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ABSTRACT

Some of the most successful applications of deep reinforcement learning to chal-
lenging domains in discrete and continuous control have used policy gradient
methods in the on-policy setting. However, policy gradients can suffer from large
variance that may limit performance, and in practice require carefully tuned entropy
regularization to prevent policy collapse. As an alternative to policy gradient algo-
rithms, we introduce V-MPO, an on-policy adaptation of Maximum a Posteriori
Policy Optimization (MPO) that performs policy iteration based on a learned state-
value function. We show that V-MPO surpasses previously reported scores for both
the Atari-57 and DMLab-30 benchmark suites in the multi-task setting, and does so
reliably without importance weighting, entropy regularization, or population-based
tuning of hyperparameters. On individual DMLab and Atari levels, the proposed
algorithm can achieve scores that are substantially higher than has previously been
reported. V-MPO is also applicable to problems with high-dimensional, continuous
action spaces, which we demonstrate in the context of learning to control simulated
humanoids with 22 degrees of freedom from full state observations and 56 degrees
of freedom from pixel observations, as well as example OpenAI Gym tasks where
V-MPO achieves substantially higher asymptotic scores than previously reported.

1 INTRODUCTION

Deep reinforcement learning (RL) with neural network function approximators has achieved superhu-
man performance in several challenging domains (Mnih et al., 2015; Silver et al., 2016; 2018). Some
of the most successful recent applications of deep RL to difficult environments such as Dota 2 (Ope-
nAI, 2018a), Capture the Flag (Jaderberg et al., 2019), Starcraft II (Vinyals et al., 2019), and dexterous
object manipulation (OpenAI, 2018b) have used policy gradient-based methods such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017) and the Importance-Weighted Actor-Learner
Architecture (IMPALA) (Espeholt et al., 2018), both in the approximately on-policy setting.

Policy gradients, however, can suffer from large variance that may limit performance, especially for
high-dimensional action spaces (Wu et al., 2018). In practice, moreover, policy gradient methods
typically employ carefully tuned entropy regularization in order to prevent policy collapse. As an
alternative to policy gradient-based algorithms, in this work we introduce an approximate policy
iteration algorithm that adapts Maximum a Posteriori Policy Optimization (MPO) (Abdolmaleki et al.,
2018a;b) to the on-policy setting. The modified algorithm, V-MPO, relies on a learned state-value
function V (s) instead of the state-action value function used in MPO. Like MPO, rather than directly
updating the parameters in the direction of the policy gradient, V-MPO first constructs a target
distribution for the policy update subject to a sample-based KL constraint, then calculates the gradient
that partially moves the parameters toward that target, again subject to a KL constraint.
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As we are particularly interested in scalable RL algorithms that can be applied to multi-task settings
where a single agent must perform a wide variety of tasks, we show for the case of discrete actions
that the proposed algorithm surpasses previously reported performance in the multi-task setting for
both the Atari-57 (Bellemare et al., 2012) and DMLab-30 (Beattie et al., 2016) benchmark suites,
and does so reliably without population-based tuning of hyperparameters (Jaderberg et al., 2017a).
For a few individual levels in DMLab and Atari we also show that V-MPO can achieve scores that
are substantially higher than has previously been reported in the single-task setting, especially in the
challenging Ms. Pacman.

V-MPO is also applicable to problems with high-dimensional, continuous action spaces. We demon-
strate this in the context of learning to control both a 22-dimensional simulated humanoid from full
state observations—where V-MPO reliably achieves higher asymptotic performance than previous
algorithms—and a 56-dimensional simulated humanoid from pixel observations (Tassa et al., 2018;
Merel et al., 2019). In addition, for several OpenAI Gym tasks (Brockman et al., 2016) we show that
V-MPO achieves higher asymptotic performance than has previously been reported.

2 BACKGROUND AND SETTING

We consider the discounted RL setting, where we seek to optimize a policy π for a Markov Decision
Process described by states s, actions a, initial state distribution ρenv

0 (s0), transition probabilities
Penv(st+1|st, at), reward function r(st, at), and discount factor γ ∈ (0, 1). In deep RL, the policy
πθ(at|st), which specifies the probability that the agent takes action at in state st at time t, is
described by a neural network with parameters θ. We consider problems where both the states
s and actions a may be discrete or continuous. Two functions play a central role in RL: the
state-value function V π(st) = Eat,st+1,at+1,...

[∑∞
k=0 γ

kr(st+k, at+k)
]

and the state-action value
function Qπ(st, at) = Est+1,at+1,...

[∑∞
k=0 γ

kr(st+k, at+k)
]

= r(st, at) + γEst+1

[
V π(st+1)

]
,

where s0 ∼ ρenv
0 (s0), at ∼ π(at|st), and st+1 ∼ Penv(st+1|st, at).

In the usual formulation of the RL problem, the goal is to find a policy π that maximizes the expected
return given by J(π) = Es0,a0,s1,a1,...

[∑∞
t=0 γ

tr(st, at)
]
. In policy gradient algorithms (Williams,

1992; Sutton et al., 2000; Mnih et al., 2016), for example, this objective is directly optimized by
estimating the gradient of the expected return. An alternative approach to finding optimal policies
derives from research that treats RL as a problem in probabilistic inference, including Maximum
a Posteriori Policy Optimization (MPO) (Levine, 2018; Abdolmaleki et al., 2018a;b). Here our
objective is subtly different, namely, given a suitable criterion for what are good actions to take in a
certain state, how do we find a policy that achieves this goal?

As was the case for the original MPO algorithm, the following derivation is valid for any such
criterion. However, the policy improvement theorem (Sutton & Barto, 1998) tells us that a policy
update performed by exact policy iteration, π(s) = arg maxa[Qπ(s, a)− V π(s)], can improve the
policy if there is at least one state-action pair with a positive advantage and nonzero probability of
visiting the state. Motivated by this classic result, in this work we specifically choose an exponential
function of the advantages Aπ(s, a) = Qπ(s, a)− V π(s).

Notation. In the following we use
∑
s,a to indicate both discrete and continuous sums (i.e., integrals)

over states s and actions a depending on the setting. A sum with indices only, such as
∑
s,a, denotes

a sum over all possible states and actions, while
∑
s,a∼D, for example, denotes a sum over sample

states and actions from a batch of trajectories (the “dataset”) D.

3 RELATED WORK

V-MPO shares many similarities, and thus relevant related work, with the original MPO algorithm (Ab-
dolmaleki et al., 2018a;b). In particular, the general idea of using KL constraints to limit the size
of policy updates is present in both Trust Region Policy Optimization (TRPO; Schulman et al.,
2015) and Proximal Policy Optimization (PPO) (Schulman et al., 2017); we note, however, that this
corresponds to the E-step constraint in V-MPO.

It is worth noting here the following main differences with MPO, which is conceptually quite similar
to V-MPO. MPO is primarily designed to be a sample-efficient off-policy algorithm in which the
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Figure 1: (a) Actor-learner architecture with a target network, which is used to generate agent
experience in the environment and is updated every Ttarget learning steps from the online network. (b)
Schematic of the agents, with the policy (θ) and value (φ) networks sharing most of their parameters
through a shared input encoder and LSTM [or Transformer-XL (TrXL) for single Atari levels]. The
agent also receives the action and reward from the previous step as an input to the LSTM. For DMLab
an additional LSTM is used to process simple language instructions.

