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Abstract

Monte-Carlo Tree Search (MCTS) has achieved remarkable success in the game1

of Go. However, most success of MCTS is in games where actions are discrete.2

For autonomous driving, the vehicle action such as throttle and steering angle is3

continuous. To fill the gap, we propose an MCTS algorithm for continuous actions,4

and used it specially for a lane-following scenario. We compared MCTS with a5

standard Model Predictive Controller (MPC) on the Udacity simulator. Using the6

same cost function and system model, this MCTS algorithm achieves a much lower7

cost than MPC. MCTS drives with an adaptive speed, as well as exhibits a braking8

behavior in sharp turns. MPC drives a nearly constant speed regardless of the curvy9

track.10

1 Introduction11

Autonomous driving aims to make cars safer. Nearly 1.3 million people die in road crashes each12

year, on average 3,287 deaths a day. Road crashes cost USD $518 billion globally, costing individual13

countries from 1-2% of their annual GDP. 1 So far there are three major avenues for autonomous driv-14

ing. The classical approach extracts perception and localization results from sensors, summarizing15

into geometry relationship of the car with its environment. Based on the geometry representation16

of the world, a controller is built. This approach is so far the most popular and widely adopted by17

industrial leaders such as Google, Uber and Baidu. The learning-from-demonstration approach,18

started from the simple full-connected neural networks [Pomerleau, 1989] in the old days to recent19

deep convolution layers by NVIDIA [Bojarski et al., 2016], regresses the steer angle given the20

camera view. This approach leads to a simpler architecture for autonomous driving. The affordance21

approach[Chen et al., 2015] predicts relevant geometry features (called “affordances”) from images.22

Based on the predicted features, a controller can be developed. This approach bears some similarity23

to Pavlovian control in which animals map predictions of events into behaviors[Modayil and Sutton,24

2014].25

Besides these exciting progress, it is interesting to bring reinforcement learning to autonomous26

driving. Reinforcement learning achieved remarkable success in Atari games [Mnih et al., 2015] and27

Go [Silver et al., 2016]. Recently, Mobileye proposed an interesting architecture for autonomous28

vehicles. Similar to the classical approach, their architecture also has two layers. In particular, their29

high-level path planning is implemented using a recurrent neural network over the trajectory of the30

car [Shalev-Shwartz et al., 2016]. The low-level control is a model-based approach that learns a31

model for the state transition in response to the car’s action. Mobileye’s efforts stand for extending32

model-based reinforcement learning [Sutton et al., 2008, Yao and Szepesvári, 2012, Grünewälder33

et al., 2012] to autonomous driving. Modeling the state that the car sees next turns out to be very34

1http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
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important for cars although there has not been convincing applications published yet. However,35

considerable progress was made in video prediction [Zeng et al., 2017, Oh et al., 2015], which can36

be possibly used on cars. The reward function is also a fundamental issue to bring reinforcement37

learning to autonomous driving. In games, the reward signal is noise free since win or loss signals38

can be observed as a delayed but ground truth feedback. Although how to learn a reward function for39

autonomous driving is still an open problem, Hadfield-Menell et al. explored teaching a car to align40

with a human driver with his reward function. Brechtel et al. modeled the car’s environment using an41

Markov Decision Process (MDP) in which the state space is equidistant cells of the coordinates on the42

road, and the transition probabilities are approximated using a Dynamic Bayesian Networks. Their43

empirical studies show that the car can coordinate well when to overtake according to oncoming traffic.44

Exploring in a driving environment is challenging because such exploration (normally practiced in45

reinforcement learning without constraint) must be safety guaranteed. Recently, Mnih et al. proposed46

an asynchronous reinforcement learning framework that lets a number of learning agents run in47

parallel aiming to explore different parts of the environment. Their algorithm on a simulated driving48

environment achieved near to a human driver with only 12 hours of training. It is interesting to see49

whether this new framework can solve the specific exploration constraint in autonomous driving.50

In this paper, we study Monte-Carlo Tree Search (MCTS) for an autonomous driving setting. MCTS51

is especially advantageous for large and complex decision making problems, as demonstrated in the52

competition of AlphoGo against Mr. Lee Sedol 2. MCTS is well practiced and relatively easy to53

implement. All the top Go programs have used MCTS for a decade, e.g., [Coulom, 2007, Silver,54

2009, Enzenberger et al., 2010]. So far the success of MCTS is largely in board games where actions55

are discrete. However, in autonomous driving a car’s actions like throttle, braking and steer angles are56

all continuous. We consider a simple motion planning setting where a car has been given a trajectory57

to follow, and its goal is to drive within track boundary. Our treatment of motion planing is by no58

means to be realistic. Practical motion planning also considering avoiding obstacle, e.g., [Kuwata59

et al., 2008]. We aim to have an environment that renders a simple cost function and vehicle model60

under which evaluating performances of algorithms is relatively easy. We propose an extension of61

pure MCTS to continuous actions, and compare it with an off-the-shelf Model Predictive Controller62

