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ABSTRACT

Intelligent agents can learn to represent the action spaces of other agents simply
by observing them act. Such representations help agents quickly learn to predict
the effects of their own actions on the environment and to plan complex action
sequences. In this work, we address the problem of learning an agent’s action
space purely from visual observation. We use stochastic video prediction to
learn a latent variable that captures the scene’s dynamics while being minimally
sensitive to the scene’s static content. We introduce a loss term that encourages
the network to capture the composability of visual sequences and show that it
leads to representations that disentangle the structure of actions. We call the full
model with composable action representations Composable Learned Action Space
Predictor (CLASP). We show the applicability of our method to synthetic settings
and its potential to capture action spaces in complex, realistic visual settings. When
used in a semi-supervised setting, our learned representations perform comparably
to existing fully supervised methods on tasks such as action-conditioned video
prediction and planning in the learned action space, while requiring orders of
magnitude fewer action labels.1

1 INTRODUCTION

Agents behaving in real-world environments rely on perception to judge what actions they can take
and what effect these actions will have. Purely perceptual learning may play an important role in how
these action representations are acquired and used. In this work, we focus on the problem of learning
an agent’s action space from unlabeled visual observations. To see the usefulness of this strategy,
consider an infant that is first learning to walk. From around 10 months of age, infants rapidly
progress from crawling, to irregular gaits with frequent falling, and finally to reliable locomotion
(Adolph et al. (2012)). But before they first attempt to walk, infants have extensive sensory exposure
to adults walking. Unsupervised learning from sensory experience of this type appears to play a
critical role in how humans acquire representations of actions before they can reliably reproduce the
corresponding behaviour (Ullman et al. (2012)). Infants need to relate the set of motor primitives they
can generate to the action spaces exploited by adults (Dominici et al. (2011)), and a representation
acquired by observation may allow an infant to more efficiently learn to produce natural, goal-directed
walking behavior.

Reinforcement learning (RL) provides an alternative to the (passive) unsupervised learning approach
as it implicitly discovers an agent’s action space and the consequences of its actions. Recent
breakthroughs in model-free and model-based RL suggest that end-to-end training can be used to
learn mappings between sensory input and actions (Mnih et al. (2015); Lillicrap et al. (2016); Levine
et al. (2016); Finn & Levine (2017); Schulman et al. (2015)). However, these methods require active
observations and the sensorimotor mappings learned in this way cannot be easily generalized to
new agents with different control interfaces. Methods for sensorimotor learning from purely visual

∗Equal contribution. Ordering determined by a coin flip.
1Project website: https://daniilidis-group.github.io/learned_action_spaces
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Figure 1: Using latent composition to recover actions from passive data. a) Two sequences starting
from different initial states but changing according to the same actions. Without requiring labels, our
model learns to represent the action in sequences like these identically. We train a representation z to
capture the dynamics of the scene and its compositional structure: applying (z1 and z2) should have
the same effect as applying the composed representation g(z1, z2). These properties capture the fact
that effector systems, such as a robot arm, use the same composable action space in many different
states. b) The learned action space z recovered by our method (PCA visualization). Points are colored
by the true action u: true actions can be easily decoded from z, validating that the structure of the
action space has been captured.

data may facilitate learning where action information is not available, such as when using video
data collected from the Internet. Such methods may also be useful for imitation learning, where
ground truth actions are often hard or impossible to collect other than by visual observation (Finn
et al. (2017); Pathak et al. (2018)). More generally, learning from passive observations may make
it easier to reuse action representations between systems with different effectors and goals. The
representations learned by unsupervised methods are invariant to these choices because the model
does not have access to motor commands or goals during training.

In this work, we evaluate the proposal that learning what you can do before doing anything can lead
to action space representations that make subsequent learning more efficient. To this end, we develop
a model that learns to represent an agent’s action space given only unlabeled videos of the agent.
The resulting representation enables direct planning in the latent space. Given a small number of
action-labeled sequences we can execute the plan by learning a simple mapping from latent action
representations to the agent’s controls. This representation may be analogous to those in the parietal
and premotor areas of cortex, which include populations of neurons that represent the structure of
actions produced both by the self and by others (Rizzolatti et al. (1996); Romo et al. (2004)) and
that are critical for reliably producing flexible, voluntary motor control (see Kandel et al. (2012),
Chapter 38). In the brain, representations of this kind could plausibly be learned using specialized
loss functions (Marblestone et al. (2016)) whose effect is to induce the prior needed to determine the
structure of actions in observation data.

In contrast to most approaches to unsupervised learning of dynamics, which focus on learning
the statistical structure of the environment, we focus on disentangling action information from
the instantaneous state of the environment (Fig. 1). We base our work on recent stochastic video
prediction methods (Babaeizadeh et al. (2018); Denton & Fergus (2018); Lee et al. (2018)) and
impose two properties on the latent representation. First, we train the representation to be minimal,
i.e. containing minimal information about the current world state. This forces the representation to
focus on dynamic properties of the sensory input. A similar objective has been used in previous work
to constrain the capacity of video prediction models (Denton & Fergus (2018)). Second, we train the
representation to be composable by introducing a novel loss term that enforces that the cumulative
effect of a sequence of actions can be computed from the individual actions’ representations (Fig. 1,
left). Composability encourages disentangling: as a composed representation does not have access to
the static content of the intermediate frames, a representation is composable only if the individual
action representations are disentangled from the static content. Taken together, these two properties
lead to a representation of sensory dynamics that captures the structure of the agent’s actions.
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We make the following three contributions. First, we introduce a method for unsupervised learning of
an agent’s action space by training the latent representation of a stochastic video prediction model
for the desiderata of minimality and composability. Second, we show that our method learns a
representation of actions that is independent of scene content and visual characteristics on (i) a
simulated robot with one degree of freedom and (ii) the BAIR robot pushing dataset (Ebert et al.
(2017)). Finally, we demonstrate that the learned representation can be used for action-conditioned
video prediction and planning in the learned action space, while requiring orders of magnitude fewer
action-labeled videos than extant supervised methods.

