
Under review as a conference paper at ICLR 2019

BEHAVIOR MODULE IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Prefrontal cortex (PFC) is a part of the brain which is responsible for behavior
repertoire. Inspired by PFC functionality and connectivity, as well as human
behavior formation process, we propose a novel modular architecture of neural
networks with a Behavioral Module (BM) and corresponding end-to-end training
strategy. This approach allows efficient learning of behaviors and preferences
representation. This property is particularly useful for user modeling (as for dialog
agents) and recommendation tasks, as allows learning personalized representations
of different user states. In the experiment with video games playing, the results
show that the proposed method allows separation of main task’s objectives and be-
haviors between different BMs. The experiments also show network extendability
through independent learning of new behavior patterns. Moreover, we demonstrate
a strategy for an efficient transfer of newly learned BMs to unseen tasks.

1 INTRODUCTION

Humans are highly intelligent species and are capable of solving a large variety of compound and
open-ended tasks. The performance on those tasks often varies depending on a number of factors. In
this work, we group them into two main categories: Strategy and Behaviour. The first group contains
all the factors leading to the achievement of a defined set of goals. On the other hand, Behaviour is
responsible for all the factors not directly linked to the goals and having no significant effect on them.
Examples of such factors can be current sentiment status or the unique personality and preferences
that affect the way an individual makes decisions. Existing Deep Networks have been focused on
learning of a Strategy component. This was achieved by optimization of a model for defined sets of
goals, also the goal might be decomposed into sub-goals first, as in FeUdal Networks (Vezhnevets
et al., 2017) or Policy Sketches approach (Andreas et al., 2017). Behavior component, in turn,
obtained much less attention from the DL community. Although some works have been conducted
on the identification of Behavior component in the input, such as works in emotion recognition
(Kahou et al., 2016; Han et al., 2014; Levi & Hassner, 2015). To the best of our knowledge, there
was no previous research on incorporation on Behavior Component or Behavior Representation in
Deep Networks before. Modeling Behaviour along with Strategy component is an important step to
mimicking a real human behavior and creation of robust Human-Computer Interaction systems, such
as a dialog agent, social robot or recommendation system.

The early work of artificial neural networks was inspired by brain structure (Fukushima, 1980; LeCun
& Bengio, 1995), and the convolution operation and hierarchical layer design found in the network
designed for visual analytic are inspired by visual cortex (Fukushima, 1980; LeCun & Bengio, 1995).
In this work, we again seek inspiration from the human brain architecture. In the neuroscience
studies, the prefrontal cortex (PFC) is the region of the brain responsible for the behavioral repertoire
of animals (Miller & Cohen, 2001). Similar to the connectivity of the brain cortex (as shown in
Figure 1), we hypothesize that a behavior can be modeled as a standalone module within the deep
network architecture. Thus, in this work, we introduce a general purpose modular architecture of
deep networks with a Behavioural Module (BM) focusing on impersonating the functionality of PFC.

Apart from mimicking the PFC connectivity in our model, we also borrow the model training strategy
from human behavior formation process. As we are trying to mimic the functionality of a human
brain we approached the problem from the perspective of Reinforcement Learning. This approach
also aligns with the process of unique personality development. According to Depue et al. (1994) and
Depue & Collins (1999) unique personality can be explained by different dopamine functions caused
by genetic influence. These differences are also a reason for different Positive Emotionality (PE)

1



Under review as a conference paper at ICLR 2019

Sensory
Cortex  
(Conv

Layers) 

PFC 
(Behavior
Module) 

Motor
Cortex 

(FC layers) 

Figure 1: Abstract illustration of the prefrontal cortex (PFC) connections of the brain (Miller & Cohen, 2001)
and corresponding parts of the proposed model.

patterns (sensitivity to reward stimuli), which are in turn a significant factor in behavior formation
process (Depue & Collins, 1999). Inspired by named biological processes we introduce extra positive
rewards (referring to positive-stimuli or dopamine release, higher the reward referring to higher
sensitivity) to encourage specific actions and provoke the development of specific behavioral patterns
in the trained agent.

