
Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

Jason Gauci 1 Edoardo Conti 1 Yitao Liang 1 Kittipat Virochsiri 1 Yuchen He 1 Zachary Kaden 1

Vivek Narayanan 1 Xiaohui Ye 1 Zhengxing Chen 1

Abstract
In this paper we present Horizon, Facebook’s
open source applied reinforcement learning (RL)
platform. Horizon is an end-to-end platform de-
signed to solve industry applied RL problems
where datasets are large (millions to billions of
observations), the feedback loop is slow (vs. a
simulator), and experiments must be done with
care because they don’t run in a simulator. Un-
like other RL platforms, which are often designed
for fast prototyping and experimentation, Hori-
zon is designed with production use cases as top
of mind. The platform contains workflows to
train popular deep RL algorithms and includes
data preprocessing, feature transformation, dis-
tributed training, counterfactual policy evaluation,
optimized serving, and a model-based data under-
standing tool. We also showcase and describe real
examples where reinforcement learning models
trained with Horizon significantly outperformed
and replaced supervised learning systems at Face-
book.

1. Introduction
Deep reinforcement learning (RL) is poised to revolution-
ize how autonomous systems are built. In recent years,
it has been shown to achieve state-of-the-art performance
on a wide variety of complicated tasks (Mnih et al., 2015;
Lillicrap et al., 2015; Schulman et al., 2015; Van Hasselt
et al., 2016; Schulman et al., 2017), where being success-
ful requires learning complex relationships between high
dimensional state spaces, actions, and long term rewards.
However, the current implementations of the latest advances
in this field have mainly been tailored to academia, focusing
on fast prototyping and evaluating performance on simu-
lated benchmark environments.

1Facebook, Menlo Park, California, USA. Correspondence
to: Jason Gauci <jjg@fb.com>, Edoardo Conti <edoar-
doc@fb.com>.

Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36 th International Conference on Machine Learning, Long
Beach, California, USA, 2019. Copyright 2019 by the author(s).

Table 1. Comparison of Open Source RL Frameworks.
DP = Data Preprocessing & Feature Normalization, DT =
Distributed Training, CPE = Counterfactual Policy Evalua-
tion, EC2 = Amazon EC2 Integration.

FRAMEWORK DP DT CPE EC2

HORIZON
√ √ √

×
GARAGE ×

√
×

√

DOPAMINE × × × ×
COACH ×

√
× ×

SAGEMAKER RL ×
√

×
√

While interest in applying RL to real problems in industry
is high (Chen et al., 2019; Zhao et al., 2018b;a; Mirho-
seini et al., 2017; Zheng et al., 2018), the current set of
implementations and tooling must be adapted to handle the
unique challenges faced in applied settings. Specifically,
the handling of large datasets with hundreds or thousands
of varying feature types and distributions, high dimensional
discrete and continuous action spaces, optimized training
and serving, and algorithm performance estimates before
deployment are of key importance.

Currently, several platforms have been developed that ad-
dress different parts of this end-to-end applied RL challenge
(Bellemare et al., 2018; Caspi et al., 2017; Liang et al., 2017;
Agarwal et al., 2016), however to our knowledge, no single
system offers an end-to-end solution. Table 1 outlines the
features of different frameworks compared to Horizon.

With this in mind, we introduce Horizon - an open source
end-to-end platform for applied RL developed and used at
Facebook. Horizon is built in Python and uses PyTorch for
modeling and training (Paszke et al., 2017) and Caffe2 for
model serving (Jia et al., 2014). It aims to fill the rapidly-
growing need for RL systems that are tailored to work on
real, industry produced, datasets.

The rest of this paper goes into the details and features of
Horizon, but at a high level Horizon features:

Data preprocessing: A Spark (Zaharia et al., 2010)
pipeline that converts logged training data into the format
required for training numerous different deep RL models.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

Feature Normalization: Logic to extract metadata about
every feature including type (float, int, enum, probability,
etc.) and method to normalize the feature. This metadata
is then used to automatically preprocess features during
training and serving, mitigating issues from varying feature
scales and distributions which has shown to improve model
performance and convergence (Ioffe & Szegedy, 2015).

Data Understanding Tool: RL algorithms are suitable for
sequential problems where some form of accumulated re-
wards are to be optimized. In contrary to many academic
research environments that have well-defined transition and
reward functions (Brockman et al., 2016), real world envi-
ronments are not easily formulated to the standard Markov
Decision Process (MDP) framework (Bellman, 1957) with
properly defined states, actions, rewards, and transitions.
Thus, we developed a data understanding tool that checks
properties of problem formulation prior to applying any RL
algorithm. In practice, the data understanding tool has accel-
erated data engineering iterations and provided explainable
insights to RL practitioners.