2 RELATED WORK

Learning structured and minimal representations. Several groups have recently shown how an
adaptation of the variational autoencoder (VAE, Kingma & Welling (2014); Rezende et al. (2014))
can be used to learn representations that are minimal in the information-theoretic sense. Alemi
et al. (2017) showed that the Information Bottleneck (IB) objective function (Tishby et al. (1999);
Shwartz-Ziv & Tishby (2017)) can be optimized with a variational approximation that takes the
form of the VAE objective with an additional weighting hyperparameter. In parallel, Higgins et al.
(2017) showed that a similar formulation can be used to produce disentangled representations. The
connection between disentaglement and minimality of representations was further clarified by Burgess
et al. (2018). In this work, we apply the IB principle to temporal models to enforce minimality of the
representation.

Several groups have proposed methods to learn disentangled representations of static content and
pose from video (Denton & Birodkar (2017); Tulyakov et al. (2018)). Jaegle et al. (2018) learn a
motion representation by enforcing that the motion acts on video frames as a group-theoretic action.
In contrast, we seek a representation that disentangles the motion from the static pose.

Thomas et al. (2017) attempt to learn a disentangled representation of controllable factors of variation.
While the goals of their work are similar to ours, their model relies on active learning and requires an
embodied agent with access to the environment. In contrast, our model learns factors of variation
purely from passive temporal visual observations, and thus can be applied even if access to the
environment is costly or impossible.

Unsupervised learning with video data. Several recent works have exploited temporal informa-
tion for representation learning. Srivastava et al. (2015) used the Long Short-Term Memory (LSTM,
Hochreiter & Schmidhuber (1997)) recurrent neural network architecture to predict future frames
and showed that the learned representation was useful for action recognition. Vondrick et al. (2016)
showed that architectures using convolutional neural networks (CNNs) can be used to predict actions
and objects several seconds into the future. Recently, work such as Finn et al. (2016); Villegas et al.
(2017); Denton & Birodkar (2017) has proposed various modifications to the convolutional LSTM
architecture (Xingjian et al. (2015)) for the task of video prediction and shown that the resulting
representations are useful for a variety of tasks.

Others have explored applications of video prediction models to RL and control (Weber et al. (2017);
Ha & Schmidhuber (2018); Wayne et al. (2018)). Chiappa et al. (2017) and Oh et al. (2015) propose
models that predict the consequences of actions taken by an agent given its control output. Similar
models have been used to control a robotic arm (Agrawal et al. (2016); Finn & Levine (2017); Ebert
et al. (2017)). The focus of this work is on learning action-conditioned predictive models. In contrast,
our focus is on the unsupervised discovery of the space of possible actions from video data.

Our model is inspired by methods for stochastic video prediction that, given a sequence of past
frames, capture the multimodal distribution of future images (Goroshin et al. (2015); Henaff et al.
(2017)). We use the recently proposed recurrent latent variable models based on the variational
autoencoder (Babaeizadeh et al. (2018); Denton & Fergus (2018); Lee et al. (2018)). We develop
these methods and propose a novel approach to unsupervised representation learning designed to
capture an agent’s action space.

Sensorimotor abstractions for behavior. There is a long history of work developing sensorimotor
representations for applications in reinforcement learning and robotics. Previous work in this
domain has primarily focused on introducing hand-crafted abstractions and hierarchies to make
sensorimotor mappings more generalizable. Methods for aggregating low-level controls into higher-
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Figure 2: Components of the proposed architecture. Left: The stochastic video prediction model,
shown for one timestep. During training, we estimate the latent variable zt using the approximate
inference network (MLPinfer,CNNe) from the current and previous image. At test time, we produce
zt using the prior distribution p(z) ∼ N (0, I). Future frames are estimated by passing zt together
with images xt−1 through the generative network (LSTM, CNNd). Please refer to Appendices A
and B for architectural details. Right: Composability training. Latent samples z are concatenated
pairwise and passed through the composition network MLPcomp that defines a distribution over ν in
the trajectory space. A sampled value of ν is decoded into an image through the same generative
network (LSTM and CNNd) and matched to the final image in the composed sequence.

level representations on which planning and RL can be performed are well-studied in the robotics
literature: notable examples include the options framework for hierarchical RL (Sutton et al. (1999);
Bacon et al. (2017)), dynamic motion primitives for manipulation (Schaal et al. (2005); Schaal (2006);
Niekum et al. (2015)), and recent work that abstracts a learned policy away from low-level control
and perception to ease simulation-to-real transfer (Clavera & Abbeel (2017); Müller et al. (2018)).
Other work has learned to separate robot-instance specific controls from task-related skills through
modular policies, but this work does not enforce any structure onto the intermediate representation
and requires extensive interaction with the environment (Devin et al. (2017)).

3 APPROACH

In this section, we describe our architecture for learning an action representation that is minimal and
composable. In Sec. 3.1, we describe a variational video prediction model similar to that of Denton
& Fergus (2018) that provides us with a framework for learning a latent representation zt at time
t of the change between the past and the current frames. No labeled actions are considered at this
stage. In Sec. 3.2, we introduce an unsupervised method for imposing composability of the latent
that allows us to recover a structured representation that defines CLASP. To verify that the learned
representation corresponds to the executed control, we show that we can learn a bijective mapping
between the latent representation and the control output executed at that time using a small number
of labeled data points (Sec. 3.3). In the experimental section, we describe how the learned bijective
mapping can be used for tasks such as action-conditioned video prediction (Sec. 4.2) and planning in
the learned action space (Sec. 4.3).