To validate our method, we selected the challenging domain of classic Atari 2600 games (Bellemare
et al., 2013), where the simulated environment allows an AI algorithm to learn game playing by
repeatedly seek to understand the input space, objectives and solution. Based on this environment
and an established agent (i.e. Deep Q-Network (DQN) (Mnih et al., 2015)), the behavior of the agent
can be represented by preferences over different sets of actions. In other words, in the given setting,
each behaviour is represented by a probability distribution over given action space. In real-world
tasks, the extra-reward can be represented by the human satisfaction by taken action along with the
correctness of the output (main reward).

Importantly, the effect of human behavior is not restricted to a single task and can be observed
in various similar situations. Although it is difficult to correlate the effect of human behavior on
completely different tasks, it is often easier to observe akin patterns in similar domains and problems.
To verify this, we study two BM transfer strategies to transfer a set of newly learned BMs across
different tasks. As a human PFC is responsible for behavior patterns in a variety of tasks, we also
aim to achieve a zero-shot transfer of learned modules across different tasks.

The contributions of our work are as follow:

• We propose a novel modular architecture with behavior module and a learning method for the
separation of behavior from a strategy component.

• We provide a 0-shot transfer strategy for newly learned behaviors to previously unseen tasks. The
proposed approach ensures easy extendability of the model to new behaviors and transferability
of learned BMs.

• We demonstrate the effectiveness of our approach on video games domain. The experimental
results show good separation of behavior with different BMs, as well as promising results
when transfer learned BMs to new tasks. Along with that, we study the effects of different
hyper-parameters on the behavior separation process.

2 RELATED WORK

Task separation is an important yet relatively unexplored topic in deep learning. In 1989, Rueckl et al.
(1989) explored this idea by simulating a simplified primate visual cortex by separation a network
into two parts, responsible for shape classification task and shape localization on a binary image,
respectively The topic was further studied in Jacobs (1990); Jacobs et al. (1991a;b), however, due to
the limitations in computational resources at that time, it has not gotten much advancement.

Recently, number researchers have revisited the idea of task separation and modular networks
with evolutionary algorithms. So in 2005, Stanley et al. (2005) and Reeder et al. (2008) applied
neuroevolution algorithms to evolve predefined modules responsible for the problem subtasks, where
improved performance was reported when compared against monolithic architectures. Schrum &
Miikkulainen (2009; 2012) proposed a neuroevolution approach to develop a multi-modular network
capable of learning different agent behaviors. The module structure and the number of modules in the
network were evolved in the training process. Although the multi-module architecture achieved better
performance, it has not achieved separation of the tasks among the modules. A number of evolved

2



Under review as a conference paper at ICLR 2019

modules appeared redundant and not used in the test phase, while others have used shared neurons.
Moreover, the architecture was fixed once learned and did not assume changes in the structure. The
same approach with modifications in mutation strategy‘(Schrum & Miikkulainen, 2014), genome
encoding (Schrum et al., 2016) and task complexity (Schrum & Miikkulainen, 2014; 2015), but has
not achieved significant performance.

In 2016, Braylan et al. (2016) proposed to use a coevolutionary algorithm for domain transfer
problem to avoid training from the scratch. It first independently learns a pool of networks on
different Atari2600 games, During the transfer phase, the networks were frozen and used as a
‘building blocks’ in a new network while combined with newly evolved neurons. In 2017, Fernando
et al. (2017) introduced PathNet to address the task-transfer module on the example of Atari2600
games. PathNet has a fixed size architecture (L layers by N modules), where each module was
represented by either convolutional or fully-connected block. During the training phase, authors
applied the tournament genetic algorithm to learn active paths between modules along with the
weights. Once the task was learned, active modules and paths were frozen and the new task could
start learning a new path. Recently proposed FeUdal Networks architecture (Vezhnevets et al.,
2017), also proposed a Modular design for Reinforcement Learning problems with sub-goals. In
this work authors use Manager and Worker modules for learning abstract goals and primitive actions
respectively. FeUdal networks are designed to tackle environments with long-term credit assignment
and sparse reward signals. The modules in the named architecture are not transferable and designed
to learn different time-span goal embeddings.