E-step constructs a conditional target distribution q(a|s), which requires a state-action value function
Q(s, a) that can evaluate multiple sampled actions for a given state. In contrast, V-MPO is primarily
(though not exclusively) designed to be an on-policy algorithm in which the E-step constructs a
joint distribution ψ(s, a), and in the absence of a learned Q-function only one action per state is
used. In this regard V-MPO can also be compared to Fitted Q-iteration by Advantage Weighted
Regression (Neumann & Peters, 2009), which learns a Q-function but uses only one action per state.

V-MPO can also be related to Relative Entropy Policy Search (REPS) (Peters et al., 2008). Two
distinguishing features of V-MPO from REPS are the introduction of the M-step KL constraint and
the use of top-k advantages. Moreover, in REPS the value function is a linear function of a learned
feature representation whose parameters are trained by matching the feature distributions under the
policy’s stationary state distribution. In V-MPO, the nonlinear neural network value function is
instead learned directly from n-step returns. Interestingly, previous attempts to use REPS with neural
network function approximators reported very poor performance, being particularly prone to local
optima (Duan et al., 2016). In contrast, we find that the principles of EM-style policy optimization,
when combined with this learned value function and appropriate constraints, can reliably train
powerful neural networks, including transformers, for RL tasks.

Like V-MPO, Supervised Policy Update (SPU) (Vuong et al., 2019) seeks to exactly solve an
optimization problem and fit the parametric policy to this solution. As we argue in Appendix D,
however, SPU uses this nonparametric distribution quite differently from V-MPO; as a result, the
final algorithm is closer to a policy gradient algorithm such as PPO.

4 METHOD

V-MPO is an approximate policy iteration (Sutton & Barto, 1998) algorithm with a specific prescrip-
tion for the policy improvement step. In general, policy iteration uses the fact that the true state-value
function V π corresponding to policy π can be used to obtain an improved policy π′. Thus we can

1. Generate trajectories τ from an old policy πθold(a|s) whose parameters θold are fixed. To
control the amount of data generated by a particular policy, we use a target network which is
fixed for Ttarget learning steps (Fig. 1a).
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2. Evaluate the policy πθold(a|s) by learning the value function V πθold (s) from empirical returns
and estimating the corresponding advantages Aπθold (s, a) for the actions that were taken
(Section 4.1).

3. Based onAπθold (s, a), estimate an improved policy πθ(a|s) which we call the “online” policy
to distinguish it from the fixed target network (Section 4.2).

The first two steps are standard, and describing V-MPO’s approach to step 3 is the essential contribu-
tion of this work. At a high level, our strategy is to first construct a nonparametric target distribution
for the policy update, then partially move the parametric policy towards this distribution subject to
a KL constraint. We first review policy evaluation (step 2) in Section 4.1, then derive the V-MPO
policy improvement (step 3) in Section 4.2. Ultimately, we use gradient descent to optimize a single,
relatively simple loss, which is given in Eq. 10 following the derivation. A summary of the full
algorithm is also presented in Algorithm 1.

4.1 POLICY EVALUATION

In the present setting, policy evaluation means learning an approximate state-value function V π(s)
given a policy π(a|s), which we keep fixed for Ttarget learning steps (i.e., batches of trajectories). We
note that the value function corresponding to the target policy is instantiated in the “online” network
receiving gradient updates; bootstrapping uses the online value function, as it is the best available
estimate of the value function for the target policy. Thus in this section π refers to πθold , while the
value function update is performed on the current φ, which may share parameters with the current θ.

We fit a parametric value function V πφ (s) with parameters φ by minimizing the squared loss

LV (φ) =
1

2|D|
∑
st∼D

(
V πφ (st)−G(n)

t

)2

, (1)

where G(n)
t is the standard n-step target for the value function at state st at time t (Sutton & Barto,

1998). This return uses the actual rewards in the trajectory and bootstraps from the value function for
the rest: for each ` = t, . . . , t + n − 1 in an unroll, G(n)

` =
∑t+n−1
k=` γk−`rk + γt+n−`V πφ (st+n).

The advantages, which are the key quantity of interest for the policy improvement step in V-MPO,
are then given by Aπ(st, at) = G

(n)
t − V πφ (st) for each st, at in the batch of trajectories.

PopArt normalization. As we are interested in the multi-task setting where a single agent must learn a
large number of tasks with differing reward scales, we used PopArt (van Hasselt et al., 2016; Hessel
et al., 2018) for the value function, even when training on a single task. We observed benefits in
using PopArt even in the single-task setting, partly due to the fact that we do not tune the relative
weighting of the policy evaluation and policy improvement losses despite sharing most parameters
for the policy and value networks. Specifically, the value function outputs a separate value for each
task in normalized space, which is converted to actual returns by a shift and scaling operation, the
statistics of which are learned during training. We used a scale lower bound of 10−2, scale upper
bound of 106, and learning rate of 10−4 for the statistics. The lower bound guards against numerical
issues when rewards are extremely sparse.

Importance-weighting for off-policy data. It is possible to importance-weight the samples using
V-trace to correct for off-policy data (Espeholt et al., 2018), for example when data is taken from
a replay buffer. For simplicity, however, no importance-weighting was used for the experiments
presented in this work, which were mostly on-policy.

4.2 POLICY IMPROVEMENT IN V-MPO

In this section we show how, given the advantage function Aπθold (s, a) for the state-action distribution
pθold(s, a) = πθold(a|s)p(s) induced by the old policy πθold(a|s), we can estimate an improved policy
πθ(a|s). More formally, let I denote the binary event that the new policy is an improvement (in a
sense to be defined below) over the previous policy: I = 1 if the policy is successfully improved
and 0 otherwise. Then we would like to find the mode of the posterior distribution over parameters θ
conditioned on this event, i.e., we seek the maximum a posteriori (MAP) estimate

θ∗ = arg max
θ

[
log pθ(I = 1) + log p(θ)

]
, (2)
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where we have written p(I = 1|θ) as pθ(I = 1) to emphasize the parametric nature of the dependence
on θ. We use the well-known identity log p(X) = Eψ(Z)

[
log p(X,Z)

ψ(Z)

]
+ DKL

(
ψ(Z)‖p(Z|X)

)
for

any latent distribution ψ(Z), whereDKL(ψ(Z)‖p(Z|X)) is the Kullback-Leibler divergence between
ψ(Z) and p(Z|X) with respect to Z, and the first term is a lower bound because the KL divergence
is always non-negative. Then considering s, a as latent variables,

log pθ(I = 1) =
∑
s,a

ψ(s, a) log
pθ(I = 1, s, a)

ψ(s, a)
+DKL

(
ψ(s, a)‖pθ(s, a|I = 1)

)
. (3)

Policy improvement in V-MPO consists of the following two steps which have direct correspondences
to the expectation maximization (EM) algorithm (Neal & Hinton, 1998): In the expectation (E) step,
we choose the variational distribution ψ(s, a) such that the lower bound on log pθ(I = 1) is as tight
as possible, by minimizing the KL term. In the maximization (M) step we then find parameters θ that
maximize the corresponding lower bound, together with the prior term in Eq. 2.

