
Published as a conference paper at ICLR 2019

LEARNING A META-SOLVER FOR SYNTAX-GUIDED
PROGRAM SYNTHESIS

Xujie Si*1, Yuan Yang∗2, Hanjun Dai2, Mayur Naik1 & Le Song2

1University of Pennsylvania, 2Georgia Institute of Technology
1{xsi,mhnaik}@cis.upenn.edu
2{yyang754,hanjundai}@gatech.edu,lsong@cc.gatech.edu

ABSTRACT

A general formulation of program synthesis called syntax-guided synthesis (Sy-
GuS) seeks to synthesize a program that follows a given grammar and satisfies a
given logical specification. Both the logical specification and the grammar have
complex structures and can vary from task to task, posing significant challenges
for learning across different tasks. Moreover, supervision is often unavailable for
domain-specific synthesis tasks. To address these challenges, we propose a meta-
learning framework that learns a transferable policy using only weak supervision.
Our framework consists of three components: 1) an encoder, which embeds both
the logical specification and grammar at the same time using a graph neural net-
work; 2) a grammar adaptive policy network which enables learning a transferable
policy; and 3) a reinforcement learning algorithm that jointly trains the embedding
and adaptive policy with sparse reward. We evaluate the framework on 214 cryp-
tographic circuit synthesis tasks. It solves 141 of them in the out-of-box solver
setting, significantly outperforming a similar search-based approach but without
learning, which solves only 31. The result is comparable to two state-of-the-art
classical synthesis engines, which solve 129 and 153 respectively. In the meta-
solver setting, the framework can efficiently adapt to unseen tasks and achieves
speedup ranging from 2× up to 100×.

1 INTRODUCTION

Program synthesis concerns automatically generating a program that satisfies desired functional
requirements. Promising results have been demonstrated by applying this approach to problems
in diverse domains, such as spreadsheet data manipulation for end-users (Gulwani et al., 2012),
intelligent tutoring for students (Singh et al., 2013), and code auto-completion for programmers
(Feng et al., 2017), among many others.

In a common formulation posed by Alur et al. (2013) called syntax-guided synthesis (SyGuS), the
program synthesizer takes as input a logical formula φ and a grammar G, and produces as output
a program in G that satisfies φ. In this formulation, φ constitutes a semantic specification that
describes the desired functional requirements, and G is a syntactic specification that constrains the
space of possible programs.

The SyGuS formulation has been targeted by a variety of program synthesizers based on discrete
techniques such as constraint solving (Reynolds et al., 2015), enumerative search (Alur et al.,
2017b), and stochastic search (Schkufza et al., 2013). A key limitation of these synthesizers is
that they do not bias their search towards likely programs. This in turn hinders their efficiency and
limits the kinds of programs they are able to synthesize.

It is well known that likely programs have predictable patterns (Hindle et al., 2012; Allamanis et al.,
2018a). As a result, recent works have leveraged neural networks for program synthesis. However,
they are limited in two aspects. First, they do not target general SyGuS tasks; more specifically:

∗The first two authors contributed equally to this work.

1

Published as a conference paper at ICLR 2019

• They assume a fixed grammar (i.e., syntactic specification G) across tasks. For example, Si et al.
(2018) learn loop invariants for program verification, but the grammar of loop invariants is fixed
across different programs to be verified.
• The functional requirements (i.e., semantic specification φ) are omitted, in applications that con-

cern identifying semantically similar programs (Piech et al., 2015; Allamanis et al., 2017; 2018b;
Dai et al., 2018), or presumed to be input-output examples (Parisotto et al., 2016; Balog et al.,
2017; Devlin et al., 2017; Bunel et al., 2018; Chen et al., 2018; Vijayakumar et al., 2018; Shin
et al.; Sun et al., 2018; Pu et al., 2018).

In contrast, the SyGuS formulation allows the grammar G to vary across tasks, thereby affording
flexibility to enforce different syntactic requirements in each task. It also allows to specify func-
tional requirements in a manner more general than input-output examples, by allowing the semantic
specification φ to be a logical formula (e.g., f(x) = 2x instead of f(1) = 2 ∧ f(3) = 6). As a
result, the general SyGuS setting necessitates the ability to capture common patterns across different
specifications and grammars. A second limitation of existing approaches is that they rely on strong
supervision on the generated program (Parisotto et al., 2016; Balog et al., 2017; Bunel et al., 2018).
However, in SyGuS tasks, ground truth programs f are not readily available; instead, a checker is
provided that verifies whether f satisfies φ.

In this paper, we propose a framework that is general in that it makes few assumptions on specific
grammars or constraints, and has meta-learning capability that can be utilized in solving unseen
tasks more efficiently. The key contributions we make are (1) a joint graph representation of both
syntactic and semantic constraints in each task that is learned by a graph neural network model; (2) a
grammar adaptive policy network that generalizes across different grammars and guides the search
for the desired program; and (3) a reinforcement learning training method that enables learning
transferable representation and policy with weak supervision.

