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ABSTRACT

Sequence generation models such as recurrent networks can be trained with a
diverse set of learning algorithms. For example, maximum likelihood learning is
simple and efficient, yet suffers from the exposure bias problem. Reinforcement
learning like policy gradient addresses the problem but can have prohibitively poor
exploration efficiency. A variety of other algorithms such as RAML, SPG, and
data noising, have also been developed from different perspectives. This paper
establishes a formal connection between these algorithms. We present a generalized
entropy regularized policy optimization formulation, and show that the apparently
divergent algorithms can all be reformulated as special instances of the framework,
with the only difference being the configurations of reward function and a couple
of hyperparameters. The unified interpretation offers a systematic view of the
varying properties of exploration and learning efficiency. Besides, based on the
framework, we present a new algorithm that dynamically interpolates among the
existing algorithms for improved learning. Experiments on machine translation
and text summarization demonstrate the superiority of the proposed algorithm.

1 INTRODUCTION

Sequence generation is a ubiquitous problem in many applications, such as machine translation (Wu
et al., 2016; Sutskever et al., 2014), text summarization (Hovy & Lin, 1998; Rush et al., 2015), image
captioning (Vinyals et al., 2015; Karpathy & Fei-Fei, 2015), and so forth. Great advances in these
tasks have been made by the development of sequence models such as recurrent neural networks
(RNNs) with different cells (Hochreiter & Schmidhuber, 1997; Chung et al., 2014) and attention
mechanisms (Bahdanau et al., 2015; Luong et al., 2015). These models can be trained with a variety
of learning algorithms.

The standard training algorithm is based on maximum-likelihood estimation (MLE) which seeks to
maximize the log-likelihood of ground-truth sequences. Despite the computational simplicity and
efficiency, MLE training suffers from the exposure bias (Ranzato et al., 2016). That is, the model
is trained to predict the next token given the previous ground-truth tokens; while at test time, since
the resulting model does not have access to the ground truth, tokens generated by the model itself
are instead used to make the next prediction. This discrepancy between training and test leads to the
issue that mistakes in prediction can quickly accumulate. Recent efforts have been made to alleviate
the issue, many of which resort to the reinforcement learning (RL) techniques (Ranzato et al., 2016;
Bahdanau et al., 2017; Ding & Soricut, 2017). For example, Ranzato et al. (2016) adopt policy
gradient (Sutton et al., 2000) that avoids the training/test discrepancy by using the same decoding
strategy. However, RL-based approaches for sequence generation can face challenges of prohibitively
poor sample efficiency and high variance. For more practical training, a diverse set of methods
has been developed that are in a middle ground between the two paradigms of MLE and RL. For
example, RAML (Norouzi et al., 2016) adds reward-aware perturbation to the MLE data examples;
SPG (Ding & Soricut, 2017) leverages reward distribution for effective sampling of policy gradient.
Other approaches such as data noising (Xie et al., 2017) also show improved results.
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In this paper, we establish a unified perspective of the broad set of learning algorithms. Specifically,
we present a generalized entropy regularized policy optimization framework, and show that the
apparently diverse algorithms, such as MLE, RAML, SPG, and data noising, can all be re-formulated
as special instances of the framework, with the only difference being the choice of reward and the
values of a couple of hyperparameters (Figure 1). In particular, we show MLE is equivalent to using
a delta-function reward that assigns 1 to samples that exactly match data examples while −∞ to any
other samples. Such extremely restricted reward has literally disabled any exploration of the model
beyond training data, yielding the exposure bias. Other algorithms essentially use rewards that are
more smooth, and also leverage model distribution for exploration, which generally results in a larger
effective exploration space, more difficult training, and better test-time performance.

Besides the new understandings of the existing algorithms, the unified perspective also facilitates to
develop new algorithms for improved learning. We present an example new algorithm that, as training
proceeds, gradually expands the exploration space by annealing the reward and hyperparameter
values. The annealing in effect dynamically interpolates among the existing algorithms. Experiments
on machine translation and text summarization show the interpolation algorithm achieves significant
improvement over the various existing methods.

