show 6 possible diverse examples of generation for a hand-picked best-
looking output from Isola et al. (2016).

Freeman et al., 2002; Hertzmann et al., 2001; Johnson et al., 2011), it has largely been abandoned
in recent history with the advent of deep architectures. Intuitively, NN matches an incomplete input
query to a large corpus of training pairs of (incomplete inputs, high-quality outputs), and simply
returns the corresponding output. This trivially generalizes to multiple outputs through K-NN and
allows for intuitive user control through on-the-fly modification of the training corpus - e.g., by
restricting the training examplars to those that “look like my cat”.

In practice, there are several limitations in applying NN for conditional image synthesis. The first is
a practical lack of training data. The second is a lack of an obvious distance metric. And the last is
a computational challenge of scaling search to large training sets.

Approach: To reduce the dependency on training data, we take a compositional approach by match-
ing local pixels instead of global images. This allows us to synthesize a face by “copy-pasting” the
eye of one training image, the nose of another, etc. Compositions dramatically increase the repre-
sentational power of our approach: given that we want to synthesize an image of K pixels using N
training images (with K pixels each), we can synthesize an exponential number (NK)K of compo-
sitions, versus a linear number of global matches (N). A significant challenge, however, is defining
an appropriate feature descriptor for matching pixels in the incomplete input signal. We would like
to capture context (such that whisker pixels are matched only to other whiskers) while allowing for
compositionality (left-facing whiskers may match to right-facing whiskers). To do so, we make use
of deep features, as described below.

Pipeline: Our precise pipeline (Figure 3) works in two stages. (1) We first train an initial regressor
(CNN) that maps the incomplete input into a single output image. This output image suffers from
the aforementioned limitations - it is a single output that will tend to look like a “smoothed” average
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Figure 3: Overview of pipeline: Our approach is a two-stage pipeline. The first stage directly
regresses an image from an incomplete input (using a CNN trained with l2 loss). This image will
tend to look like a “smoothed” average of all the potential images that could be generated. In the
second stage, we look for matching pixels in similarly-smoothed training images. Importantly, we
match pixels using multiscale descriptors that capture the appropriate levels of context (such that
eye pixels tend to match only to eyes). To do so, we make use of off-the-shelf hypercolumn features
extracted from a CNN trained for semantic pixel segmentation. By varying the size of the matched
set of pixels, we can generate multiple outputs (on the right).

of all the potential images that could be generated. (2) We then perform nearest-neighbor queries on
pixels from this regressed output. Importantly, pixels are matched (to regressed outputs from training
data) using a multiscale deep descriptor that captures the appropriate level of context. This enjoys the
aforementioned benefits - we can efficiently match to an exponential number of training examples
in an interpretable and controllable manner. Finally, an interesting byproduct of our approach is
the generation of dense, pixel-level correspondences from the training set to the final synthesized
outputs.

2 RELATED WORK

Our work is inspired by a large body of work on discriminative and generative models, nearest
neighbors architectures, pixel-level tasks, and dense pixel-level correspondences. We provide a
broad overview, focusing on those most relevant to our approach.

Synthesis with CNNs: Convolutional Neural Networks (CNNs) have enjoyed great success for var-
ious discriminative pixel-level tasks such as segmentation (Bansal et al., 2017; Long et al., 2015),
depth and surface normal estimation (Bansal et al., 2016; Eigen et al., 2013; Eigen & Fergus, 2015),
semantic boundary detection (Bansal et al., 2017; Xie & Tu, 2015) etc. Such networks are usually
trained using standard losses (such as softmax or l2 regression) on image-label data pairs. However,
such networks do not typically perform well for the inverse problem of image synthesis from a (in-
complete) label, though exceptions do exist (Chen & Koltun, 2017). A major innovation was the
introduction of adversarially-trained generative networks (GANs) (Goodfellow et al., 2014). This
formulation was hugely influential in computer visions, having been applied to various image gen-
eration tasks that condition on a low-resolution image (Denton et al., 2015; Ledig et al., 2016),
segmentation mask (Isola et al., 2016), surface normal map (Wang & Gupta, 2016) and other in-
puts (Chen et al., 2016; Huang et al., 2016; Radford et al., 2015; Wu et al., 2016; Zhang et al.,
2016a; Zhu et al., 2017). Most related to us is Isola et al. (2016) who proposed a general loss
function for adversarial learning, applying it to a diverse set of image synthesis tasks. Importantly,
they report the problem of mode collapse, and so cannot generate diverse outputs nor control the
synthesis with user-defined constraints (unlike our work).