3.1 VIDEO PREDICTION MODEL

At the core of our method is a recurrent latent variable model for video prediction based on a temporal
extension of the conditional VAE proposed by Chung et al. (2015). We consider the generative model
shown in Fig. 2 (left). At each timestep t, the model outputs a latent variable zt ∼ p(z) = N (0, I)
associated with this timestep. Given a history of frames x1:t−1 and latent samples z2:t, the generative
distribution over possible next frames is given by xt ∼ pθ(xt|x1:t−1, z2:t) = N (µθ(x1:t−1, z2:t), I).
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In practice, we generate the next frame by taking the mean of the conditional distribution: x̂t =
µθ(x1:t−1, z2:t).

To optimize the log-likelihood of this generative model, we introduce an additional network approxi-
mating the posterior of the latent variable zt ∼ qφ(zt|xt, xt−1) = N (µφ(xt, xt−1), σφ(xt, xt−1)).
We can optimize the model using the variational lower bound of the log-likelihood in a formulation
similar to the original VAE. However, as has been shown recently by Alemi et al. (2018), the standard
VAE formulation does not constrain the amount of information contained in the latent variable z. To
overcome this, and to learn a minimal representation of z, we reformulate the standard VAE objective
in terms of the Information Bottleneck (IB) (Shwartz-Ziv & Tishby (2017)).

IB minimizes the mutual information, I , between the action representation, zt, and input frames,
xt−1:t, while maximizing the ability to reconstruct the frame xt as measured by the mutual informa-
tion between (zt, xt−1) and xt:

max
pθ,qφ

I((zt, xt−1), xt)− βzI(zt, xt−1:t). (1)

The two components of the objective are balanced with a Lagrange multiplier βz . When the value of
βz is higher, the model learns representations that are more efficient, i.e. minimal in the information-
theoretic sense. We use this property to achieve our first objective of minimality of z.

The variational IB (Alemi et al. (2017)) provides a variational approximation of the IB objective, that
simply takes the form of the original VAE objective with an additional constant βz . Aggregating over
a sequence of frames, the video prediction objective for our model is given by:

Lpredθ,φ (x1:T ) =

T∑
t=1

[
Eqφ(z2:t|x1:t) log pθ(xt|x1:t−1, z2:t)− βzDKL(qφ(zt|xt−1:t)||p(z))

]
. (2)

The full derivation of the variational lower bound is given in the appendix of Denton & Fergus
(2018)2. The full model for one prediction step is shown in the left part of Fig. 2.

3.2 CLASP: LEARNING ACTION REPRESENTATIONS WITH COMPOSABILITY

Given a history of frames, the latent variable zt represents the distribution over possible next frames.
It can thus be viewed as a representation of possible changes between the previous and the current
frame. We will associate the latent variable zt with the distribution of such changes. In video data
of an agent executing actions in an environment, the main source of change is the agent itself. Our
model is inspired by the observation that a natural way to represent zt in such settings is by the agents’
actions at time t. In this section, we describe an objective that encourages the previously described
model (Sec. 3.1) to learn action representations.

To encourage composability of action representations, we use the procedure illustrated in Fig. 2 (right).
We define an additional random variable νt ∼ qζ(νt|zt, zt−1) = N (µζ(zt, zt−1), σζ(zt, zt−1))
that is a representation of the trajectory zt−1:t. The process of composing latent samples into a
single trajectory can be repeated several times in an iterative fashion, where the inference model qζ
observes a trajectory representation νt−1 and the next latent zt to produce the composed trajectory
representation νt ∼ qζ(νt|νt−1, zt). The inference model qζ is parameterized with a multilayer
perceptron, MLPcomp.

We want ν to encode entire trajectories, but we also require it to have minimal information about
individual latent samples. We can encourage these two properties by again using the IB objective:

max
pθ,qφ,ζ

I((νt, x1), xt)− βνI(z2:t, νt). (3)

We maximize this objective using the following procedure. Given a trajectory of T frames, we
use MLPinfer to retrieve the action representations z. Next, we generate a sequence of trajectory
representations νt, each of which is composed from C consecutive action representations zt−C:t. We
obtain TC = bT/Cc such representations. Finally, we use νt to produce the corresponding frames

2Denton & Fergus (2018) use the objective with βz , but formulate this objective in terms of the original VAE.
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x̂t = pθ(xt|xt−C , νt)3. The variational approximation to (3) that we use to impose composability
takes the following form:

Lcompθ,φ,ζ (x1:T ) =

TC∑
t=1

[
Eqφ,ζ(ν1:t|x1:T ) log pθ(xt×Tc |x1:(t−1)×TC , ν1:t)

− βνDKL(qφ,ζ(νt|x(t−1)×TC :t×TC )||p(ν))
]
,

(4)

where the prior distribution over ν is given by the unit Gaussian ν ∼ p(ν) = N (0, I).

The objective above encourages the model to find a minimal representation for the trajectories ν. As
the trajectories are composed from only the action representations z, this encourages z to assume
a form suitable for efficient composition. This allows us to recover an action representation that is
composable. Our overall training objective is the sum of the two objectives:

Ltotalθ,φ,ζ = L
comp
θ,φ,ζ + Lpredθ,φ . (5)

We call the full model with composable action representations Composable Learned Action Space
Predictor (CLASP).

3.3 GROUNDING THE CONTROL MAPPING

Our approach allows us to learn a latent representation z that is minimal and disentangled from the
content of previous images. To use such a learned representation for control, we want to know which
action u a certain sample z corresponds to, or vice versa. To determine this correspondence, we
learn a simple bijective mapping from a small number of action-annotated frame sequences from the
training data. We train the bijection using two lightweight multilayer perceptrons, ẑt = MLPlat(ut)
and ût = MLPact(zt). Note that only the MLPlat and MLPact networks are trained in this step, as we
do not propagate the gradients into the video prediction model. Because we do not have to re-train
the video prediction model, this step requires far less data than models with full action supervision
(Section 4.3).