2 RELATED WORK

Sequence generation models are usually trained to maximize the log-likelihood of data by feeding
the ground-truth tokens during decoding. Reinforcement learning (RL) addresses the discrepancy
between training and test by also using models’ own predictions at training time. Various RL
approaches have been applied for sequence generation, such as policy gradient (Ranzato et al., 2016)
and actor-critic (Bahdanau et al., 2017). Softmax policy gradient (SPG) (Ding & Soricut, 2017)
additionally incorporates the reward distribution to generate high-quality sequence samples. The
algorithm is derived by applying a log-softmax trick to adapt the standard policy gradient objective.
Reward augmented maximum likelihood (RAML) (Norouzi et al., 2016) is an algorithm in between
MLE and policy gradient. It is originally developed to go beyond the maximum likelihood criteria
and incorporate task metric (such as BLEU for machine translation) to guide the model learning.
Mathematically, RAML shows that MLE and maximum-entropy policy gradient are respectively
minimizing KL divergences in opposite directions. We reformulate both SPG and RAML in a new
perspective, and show they are precisely instances of a general entropy regularized policy optimization
framework. The new framework provides a more principled formulation for both algorithms. Besides
the algorithms discussed in the paper, there are other learning methods for sequence models. For
example, Hal Daumé et al. (2009); Leblond et al. (2018); Wiseman & Rush (2016) use a learning-
to-search paradigm for sequence generation or structured prediction. Scheduled Sampling (Bengio
et al., 2015) adapts MLE by randomly replacing ground-truth tokens with model predictions as the
input for decoding the next-step token. Our empirical comparison shows improved performance of
the proposed algorithm.

Policy optimization for reinforcement learning is studied extensively in robotics and game envi-
ronment. For example, Peters et al. (2010) introduce a relative entropy regularization to reduce
information loss during learning. Schulman et al. (2015) develop a trust-region approach for mono-
tonic improvement. Dayan & Hinton (1997); Levine (2018); Abdolmaleki et al. (2018) study the
policy optimization algorithms in a probabilistic inference perspective. The entropy-regularized
policy optimization formulation presented here can be seen as a generalization of many of the previous
policy optimization methods, as shown in the next section. Besides, we formulate the framework in
the sequence generation context.

3 CONNECTING THE DOTS

We first present a generalized formulation of an entropy regularized policy optimization framework, to
which a broad set of learning algorithms for sequence generation are connected. In particular, we show
the conventional maximum likelihood learning is a special case of the policy optimization formulation.
This provides new understandings of the exposure bias problem as well as the exploration efficiency
of the algorithms. We further show that the framework subsumes as special cases other well-known
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Figure 1: A unified formulation of different learning algorithms. Each algorithm is a special instance
of the general ERPO framework taking certain specifications of the hyperparameters (R,α, β) (Eq.1).

learning methods that were originally developed in diverse perspectives. We thus establish a unified,
principled view of the broad class of works.

Let us first set up the notations for the sequence generation setting. Let x be the input and y =
(y1, . . . , yT ) the sequence of T tokens in the target space. For example, in machine translation, x
is the sentence in source language and y is in target language. Let (x,y∗) be a training example
drawn from the empirical data distribution, where y∗ is the ground truth sequence. We aim to learn
a sequence generation model pθ(y|x) =

∏
t pθ(yt|y1:t−1,x) parameterized with θ. The model

can, for example, be a recurrent network. It is worth noting that though we present in the sequence
generation context, the formulations can straightforwardly be extended to other settings such as
robotics and game environment.

3.1 ENTROPY REGULARIZED POLICY OPTIMIZATION (ERPO)

Policy optimization is a family of reinforcement learning (RL) algorithms that seeks to learn the
parameter θ of the model pθ (a.k.a policy). Given a reward function R(y|y∗) ∈ R (e.g., BLEU score
in machine translation) that evaluates the quality of generation y against the true y∗, the general goal
of policy optimization is to maximize the expected reward. A rich research line of entropy regularized
policy optimization (ERPO) stabilizes the learning by augmenting the objective with information
theoretic regularizers. Here we present a generalized formulation of ERPO. Assuming a general
distribution q(y|x) (more details below), the objective we adopt is written as

L(q,θ) = Eq [R(y|y∗)]− αKL
(
q(y|x)‖pθ(y|x)