(MPC).63

2 Background64

The classical approach is so far the most practiced and mature. A two-level architecture for au-65

tonomous vehicle is often used: path planning at a high level and vehicle control (with a target path66

and speed) at a low level [Paden et al., 2016, Berntorp, 2017]. There are a spectrum of methods for67

each of the problems. For example, Rapid-exploring Random Trees finds feasible trajectories for68

robots with high degrees with freedom [Lavalle, 1998, Kuwata et al., 2008]. MPC is classical control69

method [Garcia et al., 1989], and has been widely used for motion planning in a short time horizon70

[Paden et al., 2016, Kim et al., 2014, Omar et al., 1998, Yim and Oh, 2004, Raffo et al., 2009, Ng71

et al., 2003, Bakker et al., 1987, Kong et al., 2015, Rajamani, 2011, Besselmann and Morari, 2009,72

Levinson et al., 2011, Urmson et al., 2007]. MPC is a major research field on its own and this section73

provides the application context of MPC for autonomous driving, especially lane following.74

2.1 The Model and the Problem75

The car’s dynamics is represented by a practical model, often referred to as the Kinematic model. In76

this model, the two wheels of the car are connected by a rigid link. The state of the car is given by77

[x, y, ψ, v], where x, y are the x-y coordinates of the car, ψ and v are the orientation and speed of the78

car, respectively. The model can be expressed by,79

ẋ = vcos(ψ)

ẏ = vsin(ψ)

ψ̇ =
a[steer]v

Lf

v̇ = a[throttle], (1)

2https://deepmind.com/research/alphago/
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where Lf is the distance between the two front wheels. This is discretized using Euler method in80

practice. Without loss of generality, we denote the model by an equation: sk+1 = A(sk, ak), where81

s is a vector of the state variables and a is a vector of action variables (steer and throttle). In our82

problem, at each time step, an agent (MPC or MCTS) receives a number of reference coordinate83

points. These points are often provided by a high-level trajectory planner. The agent is also given the84

a distance measures δ, the distance of the car’s center to the track axis; an angle deviation measure, ω,85

the difference between the car’s heading angle (ψ) and the track axis direction. In practice, both δ86

and ω are computed by first regressing a polynomial line from the reference points. The goal of the87

agents is to drive close a target speed v∗ within the track. Specifically at each time step k, the agent88

selects an action a. Afterwards it receives a cost signal that is computed from the following equation:89

r(sk, a) = wtrδk+1(a)
2 + wangωk+1(a)

2 + wv(vk+1(a)− v∗)2 + wsta[steer]2 + wthra[throttle]2

+ wsteerd(a[steer]− ak−1[steer])2 + wthrotd(a[throttle]− ak−1[throttle])2 (2)

2.2 Model Predictive Controller90

MPC assumes to know the form of the cost function in equation 2. It defines a cost function that91

considers N steps ahead. This cost function is essentially the undiscounted, N -step truncated return.92

MPC produces a sequence of N actions to minimize the cost function93

a0:N−1 = arg min
a0:N−1

R = arg min
a0:N−1

N−1∑
t=0

r(s̃t, a),

where s̃0 was set to the current state sk. Common practice of MPC is to use the interior point94

optimizer [Paden et al., 2016].95

2.3 Monte-Carlo Tree Search96

MCTS is a special policy search algorithm. Comparing to other reinforcement learning methods,97

policy search algorithms can find global optima [Valko et al., 2013, Munos, 2014]. MCTS algorithms98

are designed for discrete actions. In the Upper Confidence Tree (UCT) algorithm [Kocsis and99

Szepesvári, 2006], the actions are treated as the arms in a multi-armed bandit problem and the100

frequency of actions is used to measure the knowledge of the actions according to which the101

exploration term in selecting the action is determined. Practice and theory of MCTS for continuous102

actions is largely a gap. A number of recent advances aim to generalize across actions. In particular,103

[Couetoux et al., 2011, Yee et al., 2016] explored generalizing in actions from already exploited104

actions. HOOT replaces the UCB algorithm in UCT with a continuous action selection procedure105

[Mansley et al., 2011]. In this paper, we aimed to first extend pure MCTS for autonomous driving.106