Andreas et al. (2016) proposed the Neural Module Network for Visual Question Answering (VQA)
task. It consists of separate modules responsible for different tasks (e.g. Find, Transform, Combine,
Describe and Measure modules), which could be combined in different ways depending on the
network input. A similar dynamic architecture was proposed and applied to robot manipulator
task (Devin et al., 2017). The model was end-to-end trained and consisted of two modules (i.e. robot-
specific and task-specific) and achieved good performance on a zero-shot learning task. The Modular
Neural Network was also applied in Reinforcement Learning task in a robotics environment (Andreas
et al., 2017). In this work, each module was responsible for a separate sub-task of the main task.
However, the modules could be combined only in a sequential manner.

Most of the previous works focused on multi-task problems or problems with sub-goals where
the modules were responsible for learning explicit sub-functionality directly affecting the model
performance. Our approach is different in a sense, we learn a behavior module responsible for
representation of user sentiment states or preferences not affecting the main goals. This approach
leads to high adaptability of the network performance to new preferences or states of an end-
user without retraining of the whole network, expandability of the network to future variations,
removability of BMs in case of unknown preferences, as well as high-potential to transfer of the
learned representations to unseen tasks. To the best of our knowledge, there are no similar approaches.

3 METHOD

The goal of our modular network is to introduce Behavior component into Deep Networks, ensure
separation of the behavior and main task functionalities into different components of the network
and provide a strategy for an efficient transfer of learned behaviors. Our model has three main parts
(1) The Main Network is responsible for the main task (strategy component) functionality, (2) a
replaceable/removable Behavior Module (BM) encodes the agent behavior and separate it from the
main network, and (3) the Discriminator is used during the transfer stage and helps to learn similar
feature representations among different tasks. An overview of the proposed network architecture is
shown in Figure 2. In the given architecture Convolutional layers correspond to (Visual) Sensory
cortex, Fully-Connected layers of the Main Network to the Motor Cortex and Behaviour Module to
PFC from Figure 1.

3.1 MAIN NETWORK

In this work, we adopt the deep Q-Network (DQN) with target network and memory replay (Mnih
et al., 2015) to solve the main task (denoted as main network). DQN has reported good performance

3



Under review as a conference paper at ICLR 2019

FC

C
N
N

C
N
N

C
N
N

FC FC

Behavior Module

O
ut
pu
t 

Main Network

FCFC

Discriminator

FC

Behavior Module

FC

Behavior Module

FC

Behavior Module

+
FC

Figure 2: Overview of the proposed modular network architecture with Behavioral Module (BM) and main
network represented by DQN (Mnih et al., 2015). The Discriminator is only used for adversarial BM transfer.

on Deep Reinforcement Learning task and achieved human-level performance on a number of
Atari2600 games (Bellemare et al., 2013).

The DQN has a fairly simple network structure, which consists of 3 consecutive convolutional layers
followed by two fully-connected (fc) layers (see Figure 2). All the layers, except the last one, use
ReLU activation functions. The network output is represented by the set of expected future discounted
rewards for each of the available actions. The output obeys Bellman-equation and Root-Mean-Square
Error is applied as a loss function (Lm) during the training phase.

3.2 BEHAVIOR SEPARATION

In this work, we are interested in the separation of the behavioral component from the main task
functionality. Specifically, we design a network where the behavior is modeled with a replaceable
and removable module, which is denoted as Behavioral Module (BM). The BM is supposed to have
no significant effect on the performance on the main task.