Interpretability and user-control: Interpreting and explaining the outputs of generative deep net-
works is an open problem. As a community, we do not have a clear understanding of what, where,
and how outputs are generated. Our work is fundamentally based on copy-pasting information via
nearest neighbors, which explicitly reveals how each pixel-level output is generated (by in turn re-
vealing where it was copied from). This makes our synthesized outputs quite interpretable. One
important consequence is the ability to intuitively edit and control the process of synthesis. Zhu
et al. (2016) provide a user with controls for editing image such as color, and outline. But instead
of using a predefined set of editing operations, we allow a user to have an arbitrarily-fine level of
control through on-the-fly editing of the exemplar set (e.g., “resynthesize the output using the eye
from this training image and the nose from that one”).

Correspondence: An important byproduct of pixelwise NN is the generation of pixelwise cor-
respondences between the synthesized output and training examples. Establishing such pixel-level
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Low Resolution Image (12x12) Low-frequency to Mid-frequency Mid-frequency to High-frequency Original High Resolution Image 

Figure 4: Frequency Analysis: We show the image and its corresponding Fourier spectrum. Note
how the frequency spectrum improve as we move from left to right. The Fourier spectrum of our
final output closely matches that of original high resolution image.

Input Global Compositional 

Figure 5: Global vs. Compositional: Given the low-resolution input images on the left, we show
high-frequency output obtained with a global nearest neighbor versus a compositional reconstruc-
tion. We visualize the correspondences associated with the compositional reconstruction on the
right. We surround the reconstruction with 8 neighboring training examples, and color code pixels
to denote correspondences. For example, when reconstructing the female face, forehead pixels are
copied from the top-left neighbor (orange) , while right-eye pixels are copied from the bottom-left
neighbor (green).

correspondence has been one of the core challenges in computer vision (Choy et al., 2016; Kanazawa
et al., 2016; Liu et al., 2011; Long et al., 2014; Wei et al., 2015; Zhou et al., 2016a;b). Tappen & Liu
(2012) used SIFT flow (Liu et al., 2011) to hallucinate details for image super-resolution. Zhou et al.
(2016b) proposed a CNN to predict appearance flow that can be used to transfer information from
input views to synthesize a new view. Kanazawa et al. (2016) generate 3D reconstructions by train-
ing a CNN to learn correspondence between object instances. Our work follows from the crucial
observation of Long et al. (2014), who suggested that features from pre-trained convnets can also
be used for pixel-level correspondences. In this work, we make an additional empirical observation:
hypercolumn features trained for semantic segmentation learn nuances and details better than one
trained for image classification. This finding helped us to establish semantic correspondences be-
tween the pixels in query and training images, and enabled us to extract high-frequency information
from the training examples to synthesize a new image from a given input.

Nonparametrics: Our work closely follows data-driven approaches that make use of nearest neigh-
bors (Efros & Leung, 1999; Efros & Freeman, 2001; Freeman et al., 2000; 2002; Ren et al., 2005;
Hays & Efros, 2007; Johnson et al., 2011; Shrivastava et al., 2011). Hays & Efros (2007) match
a query image to 2 million training images for various tasks such as image completion. We make
use of dramatically smaller training sets by allowing for compositional matches. Liu et al. (2007)
propose a two-step pipeline for face hallucination where global constraints capture overall structure,
and local constraints produce photorealistic local features. While they focus on the task of facial
super-resolution, we address variety of synthesis applications.