We note that standard image-based representations of motion, e.g., optical flow, do not directly form
a bijection with actions in most settings. For example, the flow field produced by a reacher (as in Fig.
5) rotating from 12 o’clock to 9 o’clock is markedly different from the flow produced by rotating
from 3 o’clock to 12 o’clock, even though the actions producing the two flow fields are identical (a
90 degree counter-clockwise rotation in both cases). In contrast, our representation easily learns a
bijection with the true action space.

4 EMPIRICAL EVALUATION

For evaluation, we consider tasks that involve regression from the latent variable z to actions u and
vice versa. By learning this bijection we show that our model finds a representation that directly
corresponds to actions and is disentangled from the static scene content. We show that after CLASP
is trained, it can be used for both action-conditioned video prediction and planning (see Fig. 4), and
provide a procedure to plan in the learned representation. We also validate that our approach requires
orders of magnitude fewer labels than supervised approaches, and that it is robust to certain visual
characteristics of the agent or the environment. Please refer to Appendix B for the exact architectural
parameters.

Datasets. We conduct experiments on a simple simulated reacher dataset and the real-world Berke-
ley AI Research (BAIR) robot pushing dataset from Ebert et al. (2017). The reacher dataset consists
of sequences of a robot reacher arm with one degree of freedom rotating counter-clockwise with
random angular distances between consecutive images. We simulate it using OpenAI’s Roboschool
environment (Klimov & Schulman (2018)). The actions u are encoded as relative angles between
images, and constrained to the range u ∈ [0◦, 40◦]. The dataset consists of 100 000 training and 4000

3To allow the generative model to distinguish between individual action representations z and trajectory
representations ν, we concatenate them with a binary indicator set to 0 for z and 1 for ν. With the binary
indicator, we can control whether the generative network interprets an input latent as the representation of a
single action or a whole trajectory.
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Figure 3: Visualization of the learned action space, z, on the reacher dataset. Each of the 1000 points
depicts a value of z for a different frame pair from the dataset. We plot the projection of z onto the
first two principal components of the data. Each point is colored by the value of the ground truth
rotation, in radians, depicted in the two images used to infer z for that point. a) The latent space
learned by the baseline model has no discernible correspondence to the ground truth actions. b) Our
method learns a latent space with a clear correspondence to the ground truth actions. In the Appendix,
Fig. 15 further investigates why the baseline fails to produce a disentangled representation.

test sequences. Additionally, we create two variations of this dataset, with (i) varying backgrounds
taken from the CIFAR-10 dataset (Krizhevsky (2009)) and (ii) varying robot appearance, with 72
different combinations of arm length and width in the training dataset.

Figure 4: Illustration of how the learned representation can
be used for a) action-conditioned prediction by inferring the
latent variable, zt, from the action, and b) visual servoing by
solving the control problem in latent space through iterated
rollouts and then mapping the latent variable to robot control
actions, ut.

The BAIR robot pushing dataset com-
prises 44 374 training and 256 test se-
quences of 30 frames each from which
we randomly crop out subsequences
of 15 frames. We define actions, u,
as differences in the spatial position
of the end effector in the horizontal
plane4.

Baselines. We compare to the origi-
nal model of Denton & Fergus (2018)
that does not use the proposed com-
posability objective. To obtain an up-
per bound on our method’s perfor-
mance we also compare to fully super-
vised approaches that train with action
annotations: our implementations are based on Oh et al. (2015) for the reacher dataset and the more
complex Finn & Levine (2017) for the BAIR dataset. For planning, we also compare to a model
based on the approach of Agrawal et al. (2016) that learns the forward and inverse dynamics with
direct supervision.

Metrics. In case of the action-conditioned video prediction we use the absolute angular position
(obtained using a simple edge detection algorithm, see Appendix D) for the reacher dataset and
the change of end effector position (obtained via manual annotation) for the BAIR dataset. We
choose these metrics as they capture the direct consequences of applied actions, as opposed to more
commonly used visual appearance metrics like PSNR or SSIM. For visual servoing in the reacher
environment we measure the angular distance to the goal state at the end of servoing.

4.1 LEARNED STRUCTURE OF THE ACTION REPRESENTATIONS

First, we inspect the structure of the learned action space for our model. To do so, we train CLASP
on the reacher dataset and visualize the learned representation. In Fig. 3, we show two-dimensional

4The original dataset provides two additional discrete actions: gripper closing and lifting. However, we
found that, in this dataset, the spatial position in the horizontal plane explains most of the variance in the end
effector position and therefore ignore the discrete actions in this work.
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Figure 5: Transplantation of action representations z from one sequence to another. We infer action
representations from the donor sequence and use them to create the recipient sequences from a
different initial state. a) the reacher dataset. The previous frame is superimposed onto each frame
to illustrate the movement. b) the BAIR dataset. The previous and the current position of the end
effector are annotated in each frame (red and blue dots, respectively) to illustrate the movement.
c) reacher with varying backgrounds. d) reacher with varying agent shape. The synchronization
of movement in the sequences suggests that the learned action representation is disentangled from
static content. Best viewed on a screen. Additional generated videos are available at: https:
//daniilidis-group.github.io/learned_action_spaces/.

projections of samples, z, from the inference network, q, colored by the corresponding ground truth
action, u. To find the two-dimensional subspace with maximal variability, we conducted Principal
Component Analysis (PCA) on the means of the distributions generated by q. The first PCA dimension
captures 99% of the variance, which is explained by the fact that the robot in consideration has one
degree of freedom. While the baseline without composability training fails to learn a representation
disentangled from the static content, our method correctly recovers the structure of possible actions
of the robot.