We demonstrate our meta-learning framework on a challenging and practical instance of the SyGuS
problem that concerns synthesizing cryptographic circuits that are provably free of side-channel at-
tacks (Eldib et al., 2016). In our experiments, we first compare the framework in an out-of-box
solver setting against a similar search-based approach and two state-of-the-art classical solvers de-
veloped in the formal methods community. Then we demonstrate its capability as a meta-solver that
can efficiently adapt to unseen tasks, and compare it to the out-of-box version.

2 PROBLEM FORMULATION

The Syntax-Guided Synthesis (SyGuS) problem is to synthesize a function f that satisfies two kinds
of constraints:

• a syntactic constraint specified by a context-free grammar (CFG) G, and
• a semantic constraint specified by a formula φ built from symbols in a background theory T

along with f .

One example of the SyGuS problem is cryptographic circuit synthesis (Eldib et al., 2016). The
goal is to synthesize a side-channel free cryptographic circuit by following the given CFG (syntactic
constraint) while ensuring that the synthesized circuit is equivalent to the original circuit (semantic
constraint). In this example, the grammar is designed to avoid side-channel attacks, whereas the
original circuit is created only for functional correctness and thus is vulnerable to such attacks. We
henceforth use this problem as an illustrative example but note that our proposed method is not
limited to this specific SyGuS problem.

We investigate how to efficiently synthesize the function f . Specifically, given a dataset of N tasks
D = {(φi, Gi)}Ni=1, we address the following two tasks:

• learning an algorithm Aθ : (φ,G) 7→ f parameterized by θ that can find the function fi for
(φi, Gi) ∈ D;
• given a new task set D′, adapt the above learned algorithmAθ and execute it on new tasks in D′.

This setting poses two difficulties in learning. First, the ground truth target function f is not readily
available, making it difficult to formulate as a supervised learning problem. Second, the constraint

2

Published as a conference paper at ICLR 2019

Global nodeNon-terminalsTerminals

Graph Representation !(#, %)

Typed ASTAST edgeGlobal link

Logical Spec #
X OR Y AND Z

Grammar %
s -> d1 OR d1 | d1 AND d1
d1 -> X | Y | d2 OR d2
d2 ->

XX d2

<spec>

OR

AND

Y Z

X

S

S_OR S_AND

d1

NT_DNT_D

AN
D_DAND_DOR_DOR_D

YX

d1T
NT_D

d1_or

d2

NT_D

OR_D

OR_DT_DT_
D

X

Y

Z

AND

OR

X_D

<spec>

OR

AND

Y Z

X

S

NI_DNI_D

YX
d2

OR_D

OR_D

T_DT_D

X

Y

Z

AND

OR

<spec>

OR

Y Z

X

S

S_OR

d1

NI_DNI_D

AND_D

AND_DOR_D

OR_D

YX

d1T

NI_D

d1_or

d2

NI_D

OR_D

OR_D

T_DT_D

X

Y

Z

OR

<spec>

OR

AND

Y Z

X

S

S_OR S_AND

NI_DNI_D

AND_D

AND_DOR_D

OR_D

d1_or

d2

NI_D

OR_D

OR_D

X

Y

Z

AND

OR

......

S_OR S_AND

d1

AND_D

AND_DOR_D

OR_D

d1T

NI_D

d1_or

NI_D

S_AND

AND

AND

d1

YX

d1T

NI_D

T_DT_D

Repeat ' times

• Global graph embedding:

• Node embeddings:

Output

......

s

d1

z

• Embed production rules

s -> d1 OR d1
| d1 AND d1

S_OR

S_AND

==>

ℎ(!)

......
One step of message

passing update

Figure 1: Graph representation of syntax and semantic constraint. Note that the reversed links are
also added in our representation.

φ is typically verified using an SAT or SMT solver, and this solver in turns expects the generated f
to be complete. This means the weak supervision signal will only be given after the entire program
is generated. Thus, it is natural to formulate Aθ as a reinforcement learning algorithm. Since each
instance (φi, Gi) ∈ D is an independent task with different syntactic and semantic constraints, the
key to success is the design of such meta-learner, which we elaborate in Sec 3.

3 META-SOLVER MODEL

This section presents our meta-solver model for solving the two problems formulated in Sec 2. We
first introduce formal notation in Sec 3.1. To enable the transfer of knowledge across tasks with
different syntactic and semantic constraints, we propose a representation framework in Sec 3.2 to
jointly encode the two kinds of constraints. The representation needs to be general enough to en-
code constraints with different specifications. Lastly, we introduce the Grammar Adaptive Policy
Network in Sec 3.3 that executes a program generation policy while automatically adapting to dif-
ferent grammars encoded in each task specification.