Final, our compositional approach is inspired by Boiman & Irani (2006; 2007), who reconstruct a
query image via compositions of training examples.

3 PIXELNN: ONE-TO-MANY MAPPINGS

We define the problem of conditional image synthesis as follows: given an input x to be conditioned
on (such as an edge map, normal depth map, or low-resolution image), synthesize a high-quality out-
put image(s). To describe our approach, we focus on illustrative the task of image super-resolution,
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Input Intermediate Output Original Image Input Intermediate Output Original Image 

Figure 6: Edges/Normals to RGB: Our approach used for faces, cats, and dogs to generate RGB
maps for a given edge/normal map as input. One output was picked from the multiple generations.

where the input is a low-resolution image. We assume we are given training pairs of input/outputs,
written as (xn, yn). The simplest approach would be formulating this task as a (nonlinear) regression
problem:

min
w
||w||2 +

∑
n

||yn − f(xn;w)||2 (1)

where f(xn;w) refers to the output of an arbitrary (possibly nonlinear) regressor parameterized
with w. In our formulation, we use a fully-convolutional neural net – specifically, PixelNet (Bansal
et al., 2017) – as our nonlinear regressor. For our purposes, this regressor could be any trainable
black-box mapping function. But crucially, such functions generate one-to-one mappings, while
our underlying thesis is that conditional image synthesis should generate many mappings from an
input. By treating synthesis as a regression problem, it is well-known that outputs tend to be over-
smoothed (Johnson et al., 2016). In the context of the image colorization task (where the input is a
grayscale image), such outputs tend to desaturated (Larsson et al., 2016; Zhang et al., 2016b).

Frequency analysis: Let us analyze this smoothing a bit further. Predicted outputs f(x) (we drop
the dependance on w to simplify notation) are particularly straightforward to analyze in the context
of super-resolution (where the conditional input x is a low-resolution image). Given a low-resolution
image of a face, there may exist multiple textures (e.g., wrinkles) or subtle shape cues (e.g., of local
features such as noses) that could be reasonably generated as output. In practice, this set of outputs
tends to be “blurred” into a single output returned by a regressor. This can be readably seen in a
frequency analysis of the input, output, and original target image (Fig. 4). In general, we see that the
regressor generates mid-frequencies fairly well, but fails to return much high-frequency content. We
make the operational assumption that a single output suffices for mid-frequency output, but multiple
outputs are required to capture the space of possible high-frequency textures.

Global/Exemplar Matching: To capture multiple possible outputs, we appeal to a classic non-
parametric approaches in computer vision. We note that a simple K-nearest-neighbor (KNN) algo-
rithm has the trivial ability to report back K outputs. However, rather than using a KNN model
to return an entire image, we can use it to predict the (multiple possible) high-frequencies missing
from f(x):

Global(x) = f(x) +
(
yk − f(xk)

)
where k = argmin

n
Dist

(
f(x), f(xn)

)
(2)

where Dist is some distance function measuring similarity between two (mid-frequency) recon-
structions. To generate multiple outputs, one can report back the K best matches from the training
set instead of the overall best match.

Compositional Matching: However, the above is limited to report back high frequency images
in the training set. As we previously argued, we can synthesize a much larger set of outputs by
copying and pasting (high-frequency) patches from the training set. To allow for such compositional
matchings, we simply match individual pixels rather than global images. Writing fi(x) for the ith
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Input Intermediate Output Original Image Input Intermediate Output Original Image 

Figure 7: Low-Resolution to High-Resolution: We used our approach for hallucinating 96×96 im-
ages from an input 12×12 low-resolution image. One output was picked from multiple generations.

Input Output-1 Output-2 Original Image Output-3 Output-4 Output-5 Output-6 Output-7 

Figure 8: Edges-to-Shoes: Our approach used to generate multiple outputs of shoes from the edges.
We picked seven distinct examples from multiple generations.

pixel in the reconstructed image, the final composed output can be written as:

Compi(x) = fi(x) +
(
yjk − fj(xk)

)
where (j, k) = argmin

m,n
Dist

(
fi(x), fm(xn)

)
(3)

where yjk refers to the output pixel j in training example k.