Deep RL model implementations: Horizon provides im-
plementations of Deep Q-networks (DQN) (Mnih et al.,
2015), Deep Q-networks with double Q-learning (DDQN)
(Van Hasselt et al., 2016), Deep Q-networks with dueling
architecture (Dueling DQN & Dueling DDQN) (Wang et al.,
2015) for discrete action spaces, a parametric action version
of all the previously mentioned algorithms for handling very
large discrete action spaces, and Deep Deterministic Policy
Gradients (DDPG) (Lillicrap et al., 2015) and Soft Actor-
Critic (SAC) (Haarnoja et al., 2018) for continuous action
spaces.

Multi-Node and Multi-GPU training: Industry datasets
can be very large. At Facebook many of our datasets contain
tens of millions of samples per day. Horizon has function-
ality to conduct training on many GPUs distributed over
numerous machines. This allows for fast model iteration
and high utilization of industry sized clusters. Even for
problems with very high dimensional feature sets (hundreds
or thousands of features) and millions of training examples,
we are able to learn models in a few hours (while doing
preprocessing and counterfactual policy evaluation on ev-
ery batch). Horizon supports CPU, GPU, multi-GPU, and
multi-node training.

Counterfactual policy evaluation: Unlike in pure research
settings where simulators offer safe ways to test models and
time to collect new samples is very short, in applied settings
it is usually rare to have access to a simulator. This makes
offline model evaluation important as new models affect
the real world and time to collect new observations and re-
train models may be days or weeks. Horizon scores trained
models offline using several well known counterfactual pol-
icy evaluation (CPE) methods. The step-wise importance

sampling estimator, step-wise direct sampling estimator,
step-wise doubly-robust estimator (Dudık et al., 2011), se-
quential doubly-robust estimator (Jiang & Li, 2016)1, and
MAGIC estimator (Thomas & Brunskill, 2016) are all run
as part of Horizon’s end-to-end training workflow.

Optimized Serving: Post training, models are exported
from PyTorch to a Caffe2 network and set of parameters via
ONNX (Exchange, 2018). Caffe2 is optimized for perfor-
mance and portability, allowing models to be deployed to
thousands of machines.

Tested Algorithms: Testing production RL systems is a
new area with no established best practices. We take inspi-
ration from systems best practices and test our algorithms
in Horizon via unit tests and integration tests. Using custom
environments (i.e. Gridworld) and some standard environ-
ments from OpenAI’s Gym (Brockman et al., 2016) we train
and evaluate all of our RL models on every pull request.

We end the paper discussing examples of how models
trained with Horizon outperformed supervised learning and
heuristic based policies to send notifications and to stream
videos at Facebook. We provide details into the formula-
tion and methods used in our approach to give practitioners
insight into how to successfully apply RL to their problems.

2. Data Preprocessing
Many RL models are trained on consecutive pairs of
state/action tuples (DQN, DDPG, SAC etc.). However, in
production systems data is often logged as it comes in, re-
quiring offline logic to join the data in a format suitable
for RL. To assist in creating data in this format, Horizon
includes a Spark pipeline (called the Timeline pipeline) that
transforms logged data collected in the following row for-
mat:

• MDP ID: A unique ID for the Markov Decision Process
(MDP) chain that this training example is a part of.

• Sequence Number: A number representing the location
of the state in the MDP (i.e. a timestamp).

• State Features: The features of the current step that are
independent of the action.

• Action: The action taken at the current step. A string
(i.e. ‘up’) if the action is discrete or a set of features if
the action is parametric or continuous.

• Action Probability: The probability that the current
system took the action logged. Used in counterfactual
policy evaluation.

1Two variants are implemented; one makes uses of ordinal
importance sampling and the other weighted importance sampling.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

• Metrics: A map from metric name to value. Used to
construct a reward value during training by comput-
ing the dot product between input weights and metric
values.

• Possible Actions: An array of possible actions at the
current step, including the action chosen (left blank
for continuous action domains). This is optional but
enables Q-Learning (vs. SARSA).

This data is transformed into data in the row format below.
Note, MDP ID, Sequence Number, State Features, Action,
Action Probability, and Metrics are also present in the data
below, but are left out for brevity.

• Next State Features: The features of the subsequent
step that are action-independent.

• Next Action: The action taken at the next step.