The BM is modeled as two fc layers with the first layer having ReLU activation function and the
second layer having linear activation. The proposed BM input is the output from the last convolutional
layer of the main network, while its output is directly fed to the first fc layer of the main network.
This architecture follows the PFC connectivity pathways described in Figure 1. The forward pass of
the network is represented by the following equations:

l1 = f1(I ~W1 + b1)

l2 = f2(l1 ~W2 + b2)

l3 = f3(l2 ~W3 + b3)

lb1 = fb1(l3 ·Wbj1 + bbj1)

lb2 = lb1 ·Wbj2 + bbj2

l4 = f4(l3 ·W4 + b4 + lb2)

l5 = l4 ·W5 + b5,

where I is the network input, j is the index of the current behaviour, li is the output of the i-th layer,
lbi is the output of i-th layer of a BM, fi is the activation function at the i-th layer, and ~ denotes 2d
convolution operation. The Main Network contains layers from l1 to l5. Note that lb becomes zero
vector if no behavior is required or enforced.

The summation operator at the layer 4 ensures the influence of BM can be easily removed from the
main network (lb is zeros in this case). It also minimizes the effects of BM on the gradients flow
during the backpropagation stage. The training is conducted in an end-to-end manner as presented in
Algorithm 1.

In our approach, the introduction of BM does not require additional loss function and the loss is
directly incorporated into the main network loss (Lm). To do this we introduce additional rewards
for desired behaviors of the agent, similar to PE effect on human behavior formation process. In our

4



Under review as a conference paper at ICLR 2019

Algorithm 1 Behavior Separation

1: procedure TRAINBEHAVIORNET
2: input: N - number of training iterations, R - set of replay buffers,
3: input: θ- network parameters, θ′- target network parameters,
4: input: B - set of behavior blocks, N′ - target network update frequency
5: i← random(1,size(B)); θ′ ← θ
6: for t in range(0,N) do
7: play game with i-th bevaior module
8: store new data to R[i]
9: j ← random(1,size(B))

10: sample training batch from R[j]
11: Optimize θ and B[j]
12: Replace θ’← θ every N’ steps
13: if game finished then
14: i← random(1,size(B))

setting behavior is defined by agent’s preference to play specific actions. Thus, each preferred action
played was rewarded with an extra action reward. The action reward is subject to the game of interest
and its designing process will be described in the Experiment section.

3.3 BEHAVIOR TRANSFER

One of the advantages of network modularization is to allow the learned BMs to be transferred to a
different main network with minimal or no network re-training. This property is useful for knowledge
sharing among a group of models in problems with a variety of possible implementations, changing
environments and open-ended tasks. Once task objectives have changed or new behaviors were
developed in another model, the target model can just apply a new module without any updates or
training of the main network. This property allows easy extension of a learned model and knowledge
share across different models without any additional training.

The learned BMs from the previous section is used during the transfer phase. In this work, we
consider two approaches, namely fine-tuning and adversarial transfer. The first approach uses a
source task model and fine-tunes it for a new target task, where BMs are kept unchanged.

In the adversarial transfer approach, we introduce a discriminator network (as shown in Figure 2) ,
which enforces the convolutional layers to learn features similar to features of the source task. To
do so, we adopt the domain-adversarial training (Ganin et al., 2016). In this case, the discriminator
network has 2 fully-connected layers with Relu and Softmax non-linearity functions, which tries to
classify output of the last convolutional layers as being from the source or target task. Different from
the original paper, we minimize the softmax loss at the discriminator output and flip the gradient sign
at the convolutional layers. The weights update can be formulated as follows:

θdt+1 = θdt − β
∂La

∂θd
θct+1 = θct + β

∂La

∂θc

where θdjt are the parameters of the discriminator at timestep t, θajt are the parameters of the
convolutional layers at timestep t, β is the parameter as described by Ganin et al. (2016), La is the
classification loss of the descriminator.