Distance function & Pixel representation: A crucial question in non-parametric matching is the
choice of distance function. To compare global images, contemporary approaches tend to learn
a deep embedding where similarity is preserved (Bell & Bala, 2015; Chopra et al., 2005; Long
et al., 2015). Distance functions for pixels are much more subtle (3). In theory, one could also
learn a metric for pixel matching, but this requires large-scale training data with dense pixel-level
correspondences.

Suppose we are trying to generate the left corner of an eye. If our distance function takes into
account only local information around the corner, we might mistakenly match to the other eye or
mouth. If our distance function takes into account only global information, then compositional
matching reduces to global (exemplar) matching. Instead, we exploit the insight from previous
works that different layers of a deep network tend to capture different amounts of spatial context
(due to varying receptive fields) (Bansal et al., 2017; Hariharan et al., 2015; Raiko et al., 2012;
Sermanet et al., 2013). Hypercolumn descriptors (Hariharan et al., 2015) aggregate such information
across multiple layers into a highly accurate, multi-scale pixel representation (visualized in Fig. 3).
We construct a pixel descriptor using features from conv-{12, 22, 33, 43, 53} for a PixelNet model
trained for semantic segmentation (on PASCAL Context (Mottaghi et al., 2014)).

To measure pixel similarity, we compute cosine distances between two descriptors. We visualize the
compositional matches (and associated correspondences) in Figure 5. Finally, Figure 6, and Figure 7
shows the output of our approach for various input modalities.

Efficient search: We have so far avoided the question of run-time for our pixel-wise NN search. A
naive approach would be to exhaustively search for every pixel in the dataset but that would make
the computation vary linearly with the size of dataset. On the other hand, deep generative models
outpace naive NN search, which is one of the reasons for their popularity over NN search.

To speed up search, we made some non-linear approximations: Given a reconstructed image f(x),
we first (1) find the global K-NN using conv-5 features and then (2) search for pixel-wise matches
only in a T × T pixel window around pixel i in this set of K images. In practice, we vary K
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Input Output-1 Output-2 Original Image Output-3 Output-4 Output-5 Output-6 Output-7 

Figure 9: Edges-to-Bags: Our approach used to generate multiple outputs of bags from the edges.
We picked seven distinct examples from multiple generations.

Input Output-1 Output-2 Output-4 Output-3 Output-4 Output-1 Output-2 Output-3 Input 

Figure 10: Multiple Outputs for Edges/Normals to RGB: Our approach used to generate multiple
outputs of faces, cats, and dogs from the edges/normals. As an example, note how the subtle details
such as eyes, stripes, and whiskers of cat (left) that could not be inferred from the edge map are
different in multiple generations.

from {1, 2, .., 10} and T from {1, 3, 5, 10, 96} and generate 72 candidate outputs for a given in-
put. Because the size of synthesized image is 96×96, our search parameters include both a fully-
compositional output (K = 10, T = 96) and a fully global exemplar match (K = 1, T = 1) as
candidate outputs. Our approximate neighbor neighbor search takes .2 fps. We did not optimize
our approach for speed. Importantly, we make use of a single CPU to perform our nearest neighbor
search, while Isola et al. (2016)makes use of a GPU. We posit that GPU-based nearest-neighbor
libraries (e.g., FAISS) will allow for real-time performance comparable to Isola et al. (2016).

Figure 8, Figure 9, and Figure 10 show examples of multiple outputs generated using our approach
by simply varying these parameters.

4 EXPERIMENTS

We now present our findings for multiple modalities such as a low-resolution image (12×12 image),
a surface normal map, and edges/boundaries for domains such as human faces, cats, dogs, handbags,
and shoes. We compare our approach both quantitatively and qualitatively with the recent work of
Isola et al. (2016) that use generative adversarial networks for pixel-to-pixel translation.

Dataset: We conduct experiments for human faces, cats and dogs, shoes, and handbags using
various modalities.