4.2.1 E-STEP

In the E-step, our goal is to choose the variational distribution ψ(s, a) such that the lower bound on
log pθ(I = 1) is as tight as possible, which is the case when the KL term in Eq. 3 is zero. Given the
old parameters θold, this simply leads to ψ(s, a) = pθold(s, a|I = 1), or

ψ(s, a) =
pθold(s, a)pθold(I = 1|s, a)

pθold(I = 1)
, pθold(I = 1) =

∑
s,a

pθold(s, a)pθold(I = 1|s, a). (4)

Intuitively, this solution weights the probability of each state-action pair with its relative improvement
probability pθold(I = 1|s, a). We now choose a distribution pθold(I = 1|s, a) that leads to our desired
outcome. As we prefer actions that lead to a higher advantage in each state, we suppose that this
probability is given by

pθold(I = 1|s, a) ∝ exp

(
Aπθold (s, a)

η

)
(5)

for some temperature η > 0, from which we obtain the equation on the right in Eq. 12. This
probability depends on the old parameters θold and not on the new parameters θ. Meanwhile, the
value of η allows us to control the diversity of actions that contribute to the weighting, but at the
moment is arbitrary. It turns out, however, that we can tune η as part of the optimization, which is
desirable since the optimal value of η changes across iterations. The convex loss that achieves this,
Eq. 13, is derived in Appendix A by minimizing the KL term in Eq. 3 subject to a hard constraint on
ψ(s, a).

Top-k advantages. We found that learning improves substantially if we take only the samples
corresponding to the highest 50% of advantages in each batch for the E-step, corresponding to
the use of D̃ rather than D in Eqs. 12, 13. Importantly, these must be consistent between the
maximum likelihood weights in Eq. 12 and the temperature loss in Eq. 13, since, mathematically,
this corresponds to a specific choice of the policy improvement probability in Eq. 5 to only use
the top half of the advantages. This is similar to the technique used in the Cross Entropy Method
(CEM) (Mannor et al., 2003) and Covariance Matrix Adaptation - Evolutionary Strategy (CMA-
ES) (Hansen et al., 1997; Abdolmaleki et al., 2017), and is a special case of the more general feature
that any rank-preserving transformation is allowed under this formalism. For example, in Fig. 8
of the Appendix we show an example of an agent trained with uniform weights given to the top-k
samples, instead of optimizing the temperature. Other choices are possible, and in future work we
will investigate the suitability of different choices for specific applications.

Importance weighting for off-policy corrections. As for the value function, importance weights can be
used in the policy improvement step to correct for off-policy data. While not used for the experiments
presented in this work, details for how to carry out this correction are given in Appendix E.

4.2.2 M-STEP: CONSTRAINED SUPERVISED LEARNING OF THE PARAMETRIC POLICY

In the E-step we found the nonparametric variational state-action distribution ψ(s, a), Eq. 4, that
gives the tightest lower bound to pθ(I = 1) in Eq. 3. In the M-step we maximize this lower bound
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together with the prior term log p(θ) with respect to the parameters θ, which effectively leads to a
constrained weighted maximum likelihood problem. Thus the introduction of the nonparametric
distribution in Eq. 4 separates the RL procedure from the neural network fitting.

We would like to find new parameters θ that minimize

L(θ) = −
∑
s,a

ψ(s, a) log
pθ(I = 1, s, a)

ψ(s, a)
− log p(θ). (6)

Note, however, that so far we have worked with the joint state-action distribution ψ(s, a) while
we are in fact optimizing for the policy, which is the conditional distribution πθ(a|s). Writing
pθ(s, a) = πθ(a|s)p(s) since only the policy is parametrized by θ and dropping terms that are not
parametrized by θ, the first term of Eq. 6 is seen to be the weighted maximum likelihood policy loss

Lπ(θ) = −
∑
s,a

ψ(s, a) log πθ(a|s). (7)

In the sample-based computation of this loss, we assume that any state-action pairs not in the batch
of trajectories have zero weight, leading to the normalization in Eq. 12.

As in the original MPO algorithm, a useful prior is to keep the new policy πθ(a|s) close to the old
policy πθold(a|s): log p(θ) ≈ −αEs∼p(s)

[
DKL

(
πθold(a|s)‖πθ(a|s)

)]
. While intuitive, we motivate

this more formally in Appendix B. It is again more convenient to specify a bound on the KL divergence
instead of tuning α directly, so we solve the constrained optimization problem

θ∗ = arg min
θ
−
∑
s,a

ψ(s, a) log πθ(a|s) s.t. E
s∼p(s)

[
DKL

(
πθold(a|s)‖πθ(a|s)

)]
< εα. (8)

Intuitively, the constraint in the E-step expressed by Eq. 18 in Appendix A for tuning the temperature
only constrains the nonparametric distribution; it is the constraint in Eq. 8 that directly limits the
change in the parametric policy, in particular for states and actions that were not in the batch of
samples and which rely on the generalization capabilities of the neural network function approximator.

To make the constrained optimization problem amenable to gradient descent, we use Lagrangian
relaxation to write the unconstrained objective as

J (θ, α) = Lπ(θ) + α

(
εα − E

s∼p(s)

[
DKL

(
πθold(a|s)‖πθ(a|s)

)])
, (9)

which we can optimize by following a coordinate-descent strategy, alternating between the opti-
mization over θ and α. Since η and α are Lagrange multipliers that must be positive, after each
gradient update we project the resulting η and α to a small positive value which we choose to be
ηmin = αmin = 10−8 throughout the results presented below.

KL constraints in both the E-step and M-step are generally well satisfied, especially for the E-step
since the temperature optimization is convex. Fig. 7 in the Appendix shows an example of how the
KL constraints behave in the Atari Seaquest experiment presented below. We note, in particular, that
it is desirable for the bounds to not just be satisfied but saturated.

4.3 FULL LOSS FUNCTION

In this section we provide the full loss function used to implement V-MPO, which is perhaps simpler
than is suggested by the derivation. Consider a batch of data D consisting of a number of trajectories,
with |D| total state-action samples. Each trajectory consists of an unroll of length n of the form
τ =

[
(st, at, rt+1), . . . , (st+n−1, at+n−1, rt+n), st+n

]
including the bootstrapped state st+n, where

rt+1 = r(st, at). The total loss is the sum of a policy evaluation loss and a policy improvement loss,

L(φ, θ, η, α) = LV (φ) + LV-MPO(θ, η, α), (10)

where φ are the parameters of the value network, θ the parameters of the policy network, and η and α
are Lagrange multipliers. In practice, the policy and value networks share most of their parameters in
the form of a shared convolutional network (a ResNet) and recurrent LSTM core, and are optimized
together (Fig. 1b) (Mnih et al., 2016). We note, however, that the value network parameters φ are
considered fixed for the policy improvement loss, and gradients are not propagated.
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The policy evaluation loss for the value function, LV (φ), is the standard regression to n-step returns
and is given by Eq. 1 above. The policy improvement loss LV-MPO(θ, η, α) is given by

LV-MPO(θ, η, α) = Lπ(θ) + Lη(η) + Lα(θ, α). (11)

