
Scalable Recommender Systems
through Recursive Evidence Chains

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recommender systems can be formulated as a matrix completion problem, where1

the goal is to estimate missing ratings. A popular matrix completion algorithm2

is matrix factorization, where ratings are predicted from combining learned user3

and item parameter vectors. As dataset sizes increase many matrix factorization4

models suffer from slow rates of convergence, linear parameter scaling and a need5

to be retrained when new users or items are added. We develop a novel approach6

to generate user and item vectors on demand from the ratings matrix itself and a7

fixed pool of parameters. In our approach, each vector is generated using chains8

of evidence that link them to a small set of learned prototypical user and item9

latent vectors. We demonstrate that our approach has a number of desirable scaling10

properties, such as having a constant rate of convergence to a competitive RMSE,11

requiring the optimization of only a constant number of parameters.12

1 Introduction13

The central aim of model-based collaborative-filtering methods is to predict a user’s rating of an item14

using a small number of existing item preferences. An effective approach towards this problem is to15

formulate it as a matrix factorization problem. A ratings matrix R ∈ RM×N can be approximated as16

a low-rank factorization R ≈ UV >, where U ∈ RM×K , V ∈ RN×K and K � min(M,N) [6, 5].17

The K-dimensional rows Ui and Vj of U and V are commonly referred to as the latent user and item18

vectors. Under this framework, each of the ratings entries Rij is approximated by the inner product19

UiV
>
j .20

Sources of inefficiency for matrix factorization models include linear parameter scaling, slow con-21

vergence rate, and an inability to handle online learning. Because ratings are estimated from user22

and item vectors, the number of parameters to be optimized grows at least linearly with the number23

of users and items. This in turn slows the rate of convergence for mini-batch based factorization24

algorithms, as there are more user-item pairs.25

Previous work has addressed has addressed these issues, for example in [7], the authors considered26

a "row-less" architecture where user vectors are generated using a combination of item vectors. In27

the row-less formulation two things are learned: embeddings for each item, and a neural network to28

generate user embeddings as necessary as a function of the user’s ratings as well as the rated item’s29

embeddings. When generating a rating for a specific user and item, we must first generate the user30

embedding as a combination of the learned item embeddings. The rating can then be computed as31

a simple dot product of the generated user embedding and the known item embedding. Since all32

item embeddings associated with a user are used for every rating prediction, their optimization is33

tightly coupled and allows for a faster rate of convergence as shown 3. One can imagine a similar34

column-less formulation in which this dynamic is reversed; user latents are learned as well as a35

Preprint. Work in Progress.

V

U R

(a) Latent factor models

V

Û R

..
.

..
.

(b) Rowless factor model

V̂V

Û

U

R

..
.

..
. ...

...

...

(c) Proposed method

Figure 1.1: Dotted lines denote generated embeddings, as opposed to stored in memory. Ellipses
show the direction in which the data can scale without having to add new parameters.

function to generate item latents from them, and item latents are only generated whenever they are36

needed to estimate a rating.37

In this paper, we propose the Recursive Evidence Chains (REC) model. With REC, we do not store38

the entire latent matrices U and V but rather a small subset of it (the prototypes). A neural network is39

then learned to recursively generate the latent representations for non-prototypical users and items as40

necessary. This representation generation algorithm creates a highly coupled optimization problem,41

which allows REC to converge quickly regardless of data size. Since almost all embeddings are42

generated using a small pool of base-case embeddings, REC can achieve a good level of performance43

using a constant parameter size whilst also handling new users and new items well without retraining.44

Additionally, it is worth noting that the approach of recursively generating latents is not limited to the45

scope of recommendation systems, and can be applied to a broad range of problems.46

2 Recursive Evidence Chains47

We now propose a general framework for combining both rowless and columnless matrix factorization.48

Instead of allocating full embeddings for only columns or only rows, we pick a constant number of49

prototype users Pu and prototype items Pv such that |Pu| � M and |Pv| � N . We select our50

prototypes to be the users and items with the most ratings. To aid with visualization, we sort our51

matrices such that the Pu users are the first |Pu| rows of the matrix, and similarly so for items.52

Each prototype user and item receives an embedding, while all non-prototypical users ui and non-53

prototypical items vj are generated on-demand. Intuitively, because our method is row-less, we are54

able to predict each missing ui embedding as a function of the ratings of that user and the embeddings55

of each item the user rated. Since our method is also column-less, we predict each missing vj as56

a function of the ratings of that item and the embeddings of each user who rated that item. This57

introduces a recursion until we reach the prototypical users and items.58

2.1 Predicting latent factors in REC59

We denote by fϕ and fψ two feed-forward networks parametrized respectively by ϕ ∈ Rd and60