4 EXPERIMENT

In this section, we delineate the experiments that focus on two main aspects of this work: (1) the
separation of agent’s behavior from the main task, and (2) cross-task transfer of learned behaviors. In
order to demonstrate the flexibility and extendability of the proposed network, we also considered
zero-shot setting so that an end-user will not require additional training for the case of behavior
module transfer.

Environment: We evaluate the proposed novel modular architecture on the classic Atari 2600
games (Bellemare et al., 2013). The main reason is that video games provide a controlled environment,

5



Under review as a conference paper at ICLR 2019

Table 1: Game scores and Behavior Distance score (in the brackets) achieved with vanilla DQN
model (Mnih et al., 2015) and our proposed model with optimal parameters.

Pong Space Invaders Demon Attack Breakout

DQN 21.0 (-) 726.2 (-) 1564.8 (-) 115.9 (-)

Our (BM0) 21.0 (-) 727.1 (-) 2658.8 (-) 127.5 (-)

Ours (Stage 1) 21.0 (0.96) 617.3 (0.86) 2128.1 (0.83) 124.0 (0.87)

Ours (Stage 2) 21.0 (0.95) 624.6 (0.88) 1893.4 (0.85) 117.1 (0.88)

where it is easier to control agent behavior by representing it with distribution over available actions.
In addition, Atari 2600 emulator does not require data collection and labeling, yet it provides a wide
range of tasks in terms of different games. The loss function used to encourage the learning of a
specific behavior is described in the next section. In this work, we evaluate our architecture on four
games, namely Pong, Space Invaders, Demon Attack and Breakout, which consist of four available
actions, namely No action, Fire, Up/Right, and Down/Left.

Data pre-processing: The input of the network is a stack of 4 game-frames. Each frame was
converted into a gray-scale image and resized to 84 × 84 pixels. As the consecutive game frame
contain similar information, we sample one game frame on every fourth frame.

Behavior: We design 8 possible behaviors to simulate various action sets. BM1, BM2, BM3, and
BM4 encouraged playing a single action (i.e. No action, Fire, Up/Right or Down/Left); BM5 and
BM6 stimulated reasonable pairs of actions (i.e. Up and Down (or Right and Left), and Fire and No
action (or Fire and Right)); BM7 and BM8 encouraged playing sets of 3 actions represented by BM5
and an additional action. Additionally, we tested the effect of zero-behavior (i.e. BM0) presence
during the training stage. In other words, no actions were stimulated and BM is not applied.

Training: To train the proposed network (i.e. main network and BMs), we used the standard Q-
learning algorithm and the corresponding loss function using Bellman equation (Mnih et al., 2013).
The training used a combined reward represented by the sum of game score and individual action
rewards. The magnitude of the additional reward was represented by an average reward per frame of
the game. All the rewards obtained during the game were clipped at 1 and -1 (Mnih et al., 2015).

Evaluation Metrics: We evaluate the proposed models using two metrics. The first metric focus on
the game play performance. As each game has different reward scales, we compute the mean of game
scores ratios achieved by the proposed modular network and the Vanilla DQN model (Table 1). We
refer to this metric as Average Main Score Ratio (AMSR). If AMSR is equal to 1, it means the trained
model with BM performs equally well as the Vanilla DQN model. Similarly, AMSR higher than 1
indicate our proposed model perform better than the Vanilla DQN, or worst if it is lower than 1. Thus,
AMSR that is close to or more than 1 would indicate our modular network is comparable to baseline.

The second metric reflects the capability of the proposed modular network in term of modeling the
desired behavior. To do this, we define the Behavior Distance (BD) by calculating the Bhattacharyya
distance (Bhattacharyya, 1943) between the BMs’ action distribution to an ideal target distribution.
The target distribution is computed by divide 1 with the rewarded actions (i.e. BM5’s target distribution
is [0.0, 0.0, 0.5, 0.5]). In the ideal case, the BD of the learned network should be close to 1 as our
training only encourages over certain actions set.