Here the policy loss is the weighted maximum likelihood loss

Lπ(θ) = −
∑
s,a∼D̃

ψ(s, a) log πθ(a|s), ψ(s, a) =
exp

(Atarget(s,a)
η

)∑
s,a∼D̃ exp

(Atarget(s,a)
η

) , (12)

where the advantages Atarget(s, a) for the target network policy πθtarget(a|s) are estimated according to
the standard method described above. The tilde over the dataset, D̃, indicates that we take samples
corresponding to the top half advantages in the batch of data. The η, or “temperature”, loss is

Lη(η) = ηεη + η log

[
1

|D̃|

∑
s,a∼D̃

exp

(
Atarget(s, a)

η

)]
. (13)

We perform the alternating optimization over θ and α while keeping a single loss function by
alternately applying a “stop-gradient” to the Lagrange multiplier and KL term. Then the KL constraint,
which can be viewed as a form of trust-region loss, is given by

Lα(θ, α) =
1

|D|
∑
s∈D

[
α
(
εα − sg

[[
DKL

(
πθtarget(a|s)‖πθ(a|s)

)]])
+ sg[[α]]DKL

(
πθtarget(a|s)‖πθ(a|s)

)]
,

(14)

where sg[[·]] indicates a stop gradient, i.e., that the enclosed term is assumed constant with respect to
all variables. Note that here we use the full batch D, not D̃.

For continuous action spaces parametrized by Gaussian distributions, we use decoupled KL constraints
for the M-step in Eq. 14 as in Abdolmaleki et al. (2018b); the precise form is given in Appendix C.

We used the Adam optimizer (Kingma & Ba, 2015) with default TensorFlow hyperparameters to
optimize the total loss in Eq. 10. In particular, the learning rate was fixed at 10−4 for all experiments.

Algorithm 1 V-MPO

given Batch size B, unroll length n, Ttarget, KL bounds εη , εα.
initialize Network parameters θonline, φonline, Lagrange multipliers η, α.
repeat
θtarget ← θonline
for i = 1, . . . , Ttarget do

Use policy πθtarget to act in the environment and collect B trajectories τ of length n.
Update θonline, φonline, η, α using Adam to minimize the total loss in Eq. 10.
η ← max(η, ηmin)
α← max(α, αmin)

end for
until Fixed number of steps.

5 EXPERIMENTS

Details on the network architecture and hyperparameters used for each task are given in Appendix F.

5.1 DISCRETE ACTIONS: DMLAB, ATARI

DMLab. DMLab-30 (Beattie et al., 2016) is a collection of visually rich, partially observable 3D
environments played from the first-person point of view. Like IMPALA, for DMLab we used pixel
control as an auxiliary loss for representation learning (Jaderberg et al., 2017b; Hessel et al., 2018).
However, we did not employ the optimistic asymmetric reward scaling used by previous IMPALA
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(a) Multi-task DMLab-30. (b) Multi-task Atari-57.

Figure 2: (a) Multi-task DMLab-30. IMPALA results show 3 runs of 8 agents each; within a run
hyperparameters were evolved via PBT. For V-MPO each line represents a set of hyperparameters
that are fixed throughout training. The final result of R2D2+ trained for 10B environment steps
on individual levels (Kapturowski et al., 2019) is also shown for comparison (orange line). (b)
Multi-task Atari-57. In the IMPALA experiment, hyperparameters were evolved with PBT. For
V-MPO each of the 24 lines represents a set of hyperparameters that were fixed throughout training,
and all runs achieved a higher score than the best IMPALA run. Data for IMPALA (“Pixel-PopArt-
IMPALA” for DMLab-30 and “PopArt-IMPALA” for Atari-57) was obtained from the authors of
Hessel et al. (2018). Each agent step corresponds to 4 environment frames due to the action repeat.

Figure 3: V-MPO trained on single example levels from DMLab-30, compared to IMPALA and more
recent results from R2D2+, the larger, DMLab-specific version of R2D2 (Kapturowski et al., 2019).
The IMPALA results include hyperparameter evolution with PBT.

experiments to aid exploration on a subset of the DMLab levels, by weighting positive rewards more
than negative rewards (Espeholt et al., 2018; Hessel et al., 2018; Kapturowski et al., 2019). Unlike in
Hessel et al. (2018) we also did not use population-based training (PBT) (Jaderberg et al., 2017a).
Additional details for the settings used in DMLab can be found in Table 5 of the Appendix.

Fig. 2a shows the results for multi-task DMLab-30, comparing the V-MPO learning curves to data
obtained from Hessel et al. (2018) for the PopArt IMPALA agent with pixel control. We note that the
result for V-MPO at 10B environment frames across all levels matches the result for the Recurrent
Replay Distributed DQN (R2D2) agent (Kapturowski et al., 2019) trained on individual levels for
10B environment steps per level. Fig. 3 shows example individual levels in DMLab where V-MPO
achieves scores that are substantially higher than has previously been reported, for both R2D2 and
IMPALA. The pixel-control IMPALA agents shown here were carefully tuned for DMLab and are
similar to the “experts” used in Schmitt et al. (2018); in all cases these results match or exceed
previously published results for IMPALA (Espeholt et al., 2018; Kapturowski et al., 2019).

Atari. The Atari Learning Environment (ALE) (Bellemare et al., 2012) is a collection of 57 Atari
2600 games that has served as an important benchmark for recent deep RL methods. We used the
standard preprocessing scheme and a maximum episode length of 30 minutes (108,000 frames), see
Table 6 in the Appendix. For the multi-task setting we followed Hessel et al. (2018) in setting the
discount to zero on loss of life; for the example single tasks we did not employ this trick, since it
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Figure 4: Example levels from Atari. In Breakout, V-MPO achieves the maximum score of 864
in every episode. No reward clipping was applied, and the maximum length of an episode was 30
minutes (108,000 frames). Supplementary video for Ms. Pacman: https://bit.ly/2lWQBy5

(a) (b) (c) (d)

Figure 5: (a) Humanoid “run” from full state (Tassa et al., 2018) and (b) humanoid “gaps” from
pixel observations (Merel et al., 2019). Purple curves are the same runs but without parametric
KL constraints. Det. eval.: deterministic evaluation. Supplementary video for humanoid gaps:
https://bit.ly/2L9KZdS. (c)-(d) Example OpenAI Gym tasks. See also Fig. 11 in the
Appendix for Gym Humanoid-V1.

can prevent the agent from achieving the highest score possible by sacrificing lives. Similarly, while
in the multi-task setting we followed previous work in clipping the maximum reward to 1.0, no
such clipping was applied in the single-task setting in order to preserve the original reward structure.
Additional details for the settings used in Atari can be found in Table 6 in the Appendix.

Fig. 2b shows the results for multi-task Atari-57, demonstrating that it is possible for a single agent
to achieve “superhuman“ median performance on Atari-57 in approximately 4 billion (∼70 million
per level) environment frames. Again, while we did not employ PBT in order to demonstrate that
individual V-MPO runs can exceed the performance of a population of IMPALA agents, Fig. 6 shows
that with population-based tuning of hyperparameters even higher performance is possible.