3.1 FORMAL DEFINITIONS

We formally define key concepts in the SyGuS problem formulation as follows.

semantic spec φ: The spec itself is a program written using some grammar. In our case, the grammar
used in spec φ is different from the grammar G that specifies the syntax of the output program.
However, in many practical cases the tokens (i.e., the dictionary of terminal symbols) may be shared
across the input spec and the output program.

CFG G: A context free grammar (CFG) is defined as G = 〈V,Σ,R, s〉. Here V denotes the non-
terminal tokens, while Σ represents the terminal tokens. s is a special token that denotes the start
of the language, and the language is generated according to the production rules defined in R. For
a given non-terminal, the associated production rules can be written as α → β1|β2 . . . |βnα , where
nα is the branching factor for non-terminal α ∈ V , and βi = u1u2 . . . u|βi| ∈ (V

⋃
Σ)∗. Each

production rule α → βi ∈ R represents a way of expanding the grammar tree, by attaching nodes
u1, u2, . . . , u|βi| to node α. The expansion is repeated until all the leaf nodes are terminals.

Output function f : The output is a program in the language generated by G. A valid output f must
satisfy both the syntactic constraints specified by G and the semantic constraints specified by φ.

3.2 TASK REPRESENTATION

Different from traditional neural program synthesis tasks, where the program grammar and vocabu-
lary is fixed, each individual task in our setting has its own form of grammar and semantic specifica-
tion. Thus in the program generation phase (which we will elucidate in Sec 3.3), one cannot assume
a fixed CFG and use a tree decoder like in Kusner et al. (2017) and Bunel et al. (2018). To enable

3

Published as a conference paper at ICLR 2019

such generalization across different grammars, the information about the CFG for each task needs
to be captured in the task representation.

Since the semantic spec program φ and the CFG G have rich structural information, it is natural
to use graphs for their representation. Representing the programs using graphs has been success-
fully used in many programming language domains. In our work, we further extend the approach
by Allamanis et al. (2018b) with respect to the following aspects:

• Instead of only representing the semantic spec program φ as a graph, we propose to jointly
represent it along with the grammar G.

• To allow information exchange between the two graphs, we leverage the idea of Static Single
Assignment (SSA) form in compiler design. That is, the same variable (token) that may be
assigned (defined) at many different places should be viewed differently, but on the other hand,
these variations correspond to the same original thing. Specifically, we introduce global nodes
for shared tokens and global links connecting these globally shared nodes and local nodes that
(re)define corresponding tokens.

The overall representation framework is described in Figure 1. To construct the graph, we first build
the abstract syntax tree (AST) for the semantic spec program φ, according to its own grammar (typi-
cally different from the output grammar G). To represent the grammar G, we associate each symbol
in V

⋃
Σ with a node representation. Furthermore, for a non-terminal α and its corresponding pro-

duction rules α→ β1|β2 . . . |βnα , we create additional nodes αi for each substitute βi. The purpose
is to enable grammar adaptive program generation, which we elaborate in Sec 3.3. As a simplifica-
tion, we merge all nodes αi representing βi that is a single terminal token into one node. Finally,
the global nodes for shared tokens in Σ are created to link together the shared variable and operator
nodes. This enables information exchange between the syntactic and semantics specifications.

To encode the joint graph G(φ,G), we use graph neural networks to get the vector representation
for each node in the graph. Specifically, for each node v ∈ G, we use the following parameterization
for one step of message passing style update:

ht+1
v = Aggregate

(
{F (htu, eu,v)}u∈N (v)

)
(1)

Lastly, {hTv }v∈G , hTv ∈ Rd are the set of node embeddings. Here N (v) is the set of neighbor nodes
of v, and eu,v denotes the type of edge that links the node u and v. We parameterize F in a way
similar to GGNN (Li et al., 2015), i.e., F (ht, e) = σ(W e>

t ht) where we use different matrices
W ∈ Rd×d for different edge types and different propagation steps t. We sum over all the node
embeddings to get the global graph embedding h(G).

In addition to the node embeddings and global graph embedding, we also obtain the embedding
matrix for each non-terminal node. Specifically, given node α, we will have the embedding matrix
Hα ∈ Rnα×d, where the ith row ofH(i)

α is the embedding of node αi that corresponds to substitution
βi. This enables the grammar adaptive tree expansion in Sec 3.3.

3.3 GRAMMAR ADAPTIVE POLICY NETWORK

To enable the meta-solver to generalize across different tasks, both the task representation and pro-
gram generation policy should be shared. We perform task conditional program generation for this
purpose. Overall the generation is implemented using tree recursive generation, in the depth-first
search (DFS) order. However, to handle different grammars specified in each task, we propose to
use the grammar adaptive policy network. The key idea is to make the policy parameterized by de-
cision embedding, rather than a fixed set of parameters. This mechanism is inspired by the pointer
network (Vinyals et al., 2015) and graph algorithm learning (Dai et al., 2017).