4.1 EXPERIMENT ON BEHAVIOR SEPARATION

This experiment aims to show that the behavior functionality can be separated from the main task
and learned independently. To demonstrate that we conducted the training in two stages. During the
Stage 1, we first trained the main network with five behaviors (i.e., BM0 - BM2, BM4 - BM5 and
BM8) using Algorithm 1. Given the trained network from Stage 1, Stage 2 focused on training of
the remaining BMs (i.e. BM3, BM6, and BM7) while the main network was frozen. This includes
behaviors stimulating 1, 2 and 3 actions, respectively.

6



Under review as a conference paper at ICLR 2019

Table 2: Effect of action reward magnitude, where r is the average reward per frame size of trained
network with vanilla DQN model.

AMSR BD
Action Reward BM0 Stage 1 Stage 2 Stage 1 Stage 2

0.25r 1.04 0.90 0.80 0.74 0.79

0.50r 1.04 0.89 0.88 0.83 0.85

0.75r 1.21 0.95 0.82 0.88 0.87

r 0.93 0.88 0.85 0.87 0.89

2r 0.65 0.67 0.67 0.94 0.78

5r 0.42 0.49 0.46 0.97 0.82

Table 3: Effect of the number of layers in the Behavioural Module.

Number of AMSR BD
layers BM0 Stage 1 Stage 2 Stage 1 Stage 2

1 1.04 0.89 0.88 0.83 0.85

2 1.25 1.18 1.06 0.83 0.84

3 1.26 1.18 1.00 0.82 0.85

Effect of key parameters: First of all, we studied the effect of the action reward magnitude on the
training process. We started with estimation of average reward per frame value (r) for each game
(without additional action rewards) and observed performance of our model with various action
rewards (i.e. 0.25r, 0.5r, r, 2r, and 5r). Table 2 show that action reward magnitude directly affects the
quality of learned behavior in both stages, where increasing the action reward above r value leads to
degradation of the main task’s performance. Although additional reward magnitude selection depends
on a desired main score and BD, we recommend the value equal to r as it leads to the highest BD
score during Stage 2, and as a result better functionality separation. Next, to see the effect of other
parameters we set the value of the action reward to 0.5r, so that we can observe an effect of the
changes on the main reward, as well as the behavior pattern.

As the next step, we have studied the effect of the complexity of the BMs on the quality of the
learned behaviors by trying a different number of layers. Also, we looked for a better separation
of the Behavior component by studying the effects of dropout, BM0 and different learning rate for
the Behavior module. According to the results (Table 3) use of 2 fully-connected layers resulted in
a significant improvement on the main task score compared to 1-layer version. However, adding
more layers did not result in a better performance. Similar effect demonstrated a higher BM learning
rate compared to the main network (Table 4), while lower value leads to lower main scores. Finally
implementing a Dropout layer for the BM and using BM0 resulted in a higher BD score during Stage
2 and main score during Stage 1.

Results: Taking into account hyper-parameter effect we have trained a final model with 2 layer BMs
and 0.5 dropout layers, applying 2 times higher BM learning rate, BM0 and action reward equal to r.
The trained model showed high main task scores compared to the vanilla DQN model, as well as
high similarity of learned behaviors to ideal target distributions at Stage 1, as well as after separate
training of BMs at Stage 2 (Table 1). Experiments also showed that removing the BMs does not lead
to a performance degradation of the model on the main task. Importantly, the effect of the action
reward magnitude directly correlated with agents preferences to play rewarded actions, which aligns
with the PE effect in human behavior formation process. Thus, the development process of exact
behavior pattern can be controlled through variations in action reward magnitude. Therefore, we
conclude that the proposed model and training method allows a successful separation of the strategy
(main task) and behavior functionalities and further network expansion.