We also compare the performance of V-MPO on a few individual Atari levels to R2D2 (Kapturowski
et al., 2019), which previously achieved some of the highest scores reported for Atari. Again, V-
MPO can match or exceed previously reported scores while requiring fewer interactions with the
environment. In Ms. Pacman, the final performance approaches 300,000 with a 30-minute timeout
(and the maximum 1M without). Inspired by the argument in Kapturowski et al. (2019) that in a
fully observable environment LSTMs enable the agent to utilize more useful representations than
is available in the immediate observation, for the single-task setting we used a Transformer-XL
(TrXL) (Dai et al., 2019) to replace the LSTM core. Unlike previous work for single Atari levels,
we did not employ any reward clipping (Mnih et al., 2015; Espeholt et al., 2018) or nonlinear value
function rescaling (Kapturowski et al., 2019).

5.2 CONTINUOUS CONTROL

To demonstrate V-MPO’s effectiveness in high-dimensional, continuous action spaces, here we
present examples of learning to control both a simulated humanoid with 22 degrees of freedom from
full state observations and one with 56 degrees of freedom from pixel observations (Tassa et al., 2018;
Merel et al., 2019). As shown in Fig. 5a, for the 22-dimensional humanoid V-MPO reliably achieves
higher asymptotic returns than has previously been reported, including for Deep Deterministic Policy
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Gradients (DDPG) (Lillicrap et al., 2015), Stochastic Value Gradients (SVG) (Heess et al., 2015),
and MPO. These algorithms are far more sample-efficient but reach a lower final performance.

In the “gaps” task the 56-dimensional humanoid must run forward to match a target velocity of 4 m/s
and jump over the gaps between platforms by learning to actuate joints with position-control (Merel
et al., 2019). Previously, only an agent operating in the space of pre-learned motor primitives was
able to solve the task from pixel observations (Merel et al., 2018; 2019); here we show that V-MPO
can learn a challenging visuomotor task from scratch (Fig. 5b). For this task we also demonstrate the
importance of the parametric KL constraint, without which the agent learns poorly.

In Figs. 5c-d we also show that V-MPO achieves the highest asymptotic performance reported for
two OpenAI Gym tasks (Brockman et al., 2016). Again, MPO and Stochastic Actor-Critic (Haarnoja
et al., 2018) are far more sample-efficient but reach a lower final performance.

These experiments are presented to demonstrate the existence of higher-return solutions than have
previously been reported, and an algorithm, V-MPO, that can reliably converge to these solutions.
However, in the future we desire algorithms that can do so while using fewer interactions with the
environment.

6 CONCLUSION

In this work we have introduced a scalable on-policy deep reinforcement learning algorithm, V-MPO,
that is applicable to both discrete and continuous control domains. For the results presented in this
work neither importance weighting nor entropy regularization was used; moreover, since the size of
neural network parameter updates is limited by KL constraints, we were also able to use the same
learning rate for all experiments. This suggests that a scalable, performant RL algorithm may not
require some of the tricks that have been developed over the past several years. Interestingly, both
the original MPO algorithm for replay-based off-policy learning (Abdolmaleki et al., 2018a;b) and
V-MPO for on-policy learning are derived from similar principles, providing evidence for the benefits
of this approach as an alternative to popular policy gradient-based methods.

ACKNOWLEDGMENTS

We thank Lorenzo Blanco, Trevor Cai, Greg Wayne, Chloe Hillier, and Vicky Langston for their
assistance and support.

REFERENCES

Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis P Reis, and Gerhard Neumann. Deriving and
Improving CMA-ES with Information Geometric Trust Regions. Proceedings of the Genetic and
Evolutionary Computation Conference, 2017.

Abbas Abdolmaleki, Jost Tobias Springenberg, Jonas Degrave, Steven Bohez, Yuval Tassa, Dan
Belov, Nicolas Heess, and Martin Riedmiller. Relative Entropy Regularized Policy Iteration. arXiv
preprint, 2018a. URL https://arxiv.org/pdf/1812.02256.pdf.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a Posteriori Policy Optimisation. Int. Conf. Learn. Represent., 2018b. URL
https://arxiv.org/pdf/1806.06920.pdf.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
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Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nico-
las Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Ko-
ray Kavukcuoglu, and Thore Graepel. Human-level performance in 3d multiplayer games
with population-based reinforcement learning. Science, 364:859–865, 2019. URL https:
//science.sciencemag.org/content/364/6443/859.

Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will Dabney. Recurrent
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In this section we derive the E-step temperature loss in Eq. 22. To this end, we explicitly commit to
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seek ψ(s, a) that minimizes

J (ψ(s, a)) = DKL
(
ψ(s, a)‖pθold(s, a|I = 1)

)
(15)

∝ −
∑
s,a

ψ(s, a)Aπθold (s, a) + η
∑
s,a

ψ(s, a) log
ψ(s, a)

pθold(s, a)
+ λ

∑
s,a

ψ(s, a) (16)
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where λ = η log pθold(I = 1) after multiplying through by η, which up to this point in the deriva-
tion is given. We wish to automatically tune η so as to enforce a bound εη on the KL term
DKL

(
ψ(s, a)‖pθold(s, a)

)
multiplying it in Eq. 16, in which case the temperature optimization can

also be viewed as a nonparametric trust region for the variational distribution with respect to the old
distribution. We therefore consider the constrained optimization problem

ψ(s, a) = arg max
ψ(s,a)

∑
s,a

ψ(s, a)Aπθold (s, a) (17)

s.t.
∑
s,a

ψ(s, a) log
ψ(s, a)

pθold(s, a)
< εη and

∑
s,a

ψ(s, a) = 1. (18)

We can now use Lagrangian relaxation to transform the constrained optimization problem into one
that maximizes the unconstrained objective

J (ψ(s, a), η, λ) =
∑
s,a

ψ(s, a)Aπθold (s, a)+η

(
εη−

∑
s,a

ψ(s, a) log
ψ(s, a)

pθold(s, a)

)
+λ

(
1−
∑
s,a

ψ(s, a)

)
(19)

with η ≥ 0. (Note we are re-using the variables η and λ for the new optimization problem.)
Differentiating J with respect to ψ(s, a) and setting equal to zero, we obtain

ψ(s, a) = pθold(s, a) exp

(
Aπθold (s, a)

η

)
exp

(
− 1− λ

η

)
. (20)

Normalizing over s, a (using the freedom given by λ) then gives

ψ(s, a) =
pθold(s, a) exp

(Aπθold (s,a)
η

)
∑
s,a pθold(s, a) exp

(Aπθold (s,a)
η

) , (21)

which reproduces the general solution Eq. 4 for our specific choice of policy improvement in Eq. 5.
However, the value of η can now be found by optimizing the corresponding dual function. Plugging
Eq. 21 into the unconstrained objective in Eq. 19 gives rise to the η-dependent term

Lη(η) = ηεη + η log

[∑
s,a

pθold(s, a) exp

(
Aπθold (s, a)

η

)]
. (22)

Replacing the expectation with samples from pθold(s, a) in the batch of trajectories D leads to the loss
in Eq. 13.