Specifically, suppose we are at the decision step t and try to expand the non-terminal node αt. For
different tasks, the non-terminals may not be the same; furthermore, the number of ways to expand
a certain non-terminal can also be different. As a result, we cannot simply have a parameterized
layer W>hαt to calculate the logits of multinomial distribution. Rather, we use the embedding
matrix Hαt ∈ Rnαt×d to perform decision for this time step. This embedding matrix is obtained as
described in Sec 3.2.

4

Published as a conference paper at ICLR 2019

Logical Spec !"
X OR Y AND Z

Grammar #"
s -> d1 OR d1 | d1 AND d1
d1 -> X OR Y | d2 AND d2
d2 ->

Task 1

Logical Spec !$
X XOR Y OR (X AND Z)

Grammar #$
s -> d1 XOR d1
d1 -> d2 AND d2 | d2 OR d2

| d2 XOR d2
d2 ->

Task 2

• Global graph embedding:

• Embedding of production rules

d1 -> X OR Y | d2 AND d2

d1_OR

d1_AND

==>

ℎ('")

......

GRAPH

EMBED

• Global graph embedding:

• Embedding of production rules

d1_AND

d1_OR
==>

ℎ('$)

......

GRAPH

EMBED

d1 -> d2 AND d2 | d2 OR d2
| d2 XOR d2

d1_XOR

S

d1

X

d1

YOR
?

)(*+")

d1_OR

d1_AND

Context vector ,*

Embedding matrix -./

⊙

1 2* ℎ('" ,)(*+"))

d1

~
d2

OR

d2
AND

S

d1 d1

AND
?

)(*+")

Context vector ,*

XOR

d2 d2

Embedding matrix -./

⊙
d1_AND

d1_OR

d1_XOR

1 2* ℎ('$,)(*+"))

~

d1

XORd2 d2

Partial program

Sampled production rule:
d1 -> d2 AND d2

Partial program

Sampled production rule:
d1 -> d2 XOR d2

Figure 2: Generating solution using the grammar adaptive policy network. This figure shows one
step of policy roll-out, which demonstrates how the same policy network handles different tasks
with different grammar G1 and G2.

Now we are able to build our policy network in an auto-regressive way. Specifically, the policy
π(f |φ,G) can be parameterized as:

π(f |φ,G) =

|f |∏
t=1

π(at|h(G), T (t−1)), where T (t−1) = α1 . . . αt−1 denotes the partial tree (2)

Here the probability of each action (in other words, each tree expansion decision) is defined as
π(at|h(G), T (t−1)) ∝ exp(H

(i)>
α st), where st ∈ Rd is the context vector that captures the state of

h(G) and T (t−1). In our implementation, st is tracked by a LSTM decoder whose hidden state is
updated by the embedding of the chosen action hαt . The initial state s0 is obtained by passing graph
embedding h(G) through a dense layer with matching size.

4 SOLVING VIA REINFORCEMENT LEARNING

In this section, we present a reinforcement learning framework for the meta-solver. Formally, let θ
denote the parameters of graph embedding and adaptive policy network. For a given pair of instances
(φ,G), we learn a policy πθ(f |φ,G) parameterized by θ that generates f such that φ ≡ f .

Reward design: The RL episode starts by accepting the representation of tuple 〈φ,G〉 as initial
observation. During the episode, the model executes a sequence of actions to expand non-terminals
in f , and finishes the episode when f is complete. Upon finishing, the SAT solver is invoked and
will return a binary flag indicating whether f satisfies φ or not. An obvious reward design would be
directly using the binary value as the episode return. However, this leads to a high variance in returns
as well as a highly non-smooth loss surface. Here, we propose to smooth the reward as follows: for
each specification φ we maintain a test case buffer Bφ that stores all input examples observed so far.
Each time the SAT solver is invoked for φ, if f passes then a full reward of 1 is given, otherwise
the solver will generate a counter-example b besides the binary flag. We then sample interpolated
examples around b which we denote the set as B̂b. Then the reward is given as the fractions of
examples in Bφ and B̂b where f has the equivalent output as φ

r =

∑
b∈Bφ∪B̂b [f(b) ≡ φ(b)]

|Bφ ∪ B̂b|
.

At the end of the episode, the buffer is updated asBφ ← Bφ∪B̂b for next time usage. In the extreme
case where all inputs can be enumerated, e.g. binary or discrete values, it reduces to computing the
fraction of passed examples over the entire test case set. This is implemented in our experiment on
the cryptographic circuit synthesis task.