4.2 ACTION-CONDITIONED VIDEO PREDICTION

Table 1: Action-conditioned video prediction re-
sults (mean ± standard deviation across predicted
sequences). The "supervised" baseline is taken
from Oh et al. (2015) for the reacher dataset and
Finn & Levine (2017) for BAIR.

Reacher BAIR

Method Abs. Error
[in deg]

Rel. Error
[in px]

Start State 90.1± 51.8 -
Random 26.6± 21.5 -
Denton & Fergus 22.6± 17.7 3.6± 4.0
CLASP (Ours) 2.9± 2.1 3.0± 2.1

Supervised 2.6± 1.8 2.0± 1.3

We further verify that our model recovers a rep-
resentation of actions and show that this allows
us to use the model for two tasks. First, we
show that it is possible to transplant the action
representations z from a given sequence into
one with a different initial state. We run the
approximate inference network MLPinfer on the
donor sequence to get the corresponding action
representation z. We then use this sequence
of representations z together with a different
conditioning image sequence to produce the re-
cipient sequence. While the content of the scene
changes, the executed actions should remain the
same. Second, we show how our model can
be used for action-conditioned video prediction.
Given a ground truth sequence annotated with
actions u, we infer the representations z directly from u using MLPlat. The inferred representa-
tions are fed into the generative model pθ and the resulting sequences are compared to the original
sequence.

The quantitative results in Table 1 show that the model trained with the composability objective on
the reacher dataset successfully performs the task, with performance similar to the fully supervised
model. Denton & Fergus (2018) performs the task only slightly better than random guessing. This
shows that it is infeasible to infer the latent zt learned by the baseline model given only the action ut,
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and confirms our intuition about this from Fig. 3. The qualitative results in Fig. 5 (additional results
in Figs. 12, 13 and 14 in the Appendix and on the website) further support this conclusion.

On the BAIR dataset, our model performs better than the baseline of Denton & Fergus (2018),
reducing the difference between the best unsupervised method and the supervised baseline by 30%.
This is reflected in qualitative results as frames generated by the baseline model often contain artifacts
such as blurriness when the arm is moving or ghosting effects with two arms present in the scene
(Figs. 13 and 14 in the Appendix, videos on the website). These results demonstrate the promise of
our approach in settings involving more complex, real-world interactions.

4.3 PLANNING IN THE LEARNED ACTION SPACE

Table 2: Visual servoing performance measured as
distance to the goal at the end of servoing (mean
± standard deviation).

Reacher

Method Distance [deg]

Start Position 97.8± 23.7
Random 27.0± 26.8
Denton & Fergus (2018) 14.1± 10.7
CLASP (Ours) 1.6± 1.0

Agrawal et al. (2016) 2.0± 1.5
Oh et al. (2015) 1.8± 1.5

CLASP (varied background) 3.0± 2.2
CLASP (varied agents) 2.8± 2.9

Similarly to the true action space u, we can use
the learned action space z for planning. We
demonstrate this on a visual servoing task. The
objective of visual servoing is to move an agent
from a start state to a goal state, given by images
x0 and xgoal, respectively. We use a planning al-
gorithm similar to that of Finn & Levine (2017),
but plan trajectories in the latent space z instead
of true actions u. We use MLPact to retrieve the
actions that correspond to a planned trajectory.

Our planning algorithm, based on Model Predic-
tive Control (MPC), is described in Appendix C.
The controller plans by sampling a number of
action trajectories and iteratively refining them
with the Cross Entropy Method (CEM, Rubin-
stein & Kroese (2004)). The state trajectories are estimated by using the learned predictive model.
We select the trajectory whose final state is closest to the goal and execute its first action. The
distance between the states is measured using the cosine distance between VGG16 representations
(Simonyan & Zisserman (2015)). Servoing terminates once the goal is reached or the maximum steps
are executed. The baseline of Agrawal et al. (2016) uses a different procedure, as described in the
original paper.

We show qualitative results of a servoing rollout in the reacher environmet in Fig. 6 (left) and
quantitative results in Table 2. The agent not only reaches the target but also plans accurate trajectories
at each intermediate time step. The trajectory planned in the learned space can be correctly decoded
into actions, u.

4.4 DATA EFFICIENCY

To validate the benefits of learning from passive observations, we measure the data efficiency of
CLASP in Fig. 6 (right). In this setup, we train the methods on a large dataset of passive observations
and a varied number of observations labeled with actions (100, 1000, 10000 videos). The supervised
baselines, which cannot leverage pre-training with passive observations perform poorly in the low-
data regime. In contrast, our model only needs a small number of action-labeled training sequences
to achieve good performance, as it learns the structure of actions from passive observations. In the
abundant data regime, our model still performs on par with both supervised baselines. We observed
similar results for action-conditioned prediction experiments, summarized in Table 3 in the Appendix.
These results suggest that our planning approach can be used when the action-labeled data are limited.

4.5 ROBUSTNESS TO VARYING VISUAL CHARACTERISTICS

To test the robustness of our approach to different kinds of visual variability in the environment, we
conduct experiments on two versions of the reacher dataset with additional variability. In the first,
the background of each sequence is replaced with a randomly drawn CIFAR-10 image (Krizhevsky
(2009)). In the second, we vary the width and length of the reacher arm in each sequence. We test
models trained on these datasets on sequences with variations not seen during training but drawn
from the same distribution. The experimental setup is described in more detail in Appendix E.
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Figure 6: Visual servoing on the reacher task. Left: Planned and executed servoing trajectories. Each
of the first five rows shows the trajectory re-planned at the corresponding timestep. The first image
of each sequence is the current state of the system, and the images to the right of it show the model
prediction with the lowest associated cost. The target state (the reacher pointing to the upper left)
is shown superimposed over each image. Right: Data efficiency measured as final distance to the
goal after servoing, shown depending on the number of videos used in training. Each point represents
a model trained on a dataset with a restricted number of action-annotated training sequences. Full
results are in Table 4 in the appendix.