B M-STEP KL CONSTRAINT

Here we give a somewhat more formal motivation for the prior log p(θ). Consider a normal prior
N (θ;µ,Σ) with mean µ and covariance Σ. We choose Σ−1 = αF (θold) where α is a scal-
ing parameter and F (θold) is the Fisher information for πθ′(a|s) evaluated at θ′ = θold. Then
log p(θ) ≈ −α × 1

2 (θ − θold)TF (θold)(θ − θold) + {term independent of θ}, where the first term
is precisely the second-order approximation to the KL divergence DKL(θold‖θ). We now follow
TRPO (Schulman et al., 2015) in heuristically approximating this as the state-averaged expression,
Es∼p(s)

[
DKL

(
πθold(a|s)‖πθ(a|s)

)]
. We note that the KL divergence in either direction has the same

second-order expansion, so our choice of KL is an empirical one (Abdolmaleki et al., 2018a).

C DECOUPLED KL CONSTRAINTS FOR CONTINUOUS CONTROL

As in Abdolmaleki et al. (2018b), for continuous action spaces parametrized by Gaussian distributions
we use decoupled KL constraints for the M-step. This uses the fact that the KL divergence between
two d-dimensional multivariate normal distributions with means µ1, µ2 and covariances Σ1,Σ2 can
be written as

DKL
(
N (µ1,Σ1)‖N (µ2,Σ2)

)
=

1

2

[
(µ2−µ1)TΣ−1

1 (µ2−µ1)+Tr(Σ−1
2 Σ1)−d+log

|Σ2|
|Σ1|

]
, (23)
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where | · | is the matrix determinant. Since the first distribution and hence Σ1 in the KL divergence
of Eq. 9 depends on the old target network parameters, we see that we can separate the overall KL
divergence into a mean component and a covariance component:

Dµ
KL

(
πθold‖πθ

)
=

1

2
(µθ − µθold)

TΣ−1
θold

(µθ − µθold), (24)

DΣ
KL

(
πθold‖πθ

)
=

1

2

[
Tr(Σ−1

θ Σθold
)− d+ log

|Σθ|
|Σθold |

]
. (25)

With the replacement DKL
(
πθold‖πθ

)
→ DC

KL

(
πθold‖πθ

)
for C = µ,Σ and corresponding α →

αµ, αΣ, we obtain the total loss
LV-MPO(θ, η, αµ, αΣ) = Lπ(θ) + Lη(η) + Lαµ(θ, αµ) + LαΣ

(θ, αΣ), (26)
where Lπ(θ) and Lη(η) are the same as before. Note, however, that unlike in Abdolmaleki
et al. (2018a) we do not decouple the policy loss.

We generally set εΣ to be much smaller than εµ (see Table 7). Intuitively, this allows the policy to
learn quickly in action space while preventing premature collapse of the policy, and, conversely,
increasing “exploration” without moving in action space.

D RELATION TO SUPERVISED POLICY UPDATE

Like V-MPO, Supervised Policy Update (SPU) (Vuong et al., 2019) adopts the strategy of first
solving a nonparametric constrained optimization problem exactly, then fitting a neural network to
the resulting solution via a supervised loss function. There is, however, an important difference from
V-MPO, which we describe here.

In SPU, the KL loss, which is the sole loss in SPU, leads to a parametric optimization problem that is
equivalent to the nonparametric optimization problem posed initially. To see this, we observe that the
SPU loss seeks parameters (note the direction of the KL divergence)

θ∗ = arg min
θ

∑
s

dπθk (s)DKL
(
πθ(a|s)‖πλ(a|s)

)
(27)

= arg min
θ

∑
s

dπθk (s)
∑
a

πθ(a|s) log

[
πθ(a|s)

πθk(a|s) exp
(
Aπθk (s, a)/λ

)
/Zλ(s)

]
(28)

= arg min
θ

∑
s

dπθk (s)
∑
a

[
πθ(a|s) log

πθ(a|s)
πθk(a|s)

− 1

λ
πθ(a|s)Aπθk (s, a)

]
+ { constant terms }.

(29)
Multiplying by λ since it can be treated as a constant up to this point, we then see that this corresponds
exactly to the (Lagrangian form) of the problem

θ∗ = arg max
θ

∑
s

dπθk (s)
∑
a

πθ(a|s)Aπθk (s, a) (30)

s.t.
∑
s

dπθk (s)DKL
(
πθ(a|s)‖πθk(a|s)

)
< ε, (31)

which is the original nonparametric problem posed in Vuong et al. (2019).

E IMPORTANCE-WEIGHTING FOR OFF-POLICY CORRECTIONS

The network that generates the data may lag behind the target network in common distributed,
asynchronous implementations (Espeholt et al., 2018). We can compensate for this by multiplying
the exponentiated advantages by importance weights ρ(s, a):

ψ(s, a) =
ρ(s, a)pθD (s, a) exp

(AπθD (s,a)
η

)
∑
s,a ρ(s, a)pθD (s, a) exp

(AπθD (s,a)
η

) , (32)

Lη(η) = ηεη + η log

[∑
s,a

ρ(s, a)pθD (s, a) exp

(
AπθD (s, a)

η

)]
, (33)
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where θD are the parameters of the behavior policy that generated D and which may be different
from θtarget. The clipped importance weights ρ(s, a) are given by

ρ(s, a) = min

(
1,
πθold(a|s)
πθD (a|s)

)
. (34)

As was the case with V-trace for the value function, we did not find it necessary to use importance
weighting and all experiments presented in this work did not use them for the sake of simplicity.

F NETWORK ARCHITECTURE AND HYPERPARAMETERS

For DMLab the visual observations were 72×96 RGB images, while for Atari the observations were
4 stacked frames of 84×84 grayscale images. The ResNet used to process visual observations is
similar to the 3-section ResNet used in Hessel et al. (2018), except the number of channels was
multiplied by 4 in each section, so that the number of channels were (64, 128, 128) (Schmitt et al.,
2019). For individual DMLab levels we used the same number of channels as Hessel et al. (2018),
i.e., (16, 32, 32). Each section consisted of a convolution and 3× 3 max-pooling operation (stride 2),
followed by residual blocks of size 2, i.e., a convolution followed by a ReLU nonlinearity, repeated
twice, and a skip connection from the input residual block input to the output. The entire stack was
passed through one more ReLU nonlinearity. All convolutions had a kernel size of 3 and a stride of 1.
For the humanoid control tasks from vision, the number of channels in each section were (16, 32, 32).

Since some of the levels in DMLab require simple language processing, for DMLab the agents
contained an additional 256-unit LSTM receiving an embedding of hashed words as input. The output
of the language LSTM was then concatenated with the output of the visual processing pathway as
well as the previous reward and action, then fed to the main LSTM.

For multi-task DMLab we used a 3-layer LSTM, each with 256 units, and an unroll length of 95
with batch size 128. For the single-task setting we used a 2-layer LSTM. For multi-task Atari and
the 56-dimensional humanoid-gaps control task a single 256-unit LSTM was used, while for the
22-dimensional humanoid-run task the core consisted only of a 2-layer MLP with 512 and 256 units
(no LSTM). For single-task Atari a Transformer-XL was used in place of the LSTM. Note that we
followed Radford et al. (2019) in placing the layer normalization on only the inputs to each sub-block.
For Atari the unroll length was 63 with a batch size of 128. For both humanoid control tasks the
batch size was 64, but the unroll length was 40 for the 22-dimensional humanoid and 63 for the
56-dimensional humanoid.