Human Faces We use 100, 000 images from the training set of CUHK CelebA dataset (Liu et al.,
2015) to train a regression model and do NN. We used the subset of test images to evaluate our
approach. The images were resized to 96×96 following Gucluturk et al. (2016).

Cats and Dogs: We use 3, 686 images of cats and dogs from the Oxford-IIIT Pet dataset (Parkhi
et al., 2012). Of these 3, 000 images were used for training, and remaining 686 for evaluation. We
used the bounding box annotation made available by Parkhi et al. (2012) to extract head of the cats
and dogs.
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Normals-to-RGB Mean Median RMSE 11.25◦ 22.5◦ 30◦ AP

Human Faces
Pix-to-Pix 17.2 14.3 21.0 37.2 74.7 86.8 0.34

Pix-to-Pix (Oracle) 15.8 13.1 19.4 41.9 78.5 89.3 0.34

PixelNN (Rand-1) 12.8 10.4 16.0 54.2 86.6 94.1 0.38

PixelNN (Oracle) 10.8 8.7 13.5 63.7 91.6 96.7 0.42

Cats and Dogs
Pix-to-Pix 14.7 12.8 17.5 42.6 82.5 92.9 0.82

Pix-to-Pix (Oracle) 13.2 11.4 15.7 49.2 87.1 95.3 0.85

PixelNN (Rand-1) 16.6 14.3 19.8 36.8 76.2 88.8 0.80

PixelNN (Oracle) 13.8 11.9 16.6 46.9 84.9 94.1 0.92

Edges-to-RGB AP Mean Median RMSE 11.25◦ 22.5◦ 30◦

Human Faces
Pix-to-Pix 0.35 12.1 9.6 15.5 58.1 88.1 94.7

Pix-to-Pix(Oracle) 0.35 11.5 9.1 14.6 61.1 89.7 95.6

PixelNN (Rand-1) 0.38 13.3 10.6 16.8 52.9 85.0 92.9

PixelNN (Oracle) 0.41 11.3 9.0 14.4 61.6 90.0 95.7

Cats and Dogs
Pix-to-Pix 0.78 18.2 16.0 21.8 32.4 71.0 85.1

Pix-to-Pix (Oracle) 0.81 16.5 14.2 19.8 37.2 76.4 89.0

PixelNN (Rand-1) 0.77 18.9 16.4 22.5 30.3 68.9 83.5

PixelNN (Oracle) 0.89 16.3 14.1 19.6 37.6 77.0 89.4

Table 1: We compared our approach, PixelNN, with the GAN-based formulation of Isola et al.
(2016) for human faces, and cats and dogs. We used an off-the-shelf PixelNet model trained for
surface normal estimation and edge detection. We use the output from real images as ground truth
surface normal and edge map respectively.

Input Pix-to-Pix PixelNN Input Pix-to-Pix PixelNN 

Input Pix-to-Pix PixelNN Input Pix-to-Pix PixelNN Input Pix-to-Pix PixelNN 

Input Pix-to-Pix PixelNN 

Figure 11: Comparison of our approach with Pix-to-Pix (Isola et al., 2016).

For human faces, and cats and dogs, we used the pre-trained PixelNet (Bansal et al., 2017) to extract
surface normal and edge maps. We did not do any post-processing (NMS) to the outputs of edge
detection.

Shoes & Handbags: We followed Isola et al. (2016) for this setting. 50, 000 training images of
shoes were used from (Yu & Grauman, 2014), and 137, 000 images of Amazon handbags from (Zhu
et al., 2016). The edge maps for this data was computed using HED (Xie & Tu, 2015) by Isola et al.
(2016).

Qualitative Evaluation: Figure 11 shows the comparison of our NN based approach (PixelNN)
with Isola et al. (2016) (Pix-to-Pix).

Quantitative Evaluation: We quantitatively evaluate our approach to measure if our generated
outputs for human faces, cats and dogs can be used to determine surface normal and edges from an
off-the-shelf trained PixelNet (Bansal et al., 2017) model for surface normal estimation and edge
detection. The outputs from the real images are considered as ground truth for evaluation as it gives
an indication of how far are we from them. Somewhat similar approach is used by Isola et al. (2016)
to measure their synthesized cityscape outputs and compare against the output using real world
images, and Wang & Gupta (2016) for object detection evaluation.