As shown in Table 2, our model can reliably discover the agent’s action space and perform visual
servoing under increased visual variability. The transplantation sequences in Fig. 5 show that the
action semantics are preserved across changes to the appearance of the environment that do not
alter the dynamics. This is evidence that the learned representation captures the dynamics of the
environment and is not sensitive to changes in visual characteristics that do not affect the agent’s
action space. In these two settings, CLASP also requires orders of magnitude less action-conditioned
data than the supervised baselines (see Table 4 in the appendix). Our results, combined with the data
efficiency result, suggest that our method is robust to visual changes and can be used for passive
learning from videos that are obtained under different visual conditions, or even videos of different
agents, such as videos obtained from the Internet, as long as the action space of the observed agents
coincides with the target agent.

5 CONCLUSION

We have shown a way of learning the structure of an agent’s action space from visual observations
alone by imposing the properties of minimality and composability on a latent variable for stochastic
video prediction. This strategy offers a data-efficient alternative to approaches that rely on fully
supervised action-conditioned methods. The resulting representation can be used for a range of tasks,
such as action-conditioned video prediction and planning in the learned latent action space. The
representation is insensitive to the static scene content and visual characteristics of the environment.
It captures meaningful structure in synthetic settings and achieves promising results in realistic visual
settings.
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A STOCHASTIC VIDEO PREDICTION

We use an architecture similar to SVG-FP of Denton & Fergus (2018). Input images xt are en-
coded using a convolutional neural network CNNe(·) to produce a low-dimensional representation
CNNe(xt); output image encodings can be decoded with a neural network with transposed convolu-
tions CNNd(·). We use a Long Short-Term Memory network LSTM(·, ·) for the generative network
µθ(xt−1, zt) = CNNd(LSTM(CNNe(xt−1), zt)), and a multilayer perceptron MLPinfer for the ap-
proximate inference network [µφ(xt, xt−1), σφ(xt, xt−1)] = MLPinfer(CNNe(xt),CNNe(xt−1)).

During training, our model first observes K past input frames. From these observations, the model
generates K − 1 corresponding latents z2:K and predicts K − 1 images x̂2:K = µθ(x1:K−1, z2:K).
The model generates T −K further future images: x̂K+1:T = µθ(x̂1:T−1, z1:T ). At test time, latents
zt are sampled from the prior N (0, I), and the model behaves identically otherwise. We show
samples from the stochastic video prediction model in Fig. 11.

Unlike in Denton & Fergus (2018), the generating network pθ does not observe ground truth frames
xK+1:T−1 in the future during training but autoregressively takes its own predicted frames x̂K+1:T−1
as inputs. This allows the network LSTM to generalize to observing the generated frame encodings
LSTM(CNNe(xt−1), zt) at test time when no ground truth future frames are available. We use
a recurrence relation of the form LSTM(LSTM(xt−2, zt−1), zt). To overcome the generalization
problem, Denton & Fergus (2018) instead re-encode the produced frames with a recurrence relation
of the form LSTM(CNNe(CNNd(LSTM(xt−2, zt−1))), zt). Our approach omits the re-encoding,
which saves a considerable amount of computation.

B EXPERIMENTAL PARAMETERS

For all experiments, we condition our model on five images and roll out ten future images. We
use images with a resolution of 64 × 64 pixels. The dimension of the image representation is
dim(g(x)) = 128, and the dimensions of the learned representation are dim(z) = dim(ν) = 10. For
the reacher dataset, we use the same architecture as Denton & Fergus (2018) for the f, g and LSTM
networks. For experiments with the standard blue background (i.e. all except the varied background
experiment) we do not use temporal skip-connections. For the BAIR dataset, we do not use f, g
and use the same model as Lee et al. (2018) for LSTM. The MLPinfer has two hidden layers with
256 and 128 units, respectively. The MLPcomp,MLPlat, and MLPact networks each have two hidden
layers with 32 units. For MLPlat and MLPact, we tried wider and deeper architectures, but this did
not seem to improve performance of either our method or the baseline without composability. This
is probably because the latent space in our experiments had either a simple representation that did
not need a more powerful network to interpret it, or was entangled with static content, in which case
even a more powerful network could not learn the bijection. The number of latent samples z used to
produce a trajectory representation ν is C = 4. For all datasets, βz = 10−2, βν = 10−8 We use the
leaky ReLU activation function in the g, f , and MLP networks. We optimize the objective function
using the Adam optimizer with parameters β1 = 0.9, β2 = 0.999 and a learning rate of 2 × 10−4.
All experiments were conducted on a single high-end NVIDIA GPU. We trained the models for 4
hours on the reacher dataset, for one day on the BAIR dataset.

We found the following rule for choosing both bottleneck parameters βz and βν to be both intuitive and
effective in practice: they should be set to the highest value at which samples from the approximate
inference q produce high-quality images. If the value is too high, the latent samples will not contain
enough information to specify the next image. If the value is too low, the divergence between the
approximate inference and the prior will be too large and therefore the samples from the prior will be
of inferior quality. We note that the problem of determining β is not unique to this work and occurs
in all stochastic video prediction methods, as well as VIB and β-VAE.

C VISUAL SERVOING

We use Algorithm 1 for visual servoing. At each time step, we initially sample M latent sequences
z0 from the prior N (0, I) and use the video prediction model to retrieve M corresponding image
sequences τ , each with K frames. We define the cost of an image trajectory as the cosine distance
between the VGG16 (Simonyan & Zisserman (2015)) feature representations of the target image and
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Table 3: Average absolute angle error (mean ± standard deviation) for action-conditioned video
prediction. Note that we could not detect angles on some sequences for the action-conditioned
baseline of Oh et al. (2015) trained on only 100 sequences due to bad prediction quality.