• Sequence Number Ordinal: A number representing the
location of the state in the MDP after the Sequence
Number was converted to an ordinal number.

• Time Diff : A number representing the “time difference”
between the current state and next state (computed as
the difference in non-ordinal sequence numbers be-
tween states). Used as an optional way to set varying
time differences between states. Particularly useful for
MDPs that have been sub-sampled upstream.

• Possible Next Actions: A list of actions that were pos-
sible at the next step. Only present if Possible Actions
were provided.

As seen above, instead of taking in a reward scalar explicitly,
Horizon takes in a ”metrics” map. This enables reward
shaping during training and counterfactual policy evaluation
over metrics.

1. Reward shaping: By taking the dot product between
the vector of values in the metrics map and the vector of
weights in a ”metrics weight” map provided by the user
at training time, we compute the reward scalar value
for each training observation. This allows for rapid iter-
ation on reward shaping. The user can experiment with
different reward formulas by specifying different input
weights as the input to the training process without the
need to regenerate data tables.

2. Counterfactual policy evaluation over metrics: The
metrics map also enables Horizon’s counterfactual pol-
icy evaluation pipeline to run over each metric in the
map instead of just aggregate reward. This allows for
a granular estimation on the newly trained policy’s
performance.

3. Feature Normalization
Data from recommender systems is often sparse, noisy and
arbitrarily distributed (Adomavicius & Tuzhilin, 2005). Lit-
erature has shown that neural networks learn faster and
better when operating on batches of features that are nor-
mally distributed (Ioffe & Szegedy, 2015). In RL, where
the recurrence can become unstable when exposed to very
large features, feature normalization is even more important.
For this reason, Horizon includes a workflow that automati-
cally analyzes the training dataset and determines the best
transformation function and corresponding normalization
parameters for each feature. Developers can override the
estimation if they have prior knowledge of the feature that
they prefer to use.

In the workflow, features are identified to be of type binary,
probability, continuous, enum, quantile, or boxcox. A “nor-
malization specification” is then created which describes
how the feature should be normalized during training.

Although we pre-compute the feature transformation func-
tions prior to training, we do not apply the feature trans-
formation to the dataset until during training. At training
time we create a PyTorch network that takes in the raw
features and applies the normalization during the forward
pass. This allows developers to quickly iterate on the fea-
ture transformation without regenerating the dataset. The
feature transformation process begins by grouping features
according to their identity and then processing each group
as a single batch using vector operations.

4. Data Understanding Tool
One big challenge of applied RL is problem formulation.
RL algorithms are theoretically designed on the Markov
Decision Process (MDP) framework (Bellman, 1957) where
some sort of long-term reward is optimized in a sequential
setting. MDP tasks are defined by (S,A, T,R) tuples where
S and A refer to the state and action spaces; T : S ×
A → S refers to the state transition function, which can
be stochastic; and R : S × A → R represents the reward
function which maps a transition into a real value. Since this
formulation can be unfamiliar to engineers inexperienced
in RL, it is easy to accidentally prepare data that does not
conform well to the MDP definition. Applying RL on ill-
formulated problems is a costly process: (1) online testing
RL models trained on wrongly defined environments can
regress online metrics; (2) engineering time may be spent
debugging and tuning the RL model training process for
irrelevant factors such as hyper-parameters.

In order to quickly pre-screen the problem formulation and
accelerate feature engineering iterations, we developed a
data understanding tool. Using a data-driven, model-based
method together with heuristics, it checks whether several



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

important properties of the problem formulation conform to
the MDP framework.

First, the tool learns a model about the formulated environ-
ment based on the same dataset to be used in RL training.
While there have been extensive research in model-based
RL (Deisenroth & Rasmussen, 2011; Nagabandi et al., 2018;
Finn & Levine, 2017; Watter et al., 2015) in the line of
modeling environments, we use a probabilistic generative
model that is capable of handling high-dimensional input
and stochasticity of state transitions and rewards, inspired by
recent model-based work (Ha & Schmidhuber, 2018). The
chosen model is a deep neural network with the input as the
current state and action. To handle possible stochasticity in
rewards and transitions, the last layer of the neural network
is set as a Gaussian Mixture Model (GMM) layer (Bishop,
1994; Variani et al., 2015) such that the model outputs a
Gaussian mixture distribution of next states and rewards
rather than point estimates:

P (st+1|st, at) =
∑
k

πkN (µk,Σk) (1)

We omit the expression of P (rt|st, at) since it has a similar
form. In Eqn. 1, k is a hyper-parameter controlling the
number of Gaussian mixtures, µk and Σk are the mean and
covariance matrix of each Gaussian mixture. πk, µk and
log(Σk) are computed by the neural network layers before
the GMM layer based on the input st and at. Depending
on our needs, the model can be learned by fitting state
transitions and rewards either jointly or separately.