7



Under review as a conference paper at ICLR 2019

Table 4: Effect of learning rate magnitude of the Bahavioural Module

BM learning AMSR BD
rate multiplier BM0 Stage 1 Stage 2 Stage 1 Stage 2

0.5 0.81 0.84 0.80 0.81 0.85

1.0 1.04 0.89 0.88 0.83 0.85

2 1.10 0.91 0.89 0.82 0.85

3 1.05 0.90 0.90 0.83 0.85

Table 5: Zero-shot transfer results

Approach AMSR BD
BM0 Stage 1 Stage 2 Stage 1 Stage 2

No training 1.20 1.07 0.97 0.88 0.67

Fine-tuning 0.93 0.92 0.93 0.85 0.75

Adversarial 0.95 1.03 0.95 0.86 0.81

4.2 EXPERIMENT ON BEHAVIOR TRANSFER

Implementation details: To achieve a zero-shot performance of the transferred modules, we aimed
to achieve a similar feature representation of the target model to the source model. To achieve that we
tested two approaches: fine-tuning and adversarial transfer. In the first case, we have fine-tuned the
main network obtained in Stage 1 of Section 4.1 on a new game with frozen Stage 1 BMs, applied to
every pair of games and following Algorithm 1. After that, we tested the performance on previously
unseen Stage 2 BMs. In adversarial setting we follow the same procedure, but with the use of the
Discriminator part (Figure 2). The performance was compared to the results of transferring Stage 2
BMs to the best model configuration after Stage 1 from Section 4.1.

Results: As it can be seen from the Table 5 even a simple zero-shot transfer of learned BMs based on
fine-tuning results in a good performance of the model on unseen BMs. BM0 and Stage 1 behaviors
achieved close performance to an original network. Although the BD score of zero-shot adversarial
transfer is approximately 9% lower, the main task performance of transferred modules on an unseen
task is close to a separately trained network. This fact shows that zero-shot transfer of separately
learned BMs to unseen tasks results in slightly worse performance compared to the separately trained
model. This leads to a conclusion that target performance of transferred BMs can be achieved through
much less training compared to complete network retraining.

5 CONCLUSION

In this work, we have proposed a novel Modular Network architecture with Behavior Module,
inspired by human brain Pre-Frontal Cortex connectivity. This approach demonstrated the successful
separation of the Strategy and Behavior functionalities among different network components. This is
particularly useful for network expandability through independent learning of new Behavior Modules.
Adversarial 0-shot transfer approach showed high potential of the learned BMs to be transferred
to unseen tasks. Experiments showed that learned behaviors are removable and do not degrade the
performance of the network on the main task. This property allows the model to work in a general
setting, when user preferences are unknown. The results also align with human behavior formation
process. We also conducted an exhaustive study on the effect of hyper-parameters on behavior
learning process. As a future work, we are planning to extend the work to other domains, such as
style transfer, chat bots, and recommendation systems. Also, we will work on improving module
transfer quality.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In CVPR,
pp. 39–48, 2016.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In ICML, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Anil Bhattacharyya. On a measure of divergence between two statistical populations defined by their
probability distributions. Bull. Calcutta Math. Soc., 35:99–109, 1943.

Alexander Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Reuse of neural
modules for general video game playing. In AAAI, pp. 353–359, 2016.

Richard A Depue and Paul F Collins. Neurobiology of the structure of personality: Dopamine,
facilitation of incentive motivation, and extraversion. Behavioral and brain sciences, 22(3):
491–517, 1999.

Richard A Depue, Monica Luciana, Paul Arbisi, Paul Collins, and Arthur Leon. Dopamine and the
structure of personality: Relation of agonist-induced dopamine activity to positive emotionality.
Journal of Personality and Social Psychology, 67(3):485, 1994.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In ICRA, pp. 2169–2176, 2017.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. PathNet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, 1980.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

Kun Han, Dong Yu, and Ivan Tashev. Speech emotion recognition using deep neural network and ex-
treme learning machine. In Fifteenth annual conference of the international speech communication
association, 2014.

Robert A Jacobs. Task decomposition through competition in a modular connectionist architecture.
PhD thesis, University of Massachusetts at Amherst, 1990.