Reacher

Method Angle Error [deg]

Training Sequences 100 1000 10 000

Start Position 90.6± 52.0
Random 27.7± 22.2
Denton & Fergus (2018) 27.6± 22.8 23.8± 18.6 23.6± 18.3
CLASP (Ours) 2.9± 2.0 2.9± 2.0 3.0± 2.0

Oh et al. (2015) - 5.6± 4.5 2.7± 1.9

Table 4: Visual servoing performance and data efficiency.
Reacher

Method Distance [deg]

Training Sequences 100 1000 10 000

Start Position 97.8± 23.7
Random 27.0± 26.8
Denton & Fergus (2018) 20.9± 13.0 15.5± 13.1 14.1± 10.7
CLASP (Ours) 2.0± 2.2 2.2± 1.8 1.6± 1.0

Agrawal et al. (2016) 32.7± 21.7 3.6± 3.1 2.0± 1.5
Oh et al. (2015) 21.8± 12.9 2.6± 2.6 1.8± 1.5

CLASP (varied background) 1.5± 1.3 3.8± 3.5 3.0± 2.2
CLASP (varied agents) 2.0± 1.0 2.3± 3.4 2.8± 2.9

the final image of each trajectory. This is a perceptual distance, as in Johnson et al. (2016). In the
update step of the Cross Entropy Method (CEM) algorithm, we rank the trajectories based on their
cost and fit a diagonal Gaussian distribution to the latents z′ that generated the M ′ best sequences.
We fit one Gaussian for each prediction time step k ∈ K. After sampling a new set of latents zn+1

from the fitted Gaussian distributions we repeat the procedure for a total of N iterations.

Finally, we pick the latent sequence corresponding to the best rollout of the last iteration and map its
first latent sample to the output control action using the learned mapping: u∗ = MLPact(z

∗
N,0). This

action is then executed in the environment. The action at the next time step is chosen using the same
procedure with the next observation as input. The algorithm terminates when the specified number of
servoing steps T has been executed.

Algorithm 1 Planning in the learned action space
Require: Video prediction model x̂t:t+K = µθ(x1:t−1, z2:t+K)
Require: Start and goal images i0 and igoal

1: for t = 1 . . . T do
2: Initialize latents from prior: z0 ∼ N (0, I)
3: for n = 0 . . . N do
4: Rollout prediction model for K steps, obtain M future sequences τ = x̂t:t+K
5: Compute cosine distance between final and goal image: c(τ) = cos(x̂t+K , igoal)
6: Choose M ′ best sequences, refit Gaussian distribution: µn+1,σn+1 = fit(z′n)
7: Sample new latents from updated distribution: zn+1 ∼ N (µn+1,σn+1)
8: end for
9: Map first latent of best sequence to action: u∗ = MLPact(z

∗
N,0)

10: Execute u∗ and observe next image
11: end for
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Table 5: Hyperparameters for the visual servoing experiments. We sample an angle uniformly from
the angle difference range to create each subsequent image in a sequence.

Servoing Parameters

Servoing timesteps (T ) 5
Servoing horizon (K) 5
# servoing sequences (M ) 10
# refit sequences (M ′) 3
# refit iterations (N ) 4
Angle difference range [0◦, 40◦]

The parameters used for our visual servoing experiments are listed in Tab. 5.
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Figure 7: Error histogram of the angle detection algorithm on the reacher training set. The output of
this algorithm is used as a form of surrogate ground truth to evaluate model performance.

D ANGLE DETECTION ALGORITHM

We employ a simple, hand-engineered algorithm to quickly retrieve the absolute angle values from the
images of the reacher environment. First we convert the input to a grayscale image and run a simple
edge detector to obtain a binary image of the reacher arm. We smooth out noise by morphological
opening. We compute the Euclidean distance to the image center for all remaining non-zero pixels
and locate the reacher tip at the pixel closest to the known reacher arm length. This gives us the
absolute reacher arm angle.

To evaluate the accuracy of our angle detection algorithm, we estimated the angle for all images of
the simulated training dataset and compare it to ground truth. A histogram of the angle errors of
our algorithm is displayed in Fig. 7. All errors are below 10 degrees and the majority are smaller
than 5 degrees. This suggests the output of this model is of a suitable quality to serve as surrogate
ground truth. A second approach that used a neural network to regress the angle directly from the
pixels achieved similar performance. We attribute the errors to the discretization effects at low image
resolutions – it is impossible to achieve accuracy below a certain level due to the discretization.

E EXPERIMENTS WITH VARYING ENVIRONMENTS

E.1 ROBUSTNESS TO CHANGING STATIC BACKGROUND

We test the robustness of our method to different static backgrounds by replacing the uniform blue
background with images from the CIFAR-10 training set (Krizhevsky (2009)). For each sequence we
sample a single background image that is constant over the course of the entire sequence. At test time
we use background images that the model has not seen at training time, i.e. sampled from a held-out
subset of the CIFAR-10 training set. As in previous experiments, we first train our model on pure
visual observations without action-annotations. We then train the networks MLPlat and MLPact on a
small set of action-annotated sequences to convergence. For the visual servoing we follow the same
algorithm as in the previous experiments (see Appendix C).