3 A New MCTS Algorithm107

Besides UCT and its variants, there is a basic MCTS algorithm which works by playing a number108

of random games to the end; and the moves that achieves the best game scores are chosen. This109

algorithm is often referred to as the pure MCTS. This algorithm by definition can be extended to110

continuous actions in a straight forward way. However, it is very inefficient to sample the actions in a111

random fashion especially in real time.112

Based on the observation that in everyday driving our steering and throttle control is continuous, we113

propose the following tree search algorithm. Similar to the pure MCTS, at each depth of the tree114

we only sample one node. This essentially searches over paths instead of trees. We will generate a115

number of paths expanded from continuous actions. Specifically, in expanding the path from a state,116

we enforce the continuity in the actions going down the path. This small trick reduces the search space117

significantly. The algorithm is shown in Algorithm 1. The sampling distribution u(a′) for the current118

time step is incrementally adjusted according to the last action a′. In the experiment, we used a119

uniform distribution over a neighborhood of a′. In general u is not limited to the uniform distribution120

but it can incorporate knowledge we gained through exploitation and be learned automatically.121
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input :A system model A and a cost function that considers N steps of future costs.
output :A policy that minimize the cost function.
Initialize the state s0 and the action a0.
for t = 0, 1, . . . do

Observe state st
Receive a number of reference points, and fit a polynomial line
/* Search over Np paths */
for p = 0, . . . , Np do

Set s̃0 = st, a
′ = at−1 /* each path starts with the current state and last action */

Set R(p) = 0
/* planning into future N steps */
for k = 0,. . . , N do

Sample a from a distribution u(a′)
Predict the next state, s̃k+1 = A(s̃k, a)
Compute the cost r according to s̃k+1, a, a′, and deviation from the reference line
Update R(p) = γR(p) + r
Set a′ = a

end
end
Select the best path with lowest cost R
Set at to the first action in the best path.
Take action at

end
Algorithm 1: Continuity-preserved (Monte-Carlo) Tree Search for following lane.

4 Experiments122

In the experiment, we used the Udacity simulator 3. The simulator is developed by Unity to support123

self-driving car development. Both algorithms used the same model in equation 1 and the same124

cost function in equation 2. Simulation for both algorithms was run with lookahead depth of 8.125

The weights for the cost function are, wtr = 10.0, wang = 50.0, wv = 1.0, wst = 10.0, wthr =126

3000.0, wsteerd = 10.0, wthrotd = 3000.0.127

For both MPC and MCTS, only the first action a0 was used although N actions were produced at a128

single time step. In the experiment, the target speed was set to 70 km/h.129

As shown in Figure 1 (left plot), MCTS achieved a much smaller cost than MPC. The cost function130

is a linear combination of seven cost components. MCTS achieved both a smaller speed cost and a131

smaller “trackPos” cost (deviation from the track center) than MPC most of the time as shown in the132

second plot.133

The third plot in Figure 1 is the speeds of the agents on the track, which shows that (a) MCTS134

accelerates faster in the beginning (the ascending curves from bottom); (b) MCTS drives closer to the135

target speed (70 km/h) than MPC most of the time; (c) MCTS’s control is more adaptive to curvature136

in the track. In particular, at sharp turns we see speed dip in the orange line while MPC drives at137

almost a constant speed. After the beginning acceleration period, MPC drove between 57.8 km/h138

and 58.6 km/h with an average speed of 58.4 km/h. MCTS drove between 42.8 km/h and 67.5 km/h,139

averaging at 62.3 km/h.140

Interestingly, in the experiment we observed that MCTS showed braking behavior (continually141

negative throttles) ahead of sharp turns (Figure 2) although it was never explicitly trained to do so.142

In contrast, MPC never braked. For MCTS, 10, 000 paths were generated. The u(a′) is a uniform143

distribution over a close neighborhood of last steer angle and last throttle. In particular, the steer angle144

and throttle were independently drawn uniformly from the intervals, (a′[steer]− 0.02, a′[steer] +145

0.02) and (a′[throttle]− 0.2, a′[throttle] + 0.2), respectively.146

We produced videos of MCTS driving147

https://youtu.be/YP7qPJSJAVU148

3https://github.com/udacity/self-driving-car-sim
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Figure 1: MCTS vs. MPC. The left plot compares the total cost over the next 8 time steps of the two
algorithms. The middle plot compares the cost of the speed component and the “trackPos” (distance
to the center of the lane) component. The right plot compares the speeds of the two agents driving on
the track.

Figure 2: MCTS braking in front of a sharp turn. MPC never shows braking behavior in the
experiment.

and MPC driving:149

https://youtu.be/SLl50wMenyY150

5 Conclusion151

In this paper, we proposed a primitive Monte-Carlo Tree Search algorithm for following lane in152

autonomous driving. The algorithm is inspired by that in driving action change is smooth: the next153

steering or throttle is a small modification to the existing values. In a simulated driving environment,154

the algorithm achieves much smaller cost than a standard off-the-shelf Model Predictive Controller155

under the same setting. We hope this incremental step could help the efforts of bringing reinforcement156

learning to autonomous driving. We plan to do a more comprehensive study of Monte-Carlo Tree157

Search algorithms for continuous actions and use it for autonomous driving.158
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