5

Published as a conference paper at ICLR 2019

4.1 LEARNING THE META-SOLVER

In the meta-learning setting, the framework learns to represent a set of different programs and navi-
gate the generation process under different constraints. We utilize the Advantage Actor-Critic (A2C)
for model training. Given a training set D, a minibatch of instances are sampled from D for each
epoch. For each instance 〈φi, Gi〉, the model performs a complete rollout using policy πθ(f |φi, Gi).
The actor-critic method computes the gradients w.r.t to θ of each instance as

dθ ←
|f |∑
t=1

∇θlogπ(αt|h(G), T (t))(γ|f |−tr − V (st;ω)),

where γ denotes the discounting factor and V (st;ω) is a state value estimator parameterized by ω.
In our implementation, this is modeled as a standard MLP with scalar output. It is learned to fit the
expected return, i.e., minω E

∥∥∥∑|f |t=1 γ
tr − V (st;ω)

∥∥∥. Gradients obtained from each instance are
averaged over the minibatch before applying to the parameter.

5 EXPERIMENTS

S -> d1 XOR d1 | d1 OR d1
d1 -> d2 XOR d2 | NOT d2 | Y
d2 -> d3 XOR d3 | d3 AND d3
d3 -> d4 XOR d4 | NOT d4
d4 -> X

Grammar ! (syntax)

∀#, %, & #, % ≡ ((#, %)

Constraint (Semantic)

Logical Spec &
OR

X Y

OR

NOT Y

XOR

NOT

X

XOR

X X

Solution (

Synthesize

Figure 3: An example of a circuit synthesis task from the 2017 SyGuS competition. Given the
original program specification which is represented as an abstract syntax tree (left), the solver is
tasked to synthesize a new circuit f (right). The synthesis process is specified by the syntactic
constraint G (top), and the semantic constraint (bottom) specifies that f must have functionality
equivalent to the original program.

We evaluate the our framework1 on cryptographic circuit synthesis tasks (Eldib et al., 2016) which
constitute a challenging benchmark suite from the general track of the SyGuS Competition (2017).
The dataset contains 214 tasks, each of which is a pair of logical specification, describing the correct
functionality, and a context free grammar, describing the timing constraints for input signals. The
goal is to find an equivalent logical expression which is required to follow the given context free
grammar in order to avoid potential timing channel vulnerabilities. Figure 3 shows an illustrative
example. Each synthesis task has a different logical specification as well as timing constraints, and
both the logical specification and context free grammar varies from task to task, posing a significant
challenge in representation learning. As a result, this suite of tasks serves as an ideal testbed for our
learning framework and its capability to generalize to unseen specifications and grammars.

The experiments are conducted in two learning settings. First, we test our framework as an out-
of-box solver, which means the training set D and testing set D′ are the same and contain only
one instance. In other words, the framework is tasked to solve only one instance at a time. This
test-on-train setting serves to investigate the capacity of our framework in representation and policy
learning, as the model can arbitrarily “exploit” the problem without worrying about overfitting.
This setting also enables us to compare our framework to classical solvers developed in the formal
methods community. As those solvers do not utilize learning-based strategies, it is sensible to also
limit our framework not to carry over prior knowledge from a separate training set.

Second, we evaluate the model as a meta-solver which is trained over a training setD, and finetuned
on each of the new tasks in a separate set D′. In this setting, we aim to demonstrate that our

1Our code and data are available on GitHub: https://github.com/PL-ML/metal

6

https://github.com/PL-ML/metal

Published as a conference paper at ICLR 2019

Table 1: Number of instances solved using: 1) EUSolver, 2) CVC4, 3) ESymbolic, and 4) Out-of-
Box Solver. For each solver, the maximum time in solving an instance and the average and median
time over all solved instances are also shown below.

instances solved Max time Avg time Median time

EUSolver 153 / 214 1h39m 3m 3s
CVC4 129 / 214 5h50m 30m 6s
ESymbolic 31 / 214 40m 8m 5m
Out-of-Box Solver 141 / 214 4h11m 33m 3m

framework is capable of learning a transferable representation and policy in order to efficiently
adapt to unseen tasks.

5.1 LEARNING AN OUT-OF-BOX SOLVER

In the out-of-box solver setting, we compare our framework against solvers built based on two classi-
cal approaches: a SAT/SMT constraint solving based approach and a search based approach. For the
former, we choose CVC4 (Reynolds et al., 2015), which is the state-of-the-art SMT constraint solver;
for the latter, we choose EUSolver (Alur et al., 2017b), which is the winner of the SyGuS 2017 Com-
petition (Alur et al., 2017a). Furthermore, we build a search based solver as baseline, ESymbolic,
which systematically expands non-terminals in a predefined order (e.g. depth-first-search) and effec-
tively prunes away partially generated candidates by reducing it to 2QBF (Balabanov et al., 2016)
satisfiability check. ESymbolic can be viewed as a generalization of EUSolver by replacing the
carefully designed domain-specific heuristics (e.g. indistinguishability and unification) with 2QBF.