Qualitative servoing results of our method on the dataset with varied backgrounds are shown in Fig. 9
and quantitative results in Figure 6 (right). The model accurately predicts the background image into
the future and successfully discovers and controls the action space of the agent. The fact that the same
bijective mapping between latents and actions works for all backgrounds suggests that the network is
able to disentangle the static content of the scene and the dynamics attributed to the moving reacher
arm. In addition, we show trajectory transplantation between different backgrounds in Fig. 8 (top),
which further validates the claim that the learned latent represents the action consistently, independent
of the background.
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Figure 8: Trajectory transplantation with differing visual characteristics. The trajectory from the
top sequence is transplanted to a different environment and initial state in each of the two bottom
sequences. Our model achieves almost perfect accuracy, which validates that it has indeed learned
a representation of actions disentangled from the static content, such as the background, agent’s
appearance, and the initial state. The previous frame is superimposed onto each frame to illustrate the
movement. Top: dataset with varying backgrounds. Bottom: dataset with varying robots. Additional
generated videos are available at: https://daniilidis-group.github.io/learned_
action_spaces/.

E.2 LEARNING FROM AGENTS WITH DIFFERENT VISUAL APPEARANCE

We test the ability of our method to learn from agents that differ in their visual appearance from the
agent used at test time, but that share a common action space. We construct a dataset in which we
vary parameters that determine the visual characteristics of the reacher arm, specifically its thickness
and length (see Fig. 10, left). In total our training dataset comprises 72 different configurations
spanning a wide variety of visual appearances.

We show a qualitative example of a servoing trajectory in Fig. 10 (right). We additionally evaluate
the efficacy of training on the novel dataset by following the procedure employed in Section 4.4: we
train the mapping between latent representation z and actions to convergence on action-annotated
subsets of the training data of varying sizes. The servoing errors in Figure 6 (right) show that we
achieve comparable performance independent of whether we train on the target agent we test on or
on a set of agents with different and varied visual appearances. Our model is able to learn a latent
representation that captures the action space shared between all the agents seen at training time. We
can then learn the mapping between this abstract action space and the actions of the agent with the
novel visual appearance from a small number of action-annotated sequences. In addition, we show
trajectory transplantation between different agents in Fig. 8 (bottom) that further validates our claim
that the learned latent represents the action consistently, independent of the agent.
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Figure 9: Servoing examples with randomly sampled static CIFAR-10 backgrounds. The figure
layout follows the layout of Fig. 6 (left).

Figure 10: Learning from agents with varied visual appearance. Left: Sample agent configurations
from the training set. We cover a variety of visual appearances (i.e. arm lengths and widths) but
not the configuration used for testing. Right: Test time servoing example after pre-training on
observations of agents with varied visual appearances. The figure layout follows the layout of Fig. 6
(left).
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Figure 11: Typical sequences sampled from the stochastic video prediction model. In the past, the
samples z are generated from the approximate inference distribution and match the ground truth
exactly. In the future, z is sampled from the prior, and correspond to various possible futures. These
three sequences are different plausible continuations of the same past sequence. This shows that
the model is capable of capturing the stochasticity of the data. Only five of ten predicted frames are
shown for clarity. Additional generated videos are available at: https://daniilidis-group.
github.io/learned_action_spaces/.
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Figure 12: Typical action-conditioned prediction sequences on the reacher dataset. Each example
shows top: the ground truth sequence, middle: our predictions, bottom: predictions of the baseline
model (Denton & Fergus (2018)). To illustrate the motion, we overlay the previous position of the
arm in each image (transparent arm). Our method produces sequences that are perfectly aligned with
the ground truth. The baseline never matches the ground truth motion and is only slightly better than
executing random actions. Best viewed on a computer, additional generated videos are available at:
https://daniilidis-group.github.io/learned_action_spaces/.
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Figure 13: Failure cases of the baseline model on trajectory transplantation. Each example shows
top: the ground truth sequence, middle: our predictions, bottom: predictions of the baseline model
(Denton & Fergus (2018)). The position of the end effector at the current (blue) and previous (red)
timestep is annotated in each frame. The baseline often produces images with two different robot arms
and other artifacts. Only six of ten predicted frames are shown for clarity. Best viewed on a computer,
additional generated videos are available at: https://daniilidis-group.github.io/
learned_action_spaces/.
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Figure 14: Baseline failure cases on action-conditioned video prediction. Each example shows top:
ground truth sequence, middle: our predictions, bottom: Denton & Fergus (2018) baseline. The
previous and the current position of the end effector are annotated in each frame. The baseline
often produces images with two different robot arms and other artifacts. Only six of ten predicted
frames are shown for clarity. Best viewed on a computer, additional generated videos are available at:
https://daniilidis-group.github.io/learned_action_spaces/.
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Figure 15: Visualization of the structure of the learned latent space of the baseline model without
composability training on the reacher dataset. The visualization is done in the same manner as in Fig.
3. Here, action representations zt are shown as a function of the absolute angle (α) of the reacher arm
at time t− 1 and the relative angle between the reacher at time t and t− 1. We see that the encoding
of action learned by the baseline is entangled with the absolute position of the reacher arm. While
this representation can be used to predict the consequences of actions given the previous frame, it is
impossible to establish a bijection between ut and zt as the correspondence depends on the previous
frame xt−1. Moreover, it is impossible to compose two samples of such a z without access to the
intermediate frame. This representation is minimal, as it is a linear transformation (a rotation) of the
known optimal representation ut (the ground truth actions). This suggests that composability plays
an important role in learning a disentangled representation of actions.

25


	Introduction
	Related work
	Approach
	Video prediction model
	CLASP: Learning action representations with composability
	Grounding the control mapping

	Empirical evaluation
	Learned structure of the action representations
	Action-conditioned video prediction
	Planning in the learned action space
	Data efficiency
	Robustness to varying visual characteristics

	Conclusion
	Stochastic video prediction
	Experimental parameters
	Visual servoing
	Angle Detection Algorithm
	Experiments with varying environments
	Robustness to Changing Static Background
	Learning from Agents with Different Visual Appearance