ψ ∈ Rp. The former maps an item latent factor and rating pair to a user latent factor, while the61

latter maps a user latent factor and rating pair to an item latent factor. When collecting evidence to62

generate an embedding, we decompose the problem into whether or not our evidence stems from a63

prototypical user or item. For users, we define the latent factors as64

Ui =

{
ui if i ∈ Pu

ûi = 1
|Ωi|

∑
`∈Ωi

fϕ (Ri`, V`) otherwise.
(2.1)

where we recall that Ωi is the set of rated items by the i-th user. Similarly, for items, we have the65

function Vj :66

Vj =

{
vj if j ∈ Pv

v̂j = 1

|Ωj|
∑
`∈Ωj

fψ (R`j , U`) otherwise, (2.2)

where Ωj is the set of users that gave a rating for item j.67

2

(a) Performance of REC and PMF on ML-100K,
ML-1M and ML-10M for < 250 iterations.

Model ML-100K ML-1M

PMF [4] 0.952 0.883
NNMF [1] 0.903 0.843
Biased-MF [3] 0.911 0.852
CF-NADE [8] - 0.829
REC 0.910 0.882

(b) Test RMSE results on ML-100K and ML-
1M for various models. Scores reported for
PMF, NNMF, Biased-MF (ML-100K/ML-1M)
were taken from [1]. Scores reported for CF-
NADE were taken from [8].

Figure 3.1: Performance of REC on RMSE.

We also implemented a depth limit parameter in order to prevent cycles.68

Training REC In order to speed up training performance we introduce a pretraining phase where69

we perform PMF on only the prototypical block before training on all parameters. We found that this70

short constant-time (w.r.t dataset size, given fixed prototype size) procedure sped up the optimization71

process considerably.72

3 Experiments73

Implementation details. The standard configuration we took for REC, unless otherwise specified, is74

as follows: the number of prototypical users and items |Pu| and |Pv| are set to 50. We use a 3-layer75

feed-forward neural network with 200 neurons for each hidden layer. The activation functions of76

each net are ReLUs, with exception of the last layer which is taken to be linear. We set the default77

batch size to be 1000 and use the Adam optimizer [2] with a learning rate of 10−3 and regularization78

parameter λ = 10−5. Our metric of evaluation across all experiments is test root-mean square error79

(RMSE).80

Test RMSE comparisons. We begin by comparing the performance of REC to the following81

collaborative-filtering algorithms: PMF [4], NNMF [1], Biased-MF [3], and CF-NADE [8]. In all82

three experiments, we train for 2000 iterations. Table 3.1b gives the comparison scores. We find that83

for ML-100K, REC achieves a test RMSE performance comparable to standard collaborative-filtering84

algorithms. For ML-1M, while our method does not reach state-of-art performance, especially85

compared to CF-NADE, we believe that this can be substantially improved if we tune the number of86

prototype users Pu and items Pv.87

3.1 Coupling of parameters leads to faster convergence88

We compare the performance of REC to PMF in the early stages of the training process. For PMF,89

we choose batch-sizes of 1000, 5000, and 10000 for ML-100K, ML-1M, and ML-10M respectively.90

The reason behind increasing batch-sizes is that for PMF, as opposed to REC, larger batch-sizes are91

required to achieve accurate training as the dataset size grows. In Figure 3.1a, we see that for all92

three datasets, REC converges to a RMSE < 1 in under 30 iterations. Furthermore, we find that REC93

learns very well in the early training process. On the other hand, PMF cannot reach a RMSE < 1 in94

250 iterations; in fact, it only attains this at around iterations 400 and 360 for ML-100K and ML-1M,95

respectively.96

As demonstrated in Figure 3.1a, REC has similar test RMSE convergence curves across increasingly97

large datasets while maintaining a constant number of parameters. This highlights the attractive98

scalability properties of REC. In contrast, we observe that the number of iterations it takes for PMF99

to converge depends on the size of the dataset.100

3

References101

[1] Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix factorization. arXiv102

preprint arXiv:1511.06443, 2015.103

[2] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv e-prints, December104

2014.105

[3] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender106

systems. Computer, 42(8), 2009.107

[4] Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factorization. In Advances in108

neural information processing systems, pages 1257–1264, 2008.109

[5] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization for collabora-110

tive prediction. In Proceedings of the 22nd international conference on Machine learning, pages111

713–719. ACM, 2005.112

[6] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Proceedings of the113

20th International Conference on Machine Learning (ICML-03), pages 720–727, 2003.114

[7] Patrick Verga, Arvind Neelakantan, and Andrew McCallum. Generalizing to unseen entities and115

entity pairs with row-less universal schema. arXiv preprint arXiv:1606.05804, 2016.116

[8] Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. A neural autoregressive approach117

to collaborative filtering. In Proceedings of the 33nd International Conference on Machine118

Learning, pages 764–773, 2016.119

4

	Introduction
	Recursive Evidence Chains
	Predicting latent factors in REC

	Experiments
	Coupling of parameters leads to faster convergence