Once trained, the environment model can be used to exam-
ine problem formulation and data in many ways. One usage
is to calculate feature importance and select only important
features for RL training. We hypothesize that any feature
with no importance in predicting state transitions or rewards
should be discarded in order to reduce noise and increase
learning efficiency. We use a heuristic that a feature’s im-
portance is the increase of the model loss due to masking
the feature. The intuition is that if the feature is important,
masking it would cause the model to perform much worse
making the loss increase large. The current way to mask
each feature is to set that feature to its mean value. Showing
feature importance is also an effective way to help engineers
examine datasets.

Another usage of the learned environment model is to evalu-
ate problem formulation based on the definition of an MDP
and heuristics. (1) We first check whether transitions are
predictable by action and state features by looking at fea-
ture importance. An action or state feature is an important
predictive feature if it increases the model loss when being
masked, based on an environment model that fits only next
states. An action suggested as not important means taking

the action would not exert influence on transitions, thus
warranting further investigation on the design of the action
space. On the other hand, if none of the state features are
important in predicting next states, it indicates there is no se-
quential nature to the problem. (2) We check if there exists
any state feature both dependent on actions and predictive
of rewards. This verifies the reward is indeed determined by
both actions and states in a meaningful way. When no state
feature is predictive of rewards the problem would not pass
the check: such problems can be reduced to multi-arm ban-
dits where we just need to estimate the return of each action.
The check also invalidates problems that pass the previous
checks, but where no state feature involved in transitions
is relevant to the rewards. We compute how dependent a
state feature is to the actions taken by varying actions in
the data and observing the extent to which the state features
in the next state changes, based on the predictions of the
environment model that only fits next states. We compute
how predictive a state feature is of rewards by computing
feature importance on a model fitting only rewards.

Although the data understanding tool is based on several
heuristics that are not expected to cover all invalid problem
formulations, in practice it has helped users understand the
problem formulation in early stages of the RL training loop
and has been effective at catching many improperly defined
problems.

5. Model Implementations
Horizon contains implementations of several deep RL algo-
rithms that span to solve discrete action, very large discrete
action, and continuous action domains. We also provide de-
fault configuration files as part of Horizon so that end users
can easily run these algorithms on our included test domains
(e.g. OpenAI Gym (Brockman et al., 2016), Gridworld).
Below we briefly describe the current algorithms supported
in Horizon.

5.1. Discrete-Action Deep Q-Network (Discrete DQN)

For discrete action domains with a tractable number of ac-
tions, we provide a Deep Q-Network implementation (Mnih
et al., 2015). We chose to include DQN in Horizon due
to its relative simplicity and its importance as a building
block for numerous algorithmic improvements (Hessel et al.,
2017). In addition, we provide implementations for several
DQN improvements, including double Q-learning (Van Has-
selt et al., 2016), dueling architecture (Wang et al., 2015),
and multi-step learning (Sutton et al., 1998). We plan on
continuing to add more improvements to our DQN model
(distributional DQN (Bellemare et al., 2017), and noisy nets
(Fortunato et al., 2017)) as these improvements have been
shown to stack to achieve state of the art results on numerous
benchmarks (Hessel et al., 2017).



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

5.2. Parametric-Action Deep-Q Network (Parametric
DQN)

Many domains at Facebook have have extremely large dis-
crete action spaces (more than millions of possible actions)
with actions that are often ephemeral. This is a common
challenge when working on large scale recommender sys-
tems where an RL agent can take the action of recommend-
ing numerous different pieces of content. In this setting,
running a traditional DQN would not be practical. One al-
ternative is to combine policy gradients with a K-NN search
(Dulac-Arnold et al., 2015), but when the number of avail-
able actions for any given state is sufficiently small, this
approach is heavy-handed. Instead, we have chosen to cre-
ate a variant of DQN called Parametric-Action DQN, in
which we input concatenated state-action pairs and output
the Q-value for each pair. Actions, along with states, are rep-
resented by a set of features. The rest of the system remains
as a traditional DQN. Like our Discrete-Action DQN imple-
mentation, we also have adapted the double Q-learning and
dueling architecture improvements to the Parametric-Action
DQN.