In all cases the policy logits (for discrete actions) and Gaussian distribution parameters (for continuous
actions) consisted of a 256-unit MLP followed by a linear readout, and similarly for the value function.
For discrete actions we initialized the linear policy layer with zero weights and biases to ensure a
uniform policy at the start of training.

The initial values for the Lagrange multipliers in the V-MPO loss are given in Table 1

Implementation note. We implemented V-MPO in an actor-learner framework (Espeholt et al., 2018)
that utilizes TF-Replicator (Buchlovsky et al., 2019) for distributed training on TPU 8-core and
16-core configurations (Google, 2018). One practical consequence of this is that a full batch of data
D was in fact split into 8 or 16 minibatches, one per core/replica, and the overall result obtained by
averaging the computations performed for each minibatch. More specifically, the determination of
the highest advantages and the normalization of the nonparametric distribution, Eq. 12, is performed
within minibatches. While it is possible to perform the full-batch computation by utilizing cross-
replica communication, we found this to be unnecessary.

DMLab action set. Ignoring the “jump” and “crouch” actions which we do not use, an action in the
native DMLab action space consists of 5 integers whose meaning and allowed values are given in
Table 2. Following previous work on DMLab (Hessel et al., 2018), we used the reduced action set
given in Table 3 with an action repeat of 4.

16



Published as a conference paper at ICLR 2020

HYPERPARAMETER VALUE

DMLab Atari Continuous control

Initial η 1.0 1.0 1.0
Initial α 5.0 5.0 -
Initial αµ - - 1.0
Initial αΣ - - 1.0

Table 1: Values for common V-MPO parameters.

ACTION NAME RANGE

LOOK LEFT RIGHT PIXELS PER FRAME [-512, 512]
LOOK DOWN UP PIXELS PER FRAME [-512, 512]
STRAFE LEFT RIGHT [-1, 1]
MOVE BACK FORWARD [-1, 1]
FIRE [0, 1]

Table 2: Native action space for DMLab. See https://github.com/deepmind/lab/blob/
master/docs/users/actions.md for more details.

ACTION NATIVE DMLAB ACTION

Forward (FW) [ 0, 0, 0, 1, 0]
Backward (BW) [ 0, 0, 0, -1, 0]

Strafe left [ 0, 0, -1, 0, 0]
Strafe right [ 0, 0, 1, 0, 0]

Small look left (LL) [-10, 0, 0, 0, 0]
Small look right (LR) [ 10, 0, 0, 0, 0]
Large look left (LL ) [-60, 0, 0, 0, 0]
Large look right (LR) [ 60, 0, 0, 0, 0]

Look down [ 0, 10, 0, 0, 0]
Look up [ 0, -10, 0, 0, 0]

FW + small LL [-10, 0, 0, 1, 0]
FW + small LR [ 10, 0, 0, 1, 0]
FW + large LL [-60, 0, 0, 1, 0]
FW + large LR [ 60, 0, 0, 1, 0]

Fire [ 0, 0, 0, 0, 1]

Table 3: Reduced action set for DMLab from Hessel et al. (2018).
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LEVEL NAME EPISODE REWARD HUMAN-NORMALIZED
IMPALA V-MPO IMPALA V-MPO

alien 1163.00 ± 148.43 2332.00 ± 290.16 13.55 ± 2.15 30.50 ± 4.21
amidar 192.50 ± 9.16 423.60 ± 20.53 10.89 ± 0.53 24.38 ± 1.20
assault 4215.30 ± 294.51 1225.90 ± 60.64 768.46 ± 56.68 193.13 ± 11.67
asterix 4180.00 ± 303.91 9955.00 ± 2043.48 47.87 ± 3.66 117.50 ± 24.64
asteroids 3473.00 ± 381.30 2982.00 ± 164.35 5.90 ± 0.82 4.85 ± 0.35
atlantis 997530.00 ± 3552.89 940310.00 ± 6085.96 6086.50 ± 21.96 5732.81 ± 37.62
bank heist 1329.00 ± 2.21 1563.00 ± 15.81 177.94 ± 0.30 209.61 ± 2.14
battle zone 43900.00 ± 4738.04 61400.00 ± 5958.52 119.27 ± 13.60 169.52 ± 17.11
beam rider 4598.00 ± 618.09 3868.20 ± 666.55 25.56 ± 3.73 21.16 ± 4.02
berzerk 1018.00 ± 72.63 1424.00 ± 150.93 35.68 ± 2.90 51.87 ± 6.02
bowling 63.60 ± 0.84 27.60 ± 0.62 29.43 ± 0.61 3.27 ± 0.45
boxing 93.10 ± 0.94 100.00 ± 0.00 775.00 ± 7.86 832.50 ± 0.00
breakout 484.30 ± 57.24 400.70 ± 18.82 1675.69 ± 198.77 1385.42 ± 65.36
centipede 6037.90 ± 994.99 3015.00 ± 404.97 39.76 ± 10.02 9.31 ± 4.08
chopper command 4250.00 ± 417.91 4340.00 ± 714.45 52.29 ± 6.35 53.66 ± 10.86
crazy climber 100440.00 ± 9421.56 116760.00 ± 5312.12 357.94 ± 37.61 423.09 ± 21.21
defender 41585.00 ± 4194.42 98395.00 ± 17552.17 244.78 ± 26.52 604.01 ± 110.99
demon attack 77880.00 ± 8798.44 20243.00 ± 5434.41 4273.35 ± 483.72 1104.56 ± 298.77
double dunk -0.80 ± 0.31 12.60 ± 1.94 809.09 ± 14.08 1418.18 ± 88.19
enduro 1187.90 ± 76.10 1453.80 ± 104.37 138.05 ± 8.84 168.95 ± 12.13
fishing derby 21.60 ± 3.46 33.80 ± 2.10 213.77 ± 6.54 236.79 ± 3.96
freeway 32.10 ± 0.17 33.20 ± 0.28 108.45 ± 0.58 112.16 ± 0.93
frostbite 250.00 ± 0.00 260.00 ± 0.00 4.33 ± 0.00 4.56 ± 0.00
gopher 11720.00 ± 1687.71 7576.00 ± 973.13 531.92 ± 78.32 339.62 ± 45.16
gravitar 1095.00 ± 232.75 3125.00 ± 191.87 29.01 ± 7.32 92.88 ± 6.04
hero 13159.50 ± 68.90 29196.50 ± 752.06 40.71 ± 0.23 94.53 ± 2.52
ice hockey 4.80 ± 1.31 10.60 ± 2.00 132.23 ± 10.83 180.17 ± 16.50
jamesbond 1015.00 ± 91.39 3805.00 ± 595.92 360.12 ± 33.38 1379.11 ± 217.65
kangaroo 1780.00 ± 18.97 12790.00 ± 629.52 57.93 ± 0.64 427.02 ± 21.10
krull 9738.00 ± 360.95 7359.00 ± 1064.84 762.53 ± 33.81 539.67 ± 99.75
kung fu master 44340.00 ± 2898.70 38620.00 ± 2346.48 196.11 ± 12.90 170.66 ± 10.44
montezuma revenge 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
ms pacman 1953.00 ± 227.12 2856.00 ± 324.54 24.77 ± 3.42 38.36 ± 4.88
name this game 5708.00 ± 354.92 9295.00 ± 679.83 59.33 ± 6.17 121.64 ± 11.81
phoenix 37030.00 ± 6415.95 19560.00 ± 1843.44 559.60 ± 98.99 290.05 ± 28.44
pitfall -4.90 ± 2.34 -2.80 ± 1.40 3.35 ± 0.04 3.39 ± 0.02
pong 20.80 ± 0.19 21.00 ± 0.00 117.56 ± 0.54 118.13 ± 0.00
private eye 100.00 ± 0.00 100.00 ± 0.00 0.11 ± 0.00 0.11 ± 0.00
qbert 5512.50 ± 741.08 15297.50 ± 1244.47 40.24 ± 5.58 113.86 ± 9.36
riverraid 8237.00 ± 97.09 11160.00 ± 733.06 43.72 ± 0.62 62.24 ± 4.65
road runner 28440.00 ± 1215.99 51060.00 ± 1560.72 362.91 ± 15.52 651.67 ± 19.92
robotank 29.60 ± 2.15 46.80 ± 3.42 282.47 ± 22.22 459.79 ± 35.29
seaquest 1888.00 ± 63.26 9953.00 ± 973.02 4.33 ± 0.15 23.54 ± 2.32
skiing -16244.00 ± 592.28 -15438.10 ± 1573.39 6.69 ± 4.64 13.01 ± 12.33
solaris 1794.00 ± 279.04 2194.00 ± 417.91 5.03 ± 2.52 8.64 ± 3.77
space invaders 793.50 ± 90.61 1771.50 ± 201.95 42.45 ± 5.96 106.76 ± 13.28
star gunner 44860.00 ± 5157.74 60120.00 ± 1953.60 461.05 ± 53.80 620.24 ± 20.38
surround 2.50 ± 1.04 4.00 ± 0.62 75.76 ± 6.31 84.85 ± 3.74
tennis -0.10 ± 0.09 23.10 ± 0.26 152.90 ± 0.61 302.58 ± 1.69
time pilot 10890.00 ± 787.46 22330.00 ± 2443.11 440.77 ± 47.40 1129.42 ± 147.07
tutankham 218.50 ± 13.53 254.60 ± 9.99 132.59 ± 8.66 155.70 ± 6.40
up n down 175083.00 ± 16341.05 82913.00 ± 12142.08 1564.09 ± 146.43 738.18 ± 108.80
venture 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
video pinball 59898.40 ± 23875.14 198845.20 ± 98768.54 339.02 ± 135.13 1125.46 ± 559.03
wizard of wor 6960.00 ± 1730.97 7890.00 ± 1595.77 152.55 ± 41.28 174.73 ± 38.06
yars revenge 12825.70 ± 2065.90 41271.70 ± 4726.72 18.90 ± 4.01 74.16 ± 9.18
zaxxon 11520.00 ± 646.81 18820.00 ± 754.69 125.67 ± 7.08 205.53 ± 8.26