)
+ βH(q), (1)

where KL(·‖·) is the Kullback–Leibler divergence forcing q to stay close to pθ; H(·) is the Shannon
entropy imposing maximum entropy assumption on q; and α and β are balancing weights of the
respective terms. In the RL literature, the distribution q has taken various forms, leading to different
policy optimization algorithms. For example, setting q to a non-parametric policy and β = 0
results in the prominent relative entropy policy search (Peters et al., 2010) algorithm. Assuming
q as a parametric distribution and α = 0 leads to the commonly-used maximum entropy policy
gradient (Ziebart, 2010; Haarnoja et al., 2017). Letting q be a variational distribution and β = 0
corresponds to the probabilistic inference formulation of policy gradient (Abdolmaleki et al., 2018;
Levine, 2018). Related objectives have also been used in other popular RL algorithms (Schulman
et al., 2015; 2017; Teh et al., 2017).

We assume a non-parametric q. The above objective can be maximized with an EM-style procedure
that iterates two coordinate ascent steps optimizing q and θ, respectively. At iteration n:

E-step: qn+1(y|x) ∝ exp

{
α log pθn(y|x) +R(y|y∗)

α+ β

}
,

M-step: θn+1 = arg maxθ Eqn+1

[
log pθ(y|x)

]
.

(2)

The E-step is obtained with simple Lagrange multipliers. Note that q has a closed-form solution in
the E-step. We can have an intuitive interpretation of its form. First, it is clear to see that if α→∞,
we have qn+1 = pnθ . This is also reflected in the objective Eq.(1) where the weight α encourages q
to be close to pθ. Second, the weight β serves as the temperature of the q softmax distribution. In
particular, a large temperature β → ∞ makes q a uniform distribution, which is consistent to the
outcome of an infinitely large maximum entropy regularization in Eq.(1). In terms of the M-step, the
update rule can be interpreted as maximizing the log-likelihood of samples from the distribution q.
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In the context of sequence generation, it is sometimes more convenient to express the equations at
token level, as shown shortly. To this end, we decompose R(y|y∗) along the time steps:

R(y|y∗) =
∑

t
R(y1:t|y∗)−R(y1:t−1|y∗) :=

∑
t
∆R(yt|y1:t−1,y

∗), (3)

where ∆R(yt|y∗,y1:t−1) measures the reward contributed by token yt. The solution of q in Eq.(2)
can then be re-written as:

qn+1(y|x) ∝
∏

t
exp

{
α log pθn(yt|y1:t−1,x) + ∆R(yt|y1:t−1,y

∗)

α+ β

}
(4)

The above ERPO framework has three key hyperparameters, namely (R,α, β). In the following, we
show that different values of the three hyperparameters correspond to different learning algorithms
(Figure 1). We first connect MLE to the above general formulation, and compare and discuss the
properties of MLE and regular ERPO from the new perspective.

3.2 MLE AS A SPECIAL CASE OF ERPO

Maximum likelihood estimation is the most widely-used approach to learn a sequence generation
model due to its simplicity and efficiency. It aims to find the optimal parameter value that maximizes
the data log-likelihood:

θ∗ = arg maxθ LMLE(θ) = arg maxθ log pθ(y
∗|x). (5)

As discussed in section 1, MLE suffers from the exposure bias problem as the model is only exposed
to the training data, rather than its own predictions, by using the ground-truth subsequence y∗1:t−1 to
evaluate the probability of y∗t .

We show that the MLE objective can be recovered from Eq.(2) with specific reward and weight
configurations. Consider a δ-reward defined as1:

Rδ(y|y∗) =

{
1 if y = y∗

−∞ otherwise. (6)

Let (R = Rδ, α → 0, β = 1). From the E-step of Eq.(2), we have q(y|x) = 1 if y = y∗ and 0
otherwise. The M-step is therefore equivalent to arg maxθ log pθ(y

∗|x), which recovers precisely
the MLE objective in Eq.(5).

That is, MLE can be seen as an instance of the policy optimization algorithm with the δ-reward
and the above weight values. Any sample y that fails to match precisely the data y∗ will receive a
negative infinite reward and never contribute to model learning.