In order to make the comparison fair, we run all solvers on the same platform with a single core
CPU available2, even though our framework could take advantage of hardware accelerations, for
instance, via GPUs and TPUs. We measure the performance of each solver by counting the number
of instances it can solve given a 6 hours limit spent on each task. It is worth noting that comparing
running time only gives a limited view of the solvers’ performance. Although the hardware is the
same, the software implementation can make many differences. For instance, CVC4 is carefully re-
designed and re-implemented in C++ as the successor of CVC3 (Barrett et al., 2003), which has been
actively improved for more than a decade. To our best knowledge, the design and implementation
of EUSolver is directly guided by and heavily tuned according to SyGuS benchmarks. In contrast,
our framework is a proof-of-concept prototype implemented in Python and has not yet been tuned
for running time performance.

Figure 4: Running time cost by each solver.

In Table 1, we summarize the total number of
instances solved by each solver as well as the
maximum, average and median running time
spent on solved instances. In terms of the ab-
solute number of solved instances, our frame-
work is not yet as good as EUSolver, which
is equipped with specialized heuristics. How-
ever, EUSolver fails to solve 4 instances that
are only solved by our framework. All in-
stances solved by CVC4 and ESymbolic are
a strict subset of instances solved by EU-
Solver. Thus, besides being a new promising
approach, our framework already plays a sup-

plementary role for improving the current state-of-the-art. Compared with the state-of-the-art CVC4
solver, our framework has smaller maximum time but higher average and median time usage. This
suggests that our framework excels at solving difficult instances with better efficiency. This obser-
vation is further confirmed in Figure 4, where we plot the time usage along with the number of
instances solved. This suggests that canonical solvers such as CVC4 are efficient in solving sim-
ple instances, but have inferior scalability compared to our dynamically adapted approach when

2The SyGuS 2017 competition gives each solver 4-core 2.4GHz Intel processors with 128 GB memory and
wallclock time limit of 1 hour; our evaluation uses AMD Opteron 6220 processor, assigns each solver a single
core with 32 GB memory and wallclock time limit of 6 hours.

7

Published as a conference paper at ICLR 2019

candidates
generated

Percentage solved
20% 40% 60%

Out-of-Box Solver 2564 18K 102K
Meta-Solver 205 4.5K 59K
Reduction 12.5× 4.0× 1.7×

(a)

(b)
Figure 5: Performance improvement with meta-learning. (a) Accumulated number of candidates
generated in order to solve 20%, 40%, and 60% of the testing tasks; and (b) speedup distribution
over individual instances.

the problem becomes more difficult, where we can see a steeper increase in time usages by CVC4
in solving 110 and more instances. Though EUSolver has superior scalability, it is achieved by a
number of heuristics that are manually designed and iteratively improved by experts with the same
benchmark on hand. In contrast, our framework learns a policy to solve hard instances from scratch
on the fly without requiring training data at all.

5.2 LEARNING ACROSS DIFFERENT TASKS

We next evaluate whether our framework is capable of learning transferable knowledge across dif-
ferent synthesis tasks. We randomly split the 214 circuits synthesis tasks into two sets: 150 tasks for
training and the rest 64 tasks for testing. The meta-solver is then trained on the training set for 35000
epochs using methods introduced in Sec 4.1. For each epoch, a batch of 10 tasks are sampled. The
gradients of each task are averaged and applied to the model parameters using Adam optimizer. In
testing phase, the trained meta-solver is finetuned on each task in the testing set until either a correct
program is synthesized or timeout occurs. This process is similar to the setting in Sec 5.1 but with
smaller learning rate and exploration.

We compare the trained meta-solver with the out-of-box solver in solving tasks in the test set. Out
of 64 testing tasks, the out-of-box solver and meta-solver can solve 36 and 37 tasks, respectively.
Besides the additional task solved, the performance is also greatly improved by meta-solver, which is
shown in Figure 5. Table 5(a) shows the accumulated number of candidates generated to successfully
solve various ratios of testing tasks. We see that the number of explored candidates by meta-solver
is significantly reduced: for 40% of testing tasks (i.e., 66% of solved tasks), meta-learning enable 4x
reduction on average. The accumulated reduction for all solved tasks (60% of testing tasks) is not
that significant. This is because meta-learning improve dramatically for most (relatively) easy tasks
but helps slightly for a few hard tasks, which actually dominate the number of generated candidates.
Figure 5(b) shows the speedup distribution over the 36 commonly solved tasks. Meta-solver achieves
at least 2x speedup for most benchmarks, orders of magnitude improvement for 10 out of 36 unseen
tasks, and solves one task that is not solvable without meta-learning.

6 RELATED WORK

We survey work on symbolic program synthesis, neural program synthesis, and neural induction.