Median 117.56 155.70

Table 4: Multi-task Atari-57 scores by level after 11.4B total (200M per level) environment frames. All
entries show mean ± standard deviation. Data for IMPALA (“PopArt-IMPALA”) was obtained from
the authors of Hessel et al. (2018). Human-normalized scores are calculated as (E−R)/(H−R)×100,
where E is the episode reward, R the episode reward obtained by a random agent, and H is the
episode reward obtained by a human. 18
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SETTING SINGLE-TASK MULTI-TASK

Agent discount 0.99
Image height 72
Image width 96
Number of action repeats 4
Number of LSTM layers 2 3
Pixel-control cost 2× 10−3

Ttarget 10
εη 0.1 0.5
εα (log-uniform) [0.001, 0.01) [0.01, 0.1)

Table 5: Settings for DMLab.

SETTING SINGLE-TASK MULTI-TASK

Environment discount on end of life 1 0
Agent discount 0.997 0.99
Clipped reward range no clipping [−1, 1]
Max episode length 30 mins (108,000 frames)
Image height 84
Image width 84
Grayscale True
Number of stacked frames 4
Number of action repeats 4
TrXL: Key/Value size 32 ·
TrXL: Number of heads 8 ·
TrXL: Number of layers 8 ·
TrXL: MLP size 512 ·
Ttarget 1000 100
εη 1× 10−1

εα (log-uniform) [0.005, 0.01) [0.001, 0.01)

Table 6: Settings for Atari. TrXL: Transformer-XL.

SETTING HUMANOID-PIXELS HUMANOID-STATE OPENAI GYM

Agent discount 0.99
Unroll length 63 63 39
Image height 64 · ·
Image width 64 · ·
Target update period 100
εη 0.1 0.01
εαµ (log-uniform) [0.01, 1.0) [0.05, 0.5] [0.005, 0.01]
εαΣ (log-uniform) [5× 10−6, 5× 10−5) [10−5, 5× 10−5) [5× 10−6, 5× 10−5)

Table 7: Settings for continuous control. For the humanoid gaps task from pixels the physics time
step was 5 ms and the control time step 30 ms.

19



Published as a conference paper at ICLR 2020

Figure 6: Multi-task Atari-57 with population-based training (PBT) (Jaderberg et al., 2017a). All
settings of the PBT experiment were the same as without except the learning rates were also sampled
log-uniformly from [8 × 10−5, 3 × 10−4) and εη from [0.05, 0.5). Along with εα sampled log-
uniformly from [0.001, 0.01) as in the original experiment, hyperparameters were evolved via copy
and mutation operators roughly once every 4× 108 environment frames.

Figure 7: KL constraints during optimization for the Seaquest example in Fig. 4c. Values are
subsampled but not smoothed to show the variability.
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Figure 8: Same as Fig. 4c (Atari Seaquest), but trained with uniform weights on the top 50% of
advantages.

Figure 9: Same as Fig. 2a (multi-task DMLab-30), but trained without top-k, i.e., all advantages are
used in the E-step. Note the small dip in the middle is due to a pause in the experiment and resetting
of the human-normalized scores.

Figure 10: Example frame from the humanoid gaps task, with the agent’s 64×64 first-person view
on the right. The proprioceptive information provided to the agent in addition to the primary pixel
observation consisted of joint angles and velocities, root-to-end-effector vectors, root-frame velocity,
rotational velocity, root-frame acceleration, and the 3D orientation relative to the z-axis.
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Figure 11: 17-dimensional Humanoid-V1 task in OpenAI Gym.

22


	Introduction
	Background and setting
	Related work
	Method
	Policy evaluation
	Policy improvement in V-MPO
	E-step
	M-step: Constrained supervised learning of the parametric policy

	Full loss function

	Experiments
	Discrete actions: DMLab, Atari
	Continuous control

	Conclusion
	Derivation of the V-MPO temperature loss
	M-step KL constraint
	Decoupled KL constraints for continuous control
	Relation to Supervised Policy Update
	Importance-weighting for off-policy corrections
	Network architecture and hyperparameters