We compute six statistics, previously used by (Bansal et al., 2016; Eigen & Fergus, 2015; Fouhey
et al., 2013; Wang et al., 2015), over the angular error between the normals from a synthesized image
and normals from real image to evaluate the performance – Mean, Median, RMSE, 11.25◦, 22.5◦,
and 30◦ – The first three criteria capture the mean, median, and RMSE of angular error, where lower
is better. The last three criteria capture the percentage of pixels within a given angular error, where
higher is better. We evaluate the edge detection performance using average precision (AP).

Table 1 quantitatively shows the performance of our approach with (Isola et al., 2016). Our approach
generates multiple outputs and we do not have any direct way of ranking the outputs, therefore we
show the performance using a random selection from one of 72 outputs, and an oracle selecting
the best output. To do a fair comparison, we ran trained models for Pix-to-Pix (Isola et al., 2016)
72 times and used an oracle for selecting the best output as well. We observe that our approach
generates better multiple outputs as performance improves significantly from a random selection to

8



Published as a conference paper at ICLR 2018

Input User Input: similar to 
Egyptian Mau 

User Input: similar to 
Maine Coon 

User Input: similar to 
British Shorthair 

User Input: similar to 
Abyssinian/Egyptian Mau 

User Input: similar to 
Yorkshire Terrier 

Figure 12: Controllable synthesis: We generate the output of cats given a user input from a edge
map. From the edge map, we do not know what type of cat it is. A user can suggest what kind of
the output they would like, and our approach can copy-paste the information.

Input PixelNN Original Input PixelNN Original 

Input PixelNN Original Input PixelNN Original Input PixelNN Original 

Input PixelNN Original 

Figure 13: Failure Cases: We show some failure cases for different input types. Our approach
mostly fails when it is not able to find suitable nearest neighbors.

oracle as compared with Isola et al. (2016). Our approach, though based on simple NN, achieves
result quantitatively and qualitatively competitive (and many times better than) with state-of-the-art
models based on GANs and produce outputs close to natural images.

Controllable synthesis: Finally, NN provides a user with intuitive control over the synthesis pro-
cess. We explore a simple approach based on on-the-fly pruning of the training set. Instead of
matching to the entire training library, a user can specify a subset of relevant training examples.
Figure 12 shows an example of controllable synthesis. A user “instructs” the system to generate
an image that looks like a particular dog-breed by either denoting the subset of training examplars
(e.g., through a subcategory label), or providing an image that can be used to construct an on-the-fly
neighbor set.

Failure cases: Our approach mostly fails when there are no suitable NNs to extract the information
from. Figure 13 shows some example failure cases of our approach. One way to deal with this
problem is to do exhaustive pixel-wise NN search but that would increase the run-time to generate
the output. We believe that system-level optimization such as Scanner1, may potentially be useful in
improving the run-time performance for pixel-wise NNs.

5 DISCUSSION

We present a simple approach to image synthesis based on compositional nearest-neighbors. Our
approach somewhat suggests that GANs themselves may operate in a compositional “copy-and-
paste” fashion. Indeed, examining the impressive outputs of recent synthesis methods suggests that
some amount of local memorization is happening. However, by making this process explicit, our
system is able to naturally generate multiple outputs, while being interpretable and amenable to
user constraints. An interesting byproduct of our approach is dense pixel-level correspondences. If
training images are augmented with semantic label masks, these labels can be transfered using our
correspondences, implying that our approach may also be useful for image analysis through label
transfer (Liu et al., 2011).

1https://github.com/scanner-research/scanner
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Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual manipulation on the
natural image manifold. In ECCV, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. CoRR, abs/1703.10593, 2017.

12


	Introduction
	Related Work
	PixelNN: One-to-Many Mappings
	Experiments
	Discussion