Symbolic program synthesis. Automatically synthesizing a program from its specification was
first posed by Manna & Waldinger (1971). It received renewed attention with advances in SAT
and SMT solvers (Solar-Lezama et al., 2006) and found application in problems in various domains
as surveyed by Gulwani et al. (2017). In this context, SyGuS (Alur et al., 2013) was proposed
as a common format to express these problems. Several implementations of SyGuS solvers exist,
including by constraint solving (Reynolds et al., 2015), divide-and-conquer (Alur et al., 2017b), and
stochastic MCMC search (Schkufza et al., 2013), in addition to various domain-specific algorithms.
A number of probabilistic techniques have been proposed to accelerate these solvers by modeling
syntactic aspects of programs. These include PHOG (Lee et al., 2018), log-bilinear tree-traversal
models (Maddison & Tarlow, 2014), and graph-based statistical models (Nguyen & Nguyen, 2015).

Neural program synthesis. Several recent works have used neural networks to accelerate the
discovery of desired programs. These include DeepCoder (Balog et al., 2017), Bayou (Murali

8

Published as a conference paper at ICLR 2019

et al., 2018), RobustFill (Devlin et al., 2017), Differentiable FORTH (Bošnjak et al., 2017), neuro-
symbolic program synthesis (Parisotto et al., 2016; Bunel et al., 2018), neural-guided deductive
search (Vijayakumar et al., 2018), learning context-free parsers (Chen et al., 2018), and learning
program invariants (Si et al., 2018). The syntactic specification in these approaches is fixed by
defining a domain-specific language upfront. Also, with the exception of Si et al. (2018), the se-
mantic specification takes the form of input-output examples. Broadly, these works have difficulty
with symbolic constraints, and are primarily concerned with avoiding overfitting, coping with few
examples, and tolerating noisy examples. Our work relaxes both these kinds of specifications to
target the general SyGuS formulation. Recently Ellis et al. (2018) propose gradually bootstrapping
domain-specific languages for neurally-guided Bayesian program learning, while our work concerns
learning programs that use similar grammars, which may or may not be incremental.

Neural program induction. Another body of work includes techniques in which the neural network
is itself the computational substrate. These include neural Turing machines (Graves et al., 2014) that
can learn simple copying/sorting programs, the neural RAM model (Kurach et al., 2016) to learn
pointer manipulation and dereferencing, the neural GPU model (Kaiser & Sutskever, 2015) to learn
complex operations like binary multiplication, and Cai et al. (2017)’s work to incorporate recursion.
These approaches have fundamental problems regarding verifying and interpreting the output of
neural networks. In contrast, we propose tightly integrating a neural learner with a symbolic verifier
so that we obtain the scalability and flexibility of neural learning and the correctness guarantees of
symbolic verifiers.

7 CONCLUSION

We proposed a framework to learn a transferable representation and strategy in solving a general for-
mulation of program synthesis, i.e. syntax-guided synthesis (SyGuS). Compared to previous work
on neural synthesis, our framework is capable of handling tasks where 1) the grammar and semantic
specification varies from task to task, and 2) the supervision is weak. Specifically, we introduced
a graph neural network that can learn a joint representation over different pairs of syntactic and
semantic specifications; we implemented a grammar adaptive network that enables program gener-
ation to be conditioned on the specific task; and finally, we proposed a meta-learning method based
on the Advantage Actor-Critic (A2C) framework. We compared our framework empirically against
one baseline following a similar search fashion and two classical synthesis engines. Under the out-
of-box solver setting with limited computational resources and without any prior knowledge from
training, our framework is able to solve 141 of 214 tasks, significantly outperforming the baseline
ESymbolic by 110. In terms of the absolute number of solved tasks, the performance is comparable
to two state-of-the-art solvers, CVC4 and EUSolver, which solve 129 and 153 respectively. How-
ever, the two state-of-the-art solvers failed on 4 tasks solved by our framework. When trained as a
meta-solver, our framework is capable of accelerating the solving process by 2× to 100×.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments. This research was supported in
part by NSF awards #1836936 and #1836822.

REFERENCES

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton. Learning continuous se-
mantic representations of symbolic expressions. In International Conference on Machine Learning (ICML),
2017.

Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton. A survey of machine learning
for big code and naturalness. ACM Computing Surveys, 2018a.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with
graphs. In Proceedings of the International Conference on Learning Representations (ICLR), 2018b.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In
Proceedings of Formal Methods in Computer-Aided Design (FMCAD), 2013.

9

Published as a conference paper at ICLR 2019

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2017: Results and
analysis. arXiv preprint arXiv:1711.11438, 2017a.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative program synthesis via divide and
conquer. In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
2017b.