Exploration efficiency

The ERPO reformulation of MLE provides a new statistical explanation of the exposure bias problem.
Specifically, a very small α value makes the model distribution ignored during sampling from q,
while the δ-reward permits only samples that match training examples. The two factors in effect
make void any exploration beyond the small set of training data (Figure 2(a)), leading to a brittle
model that performs poorly at test time due to the extremely restricted exploration. On the other hand,
however, a key advantage of the δ-reward specification is that its regular reward shape allows extreme
pruning of the huge sample space, resulting in a space that includes exactly the training examples.
This makes the MLE implementation very simple and the computation very efficient in practice.

On the contrary, common rewards (e.g., BLEU) used in policy optimization are more smooth than
the δ-reward, and permit exploration in a broader space. However, such rewards usually do not have
a regular shape as the δ-reward, and thus are not amenable to sample space pruning. Generally, a
larger exploration space would lead to a harder training problem. Also, when it comes to the huge
sample space, the rewards are still very sparse (e.g., most sequences have BLEU=0 against a reference
sequence). Such reward sparsity can make exploration inefficient and even impractical.

1For token-level, define Rδ(y1:t|y∗) = t/T ∗ if y1:t = y∗
1:t and −∞ otherwise, where T ∗ is the length of

y∗. Note that the Rδ value of y = y∗ can also be set to any constant larger than −∞.
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(a) (b) (c)

Figure 2: Effective exploration space of different algorithms. (a): The exploration space of MLE is
exactly the set of training examples. (b): RAML and Data Noising use smooth rewards and allow
larger exploration space surrounding the training examples. (c): Common policy optimization such
as SPG basically allows the whole exploration space.

Given the opposite algorithm behaviors in terms of exploration and computation efficiency, it is a
natural idea to seek a middle ground between the two extremes to combine the advantages of both. A
broad set of such approaches have been recently developed. We re-visit some of the popular ones, and
show that these apparently divergent approaches can all be reformulated within our ERPO framework
(Eqs.1-4) with varying reward and weight specifications.

3.3 REWARD-AUGMENTED MAXIMUM LIKELIHOOD (RAML)

RAML (Norouzi et al., 2016) was originally proposed to incorporate task metric reward into the
MLE training, and has shown superior performance to the vanilla MLE. Specifically, it introduces
an exponentiated reward distribution e(y|y∗) ∝ exp{R(y|y∗)} where R, as in vanilla policy
optimization, is a task metric such as BLEU. RAML maximizes the following objective:

LRAML(θ) = Ey∼e(y|y∗)

[
log pθ(y|x)

]
. (7)

That is, unlike MLE that directly maximizes the data log-likelihood, RAML first perturbs the data
proportionally to the reward distribution e, and maximizes the log-likelihood of the resulting samples.

The RAML objective reduces to the vanilla MLE objective if we replace the task reward R in
e(y|y∗) with the MLE δ-reward (Eq.6). The relation between MLE and RAML still holds within
our new formulation (Eqs.1-2). In particular, similar to how we recovered MLE from Eq.(2), let
(α→ 0, β = 1)2, but set R to the task metric reward, then the M-step of Eq.(2) is precisely equivalent
to maximizing the above RAML objective.

Formulating within the same framework allows us to have an immediate comparison between RAML
and others. In particular, compared to MLE, the use of smooth task metric reward R instead of Rδ
permits a larger effective exploration space surrounding the training data (Figure 2(b)), which helps to
alleviate the exposure bias problem. On the other hand, α→ 0 as in MLE still limits the exploration
as it ignores the model distribution. Thus, RAML takes a step from MLE toward regular RL, and has
effective exploration space size and exploration efficiency in between.

3.4 SOFTMAX POLICY GRADIENT (SPG)

SPG (Ding & Soricut, 2017) was developed in the perspective of adapting the vanilla policy gradi-
ent (Sutton et al., 2000) to use reward for sampling. SPG has the following objective:

LSPG(θ) = logEpθ [expR(y|y∗)] , (8)

where R is a common reward as above. As a variant of the standard policy gradient algorithm, SPG
aims to address the exposure bias problem and shows promising results (Ding & Soricut, 2017).

We show SPG can readily fit into our ERPO framework. Specifically, taking gradient of Eq.(8) w.r.t
θ, we immediately get the same update rule as in Eq.(2) with (α = 1, β = 0, R = common reward).