Robert A Jacobs, Michael I Jordan, and Andrew G Barto. Task decomposition through competition
in a modular connectionist architecture: The what and where vision tasks. Cognitive Science, 15
(2):219–250, 1991a.

Robert A Jacobs, Michael I Jordan, and Andrew G Barto. Task decomposition through competition
in a modular connectionist architecture: The what and where vision tasks. Cognitive Science, 15
(2):219–250, 1991b.

Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Caglar Gulcehre, Vincent Michal-
ski, Kishore Konda, Sébastien Jean, Pierre Froumenty, Yann Dauphin, Nicolas Boulanger-
Lewandowski, et al. Emonets: Multimodal deep learning approaches for emotion recognition in
video. Journal on Multimodal User Interfaces, 10(2):99–111, 2016.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. MIT
Press, 1995.

9



Under review as a conference paper at ICLR 2019

Gil Levi and Tal Hassner. Emotion recognition in the wild via convolutional neural networks
and mapped binary patterns. In Proceedings of the 2015 ACM on international conference on
multimodal interaction, pp. 503–510. ACM, 2015.

Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex function. Annual
review of neuroscience, 24(1):167–202, 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

John Reeder, Roberto Miguez, Jessica Sparks, Michael Georgiopoulos, and Georgios Anagnostopou-
los. Interactively evolved modular neural networks for game agent control. In IEEE Symposium
On Computational Intelligence and Games, pp. 167–174, 2008.

Jay G Rueckl, Kyle R Cave, and Stephen M Kosslyn. Why are “what” and “where” processed by
separate cortical visual systems? a computational investigation. Journal of cognitive neuroscience,
1(2):171–186, 1989.

Jacob Schrum and Risto Miikkulainen. Evolving multi-modal behavior in npcs. In IEEE Symposium
On Computational Intelligence and Games, pp. 325–332, 2009.

Jacob Schrum and Risto Miikkulainen. Evolving multimodal networks for multitask games. IEEE
Transactions on Computational Intelligence and AI in Games, 4(2):94–111, 2012.

Jacob Schrum and Risto Miikkulainen. Evolving multimodal behavior with modular neural networks
in ms. pac-man. In GECCO, pp. 325–332, 2014.

Jacob Schrum and Risto Miikkulainen. Solving interleaved and blended sequential decision-making
problems through modular neuroevolution. In GECCO, pp. 345–352, 2015.

Jacob Schrum, Joel Lehman, and Sebastian Risi. Using indirect encoding of multiple brains to
produce multimodal behavior. arXiv preprint arXiv:1604.07806, 2016.

Kenneth O Stanley, Bobby D Bryant, and Risto Miikkulainen. Real-time neuroevolution in the NERO
video game. IEEE Transactions on Evolutionary Computation, 9(6):653–668, 2005.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1703.01161, 2017.

10



Under review as a conference paper at ICLR 2019

Table 6: Effect of the Dropout rate applied to the Behavioural Module.

Dropout AMSR BD
rate Removed BMs Stage 1 Stage 2 Stage 1 Stage 2

0.0 1.04 0.89 0.88 0.83 0.85

0.1 1.00 0.92 0.86 0.86 0.85

0.3 1.03 0.92 0.87 0.86 0.87

0.5 1.19 0.94 1.01 0.86 0.87

Table 7: Effect of the training with/without BM0

AMSR BD
BM0 Stage 1 Stage 2 Stage 1 Stage 2

Without BM0 1.04 0.89 0.88 0.83 0.85

With BM0 1.07 0.95 0.85 0.81 0.86

A APPENDIX

In this appendix, we show the details of our preliminary study on various key parameters. The
experiments were conducted on the Behavior Separation task.

11


	Introduction
	Related work
	Method
	Main network
	Behavior Separation
	Behavior Transfer

	Experiment
	Experiment on Behavior Separation
	Experiment on Behavior Transfer

	Conclusion
	Appendix