Valeriy Balabanov, Jie-Hong Roland Jiang, Christoph Scholl, Alan Mishchenko, and Robert K. Brayton. 2QBF:
Challenges and solutions. In Nadia Creignou and Daniel Le Berre (eds.), Theory and Applications of Satis-
fiability Testing – SAT 2016, pp. 453–469, 2016.

M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to write programs.
In Proceedings of the International Conference on Learning Representations (ICLR), 2017.

Clark Barrett, Benjamin Goldberg, and Lenore Zuck. Run-time validation of speculative optimizations using
CVC. In Oleg Sokolsky and Mahesh Viswanathan (eds.), Proceedings of the 3rd International Workshop on
Run-time Verification (RV ’03), volume 89(2) of Electronic Notes in Theoretical Computer Science, October
2003.

Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with a differentiable
forth interpreter. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 547–556, 2017.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging grammar
and reinforcement learning for neural program synthesis. In International Conference on Learning Repre-
sentations, 2018.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize via recur-
sion. In Proceedings of the International Conference on Learning Representations (ICLR), 2017.

Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesizing complex programs from input-output exam-
ples. In International Conference on Learning Representations, 2018.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In Proceedings of the Conference on Neural Information Processing Systems (NIPS),
2017.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational autoencoder for
structured data. In Proceedings of the International Conference on Learning Representations (ICLR), 2018.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy I/O. In Proceedings of the International Conference
on Machine Learning (ICML), 2017.

Hassan Eldib, Meng Wu, and Chao Wang. Synthesis of fault-attack countermeasures for cryptographic circuits.
In Swarat Chaudhuri and Azadeh Farzan (eds.), Computer Aided Verification, 2016.

Kevin Ellis, Lucas Morales, Mathias Sabl Meyer, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dream-
coder: Bootstrapping domain-specific languages for neurally-guided bayesian program learning. In Pro-
ceedings of the 2nd Workshop on Neural Abstract Machines and Program Induction, 2018.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-based synthesis for
complex apis. In Proceedings of the ACM Symposium on Principles of Programming Languages (POPL),
2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014. URL
http://arxiv.org/abs/1410.5401.

Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation using examples. Com-
munications of the ACM, 55(8):97–105, 2012.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations and Trends in Pro-
gramming Languages, 4(1-2):1–119, 2017.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness of
software. In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, 2012.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. CoRR, abs/1511.08228, 2015.

10

http://arxiv.org/abs/1410.5401

Published as a conference paper at ICLR 2019

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. In Proceedings of
the International Conference on Learning Representations (ICLR), 2016.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder. In
Proceedings of the International Conference on Machine Learning (ICML), 2017.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program synthesis using
learned probabilistic models. In Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI), 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

C.J. Maddison and D. Tarlow. Structured generative models of natural source code. In Proceedings of the
International Conference on Machine Learning (ICML), 2014.

Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis. In Communications of the ACM,
1971.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning for condi-
tional program generation. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

Anh Tuan Nguyen and Tien N. Nguyen. Graph-based statistical language model for code. In Proceedings of
the International Conference on Software Engineering (ICSE), 2015.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli.
Neuro-symbolic program synthesis. Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2016.

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and Leonidas Guibas.
Learning program embeddings to propagate feedback. In International Conference on Machine Learning
(ICML 2015), Lille, France, July 2015.

Yewen Pu, Zachery Miranda, Armando Solar-Lezama, and Leslie Kaelbling. Selecting representative examples
for program synthesis. In International Conference on Machine Learning, pp. 4158–4167, 2018.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W. Barrett. Counterexample-
guided quantifier instantiation for synthesis in SMT. In Proceedings of the International Conference on
Computer Aided Verification (CAV), 2015.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Proceedings of Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2013. ISBN 978-1-4503-1870-9.

Richard Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with inferred execution
traces.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop invariants for program
verification. In Proceedings of the Conference on Neural Information Processing Systems (NIPS), 2018.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introductory
programming assignments. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI), 2013.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and Sanjit Seshia. Combinatorial
sketching for finite programs. In Proceedings of Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2006.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program synthesis from
diverse demonstration videos. In International Conference on Machine Learning, pp. 4797–4806, 2018.

SyGuS Competition, 2017. http://sygus.seas.upenn.edu/SyGuS-COMP2017.html.

Ashwin Vijayakumar, Abhishek Mohta, Alex Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. Neural-
guided deductive search for real-time program synthesis from examples. In International Conference on
Learning Representations, 2018.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, pp. 2692–2700, 2015.

11

http://sygus.seas.upenn.edu/SyGuS-COMP2017.html

	Introduction
	Problem Formulation
	Meta-solver Model
	Formal Definitions
	Task representation
	Grammar Adaptive Policy Network

	Solving via Reinforcement Learning
	Learning the Meta-solver

	Experiments
	Learning an Out-of-Box Solver
	Learning across different tasks

	related work
	Conclusion