Note that the only difference between the SPG and RAML configuration is that now α = 1. SPG thus
moves a step further than RAML by leveraging both the reward and the model distribution for full

2The exponentiated reward distribution e can also include a temperature τ (Norouzi et al., 2016). In this case,
we set β = τ .
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exploration (Figure 2(c)). Sufficient exploration at training time would in theory boost the test-time
performance. However, with the increased learning difficulty, additional sophisticated optimization
and approximation techniques have to be used (Ding & Soricut, 2017) to make the training practical.

3.5 DATA NOISING

Adding noise to training data is a widely adopted technique for regularizing models. Previous
work (Xie et al., 2017) has proposed several data noising strategies in the sequence generation context.
For example, a unigram noising, with probability γ, replaces each token in data y∗ with a sample
from the unigram frequency distribution. The resulting noisy data is then used in MLE training.

Though previous literature has commonly seen such techniques as a data pre-processing step that
differs from the above learning algorithms, we show the ERPO framework can also subsume data
noising as a special instance. Specifically, starting from the ERPO reformulation of MLE which
takes (R = Rδ, α → 0, β = 1) (section 3.2), data noising can be formulated as using a locally
relaxed variant of Rδ. For example, assume y has the same length with y∗ and let ∆y,y∗ be the set
of tokens in y that differ from the corresponding tokens in y∗, then a simple data noising strategy
that randomly replaces a single token y∗t with another uniformly picked token is equivalent to using a
reward R′δ(y|y∗) that takes 1 when |∆y,y∗ | = 1 and −∞ otherwise. Likewise, the above unigram
noising (Xie et al., 2017) is equivalent to using a reward

Runigram
δ (y|y∗) =

{
log
(
γ|∆y,y∗ |(1− γ)T−|∆y,y∗ |∏

yt∈∆y,y∗ u(yt)
)

if T = T ∗

−∞ otherwise,
(9)

where u(·) is the unigram frequency distribution.

With a relaxed (i.e., smoothed) reward, data noising expands the exploration space of vanilla MLE
locally (Figure 2(b)). The effect is essentially the same as the RAML algorithm (section 3.3), except
that RAML expands the exploration space based on the task metric reward.

Other Algorithms Ranzato et al. (2016) made an early attempt to address the exposure bias
problem by exploiting the classic policy gradient algorithm (Sutton et al., 2000) and mixing it with
MLE training. We show in the supplementary materials that the algorithm is closely related to the
ERPO framework, and can be recovered with moderate approximations. Section 2 discusses more
relevant algorithms for sequence generation learning.

4 INTERPOLATION ALGORITHM

We have presented the generalized ERPO framework, and connected a series of well-used learning
algorithms by showing that they are all instances of the framework with certain specifications of the
three hyperparameters (R,α, β). Each of the algorithms can be seen as a point in the hyperparameter
space (Figure 1). Generally, a point with a more restricted reward function R and a very small α
tends to have a smaller effective exploration space and allow efficient learning (e.g., MLE), while in
contrast, a point with smooth R and a larger α would lead to a more difficult learning problem, but
permit more sufficient exploration and better test-time performance (e.g., (softmax) policy gradient).
The unified perspective provides new understandings of the existing algorithms, and also facilitates
to develop new algorithms for further improvement. Here we present an example algorithm that
interpolates the existing ones.

The interpolation algorithm exploits the natural idea of starting learning from the most restricted yet
easiest problem configuration, and gradually expands the exploration space to reduce the discrepancy
from the test time. The easy-to-hard learning paradigm resembles the curriculum learning (Bengio
et al., 2009). As we have mapped the algorithms to points in the hyperparameter space, interpolation
becomes very straightforward, which requires only annealing of the hyperparameter values.

Specifically, in the general update rules Eq.(2), we would like to anneal from using Rδ to using
smooth common reward, and anneal from exploring by only R to exploring by both R and pθ.
Let Rcomm denote a common reward (e.g., BLEU). The interpolated reward can be written in the
form R = λRcomm + (1 − λ)Rδ, for λ ∈ [0, 1]. Plugging R into q in Eq.(2) and re-organizing the
scalar weights, we obtain the numerator of q in the form: c · (λ1 log pθ + λ2Rcomm + λ3Rδ), where
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Model BLEU

MLE 26.44± 0.18
RAML (Norouzi et al., 2016) 27.22± 0.14
SPG (Ding & Soricut, 2017) 26.62± 0.05

MIXER (Ranzato et al., 2016) 26.53± 0.11
Scheduled Sampling (Bengio et al., 2015) 26.76± 0.17

Ours 27.82± 0.11

Table 1: Results of machine translation.

(λ1, λ2, λ3) is defined as a distribution (i.e., λ1 +λ2 +λ3 = 1), and, along with c ∈ R, are determined
by (α, β, λ). For example, λ1 = α/(α+ 1). We gradually increase λ1 and λ2 and decrease λ3 as the
training proceeds.

Further, noting that Rδ is a Delta function (Eq.6) which would make the above direct function
interpolation problematic, we borrow the idea from the Bayesian spike-and-slab factor selection
method (Ishwaran et al., 2005). That is, we introduce a categorical random variable z ∈ {1, 2, 3} that
follows the distribution (λ1, λ2, λ3), and augment q as q(y|x, z) ∝ exp{c ·(1(z = 1) log pθ+1(z =
2)Rcomm + 1(z = 3)Rδ)}. The M-step is then to maximize the objective with z marginalized out:
maxθ Ep(z)Eq(y|x,z) [log pθ(y|x)]. The spike-and-slab adaption essentially transforms the product
of experts in q to a mixture, which resembles the bang-bang rewarded SPG method (Ding & Soricut,
2017) where the name bang-bang refers to a system that switches abruptly between extreme states
(i.e., the z values). Finally, similar to (Ding & Soricut, 2017), we adopt the token-level formulation
(Eq.4) and associate each token with a separate variable z.

We provide the pseudo-code of the interpolation algorithm in the supplements. It is notable that
Ranzato et al. (2016) also develop an annealing strategy that mixes MLE and policy gradient training.
As discussed in section 3 and the supplements, the algorithm can be seen as a special instance of the
ERPO framework (with moderate approximation) we have presented. Next section shows improved
performance of the proposed, more general algorithm compared to (Ranzato et al., 2016).

5 EXPERIMENTS

We evaluate the above interpolation algorithm in the tasks of machine translation and text summariza-
tion. The proposed algorithm consistently improves over a variety of previous methods.

Code will be released upon acceptance.

Setup In both tasks, we follow previous work (Norouzi et al., 2016; Ranzato et al., 2016) and use
an attentional sequence-to-sequence model (Luong et al., 2015) where both the encoder and decoder
are single-layer LSTM recurrent networks. The dimensions of word embedding, RNN hidden state,
and attention are all set to 256. We apply dropout of rate 0.2 on the recurrent hidden state. We use
Adam optimization for training, with an initial learning rate of 0.001 and batch size of 64. At test
time, we use beam search decoding with a beam width of 5. Please see the supplementary materials
for more configuration details.

5.1 MACHINE TRANSLATION

Dataset Our dataset is based on the common IWSLT 2014 (Cettolo et al., 2014) German-English
machine translation data, as also used in previous evaluation (Norouzi et al., 2016; Ranzato et al.,
2016). After proper pre-processing as described in the supplementary materials, we obtain the final
dataset with train/dev/test size of around 146K/7K/7K, respectively. The vocabulary sizes of German
and English are around 32K and 23K, respectively.

Results The BLEU metric (Papineni et al., 2002) is used as the reward and for evaluation. Table 1
shows the test-set BLEU scores of various methods. Besides the approaches described above, we also
compare with the Scheduled Sampling method (Bengio et al., 2015) which combats the exposure
bias by feeding model predictions at randomly-picked decoding steps during training. From the table,
we can see the various approaches such as RAML provide improved performance over the vanilla
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MLE, as more sufficient exploration is made at training time. Our proposed new algorithm performs
best, as it interpolates among the existing algorithms to gradually increase the exploration space and
solve the generation problem better.

Figure 3 shows the test-set BLEU scores against the training steps. We can see that, with annealing,
our algorithm improves BLEU smoothly, and surpasses other algorithms to converge at a better point.

0 5 10 15 20
Epoch

12

14

16

18

20

22

24

26

28

BL
EU

 S
co

re

MLE
RAML
Ours

Figure 3: Convergence curve of learning al-
gorithms in the task of machine translation.
RAML is the second-best performing method
(Table.1), inferior only to our algorithm.

Figure 4: Improvement on the ROUGE-L met-
ric in comparison to MLE (e.g., RAML im-
proves ROUGE-L by 0.17).

Method ROUGE-1 ROUGE-2 ROUGE-L

MLE 36.11± 0.21 16.39± 0.16 32.32± 0.19
RAML (Norouzi et al., 2016) 36.30± 0.04 16.69± 0.20 32.49± 0.17
SPG (Ding & Soricut, 2017) 36.48± 0.24 16.84± 0.26 32.79± 0.26

MIXER (Ranzato et al., 2016) 36.34± 0.23 16.61± 0.25 32.57± 0.15
Scheduled Sampling (Bengio et al., 2015) 36.59± 0.12 16.79± 0.22 32.77± 0.17

Ours 36.72± 0.29 16.99± 0.17 32.95± 0.33

Table 2: Results of text summarization.

5.2 TEXT SUMMARIZATION

Dataset We use the popular English Gigaword corpus (Graff et al., 2003) for text summarization,
and pre-processed the data following (Rush et al., 2015). The resulting dataset consists of 200K/8K/2K
source-target pairs in train/dev/test sets, respectively. More details are included in the supplements.

Results The ROUGE metrics (including -1, -2, and -L) (Lin, 2004) are the most commonly used
metrics for text summarization. Following previous work (Ding & Soricut, 2017), we use the
summation of the three ROUGE metrics as the reward in the learning algorithms. Table 2 show the
results on the test set. The proposed interpolation algorithm achieves the best performance on all the
three metrics. For easier comparison, Figure 4 shows the improvement of each algorithm compared
to MLE in terms of ROUGE-L. The RAML algorithm, which performed well in machine translation,
falls behind other algorithms in text summarization. In contrast, our method consistently provides the
best results.

6 CONCLUSIONS

We have presented a unified perspective of a variety of well-used learning algorithms for sequence gen-
eration. The framework is based on a generalized entropy regularized policy optimization formulation,
and we show these algorithms are mathematically equivalent to specifying certain hyperparameter
configurations in the framework. The new principled treatment provides systematic understanding
and comparison among the algorithms, and inspires further enhancement. The proposed interpolation
algorithm shows consistent improvement in machine translation and text summarization. We would
be excited to extend the framework to other settings such as robotics and game environments.
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A POLICY GRADIENT & MIXER

Ranzato et al. (2016) made an early attempt to address the exposure bias problem by exploiting
the policy gradient algorithm (Sutton et al., 2000). Policy gradient aims to maximizes the expected
reward:

LPG(θ) = Epθ [RPG(y|y∗)] , (10)

where RPG is usually a common reward function (e.g., BLEU). Taking gradient w.r.t θ gives:

∇θLPG(θ) = Epθ [RPG(y|y∗)∇θ log pθ(y|x)] . (11)

We now reveal the relation between the ERPO framework we present and the policy gradient algorithm.
Starting from the M-step of Eq.(2) and setting (α = 1, β = 0) as in SPG (section 3.4), we use pθn as
the proposal distribution and obtain the importance sampling estimate of the gradient (we omit the
superscript n for notation simplicity):

Eq [∇θ log pθ(y|x)] = Epθ
[
q(y|x)

pθ(y|x)
∇θ log pθ(y|x)

]
= 1/Zθ · Epθ

[
exp{R(y|y∗)} · ∇θ log pθ(y|x)

]
,

(12)

where Zθ =
∫
y

exp{log pθ + R} is the normalization constant of q, which can be considered as
adjusting the step size of gradient descent.

We can see that Eq.(12) recovers Eq.(11) if we further set R = logRPG, and omit the scaling factor
Zθ. In other words, policy gradient can be seen as a special instance of the general ERPO framework
with (R = logRPG, α = 1, β = 0) and with Zθ omitted.

The MIXER algorithm (Ranzato et al., 2016) incorporates an annealing strategy that mixes between
MLE and policy gradient training. Specifically, given a ground-truth example y∗, the first m tokens
y∗1:m are used for evaluating MLE loss, and starting from step m + 1, policy gradient objective is
used. The m value decreases as training proceeds. With the relation between policy gradient and
ERPO as established above, MIXER can be seen as a specific instance of the proposed interpolation
algorithm (section 4) that follows a restricted annealing strategy for token-level hyperparameters
(λ1, λ2, λ3). That is, for t < m in Eq.4 (i.e.,the first m steps), (λ1, λ2, λ3) is set to (0, 0, 1) and
c = 1, namely the MLE training; while for t > m, (λ1, λ2, λ3) is set to (0.5, 0.5, 0) and c = 2.

B INTERPOLATION ALGORITHM

Algorithm 1 summarizes the interpolation algorithm described in section 4.

Algorithm 1 Interpolation Algorithm

1: Initialize model parameter θ and weights λ = (λ1, λ2, λ3)
2: repeat
3: Get training example (x,y∗)
4: for t = 0, 1, . . . , T do
5: Sample z ∈ {1, 2, 3} ∼ (λ1, λ2, λ3)
6: if z = 1 then
7: Sample token yt ∼ exp{c · log pθ(yt|y1:t−1,x)}
8: else if z = 2 then
9: Sample token yt ∼ exp{c ·∆Rcomm(yt|y1:t−1,y

∗)}
10: else
11: Sample token yt ∼ exp{c ·∆Rδ}, i.e., set yt = y∗t
12: end if
13: end for
14: Update θ by maximizing the log-likelihood log pθ(y|x)
15: Anneal λ by increasing λ1 and λ2 and decreasing λ3

16: until convergence
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C EXPERIMENTAL SETTINGS

C.1 DATA PRE-PROCESSING

For the machine translation dataset, we follow (Ma et al., 2017) for data pre-processing.

In text summarization, we sampled 200K out of the 3.8M pre-processed training examples provided
by (Rush et al., 2015) for the sake of training efficiency. We used the refined validation and test sets
provided by (Zhou et al., 2017).

C.2 ALGORITHM SETUP

For RAML (Norouzi et al., 2016), we use the sampling approach (n-gram replacement) by (Ma et al.,
2017) to sample from the exponentiated reward distribution. For each training example we draw 10
samples. The softmax temperature is set to τ = 0.4.

For Scheduled Sampling (Bengio et al., 2015), the decay function we used is inverse-sigmoid decay.
The probability of sampling from model εi = k/(k + exp (i/k)), where k is a hyperparameter
controlling the speed of convergence, which is set to 500 and 600 in the machine translation and text
summarization tasks, respectively.

For MIXER (Ranzato et al., 2016), the advantage function we used for policy gradient isR(y1:T |y∗)−
R(y1:m|y∗).

For the proposed interpolation algorithm, we initialize the weights as (λ1, λ2, λ3) = (0.04, 0, 0.96),
and increase λ1 and λ2 while decreasing λ3 every time when the validation-set reward decreases.
Specifically, we increase λ1 by 0.06 once and increase λ2 by 0.06 for four times, periodically. For
example, at the first time the validation-set reward decreases, we increase λ1, and at the second to
fifth time, we increase λ2, and so forth. The weight λ3 is decreased by 0.06 every time we increase
either λ1 or λ2. Notice that we would not update θ when the validation-set reward decreases.

D ADDITIONAL RESULTS

Here we present additional results of machine translation using a dropout rate of 0.3 (Table 3). The
improvement of the proposed interpolation algorithm over the baselines is comparable to that of using
dropout 0.2 (Table 1 in the paper). For example, our algorithm improves over MLE by 1.5 BLEU
points, and improves over the second best performing method RAML by 0.49 BLEU points. (With
dropout 0.2 in Table 1, the improvements are 1.42 BLEU and 0.64, respectively.) We tested with
dropout 0.5 and obtained similar results. The proposed interpolation algorithm outperforms existing
approaches with a clear margin.

Figure 5 shows the convergence curves of the comparison algorithms.

Model BLEU

MLE 26.63± 0.11
RAML (Norouzi et al., 2016) 27.64± 0.09
SPG (Ding & Soricut, 2017) 26.89± 0.06

MIXER (Ranzato et al., 2016) 27.00± 0.13
Scheduled Sampling (Bengio et al., 2015) 27.03± 0.15

Ours 28.13± 0.12

Table 3: Results of machine translation when dropout is 0.3.
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Figure 5: Convergence curve of learning algorithms in the task of machine translation with a dropout
rate of 0.3. The horizontal dashed lines indicate the test-set results of each of the algorithms (reported
in Table 3) picked according to the validation set performance.
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