5.3. Deep Deterministic Policy Gradients (DDPG) and
Soft Actor-Critic (SAC)

Other domains at Facebook involve tuning of sets of hy-
perparameters. These domains can be addressed with a
continuous action RL algorithm. For continuous action
domains we have implemented Deep Deterministic Policy
Gradients (DDPG) (Lillicrap et al., 2015) and Soft Actor-
Critic (SAC) (Haarnoja et al., 2018). DDPG was selected for
its simplicity and familiarity, while SAC was selected due to
its recently demonstrated SOTA performance on numerous
continuous action domains.

Support for other deep RL algorithms will be a continued
focus going forward.

6. Training
Once we have preprocessed data and have a feature nor-
malization function for each feature, we can begin training.
Training can be done using CPUs, a GPU, or multiple GPUs
across multiple machines. We utilize the PyTorch multi-
GPU functionality to do distributed training (Paszke et al.,
2017).

Using GPU and multi-GPU training we are able to train
large RL models that contain hundreds to thousands of fea-
tures across tens of millions of examples in a few hours
(while doing feature normalization and counterfactual pol-
icy evaluation on every batch).

Typically, the initial RL policy is trained on off-policy data
generated by a non-RL production policy. Once the first RL

policy is trained and deployed to a fraction of production
traffic, subsequent training runs use this on-policy training
data. In practice we have found that A/B test results improve
as the RL model moves from learning on off-policy data
to on-policy data. Figure 1 shows the change in the metric
value of interest during a real A/B test.

Figure 1. Real RL model A/B Test Results. The RL model (test)
outperforms the non-RL model (control) on the push notification
optimization task described in section 9.1. The x-axis shows the
progression of the metric being optimized by day. Note, the per-
formance of the RL model starts out neutral vs. the control, but
quickly exceeds as it re-trains daily on data generated by itself.

Internally, we have recurring training jobs where models
are updated on a daily frequency and training starts with the
previous network weights and optimizer state (for stateful
optimizers, e.g. Adam (Kingma & Ba, 2014)). Our empiri-
cal observations of performance improving as the RL policy
learns from data generated by itself is inline with findings
in literature. Specifically, recent literature has shown that
off-policy RL aglorithims struggle significantly when learn-
ing from fixed batches of data generated under a seperate
policy due to a phenomenon coined ”extrapolation error”
(Fujimoto et al., 2018). Extrapolation error is a phenomenon
in which unseen state-action pairs are erroneously estimated
to have unrealistic values. By retraining daily on self gener-
ated data, we mitigate this problem by forcing learning to be
more ”on-policy”, thus improving the model performance.

7. Model Understanding And Evaluation
There are several features in Horizon that help engineers
gain insight into each step of the RL model building loop
(i.e. training, and evaluation). Below we describe the tools
available at each step of the process:

• Training: Training metrics are surfaced that give in-
sight into the stability and convergence of the training
process.

• Evaluation: Several well known counterfactual pol-
icy evaluation estimates compute the expected perfor-
mance of the newly trained RL model.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

7.1. Training: TD-loss & MC-Loss

Temporal difference loss (TD-loss) measures the function
approximation error. For example, in DQN, this measures
the difference between the expected value of Q given by
the bellman equation, and the actual value of Q output by
the model. Note that, unlike supervised learning where the
labels are from a stationary distribution, in RL the labels
are themselves a function of the model and as a result this
distribution shifts. As a result, this metric is primarily used
to ensure that the optimization loop is stable. If the TD-
loss is increasing in an unbounded way, we know that the
optimization step is too aggressive (e.gs. the learning rate is
too high, or the minibatch size is too small).

Monte-Carlo Loss (MC-loss) compares the model’s Q-
value to the logged value (the discounted sum of logged
rewards). When the logged policy is the optimal policy
(for example, in a toy environment), MC-loss is a very ef-
fective measure of the model’s performance. Because the
logged policy is often not the optimal policy, the MC-loss
has limited usefulness for real-world domains. Similar to
TD-loss, we primarily monitor MC-loss for extreme values
or unbounded increase.

Because RL is focused on policy optimization, it is more use-
ful to evaluate the policy (i.e. what action a model chooses)
than to evaluate the model scores directly. Horizon has
a comprehensive set of Counterfactual Policy Evaluation
techniques.

7.2. Evaluation: Counterfactual Policy Evaluation

Counterfactual policy evaluation (CPE) is a set of methods
used to predict the performance of a newly learned policy
without having to deploy it online (Wang et al., 2017; Bottou
et al., 2013; Dudık et al., 2011; Jiang & Li, 2016; Thomas
& Brunskill, 2016). CPE is important in applied RL as de-
ployed policies affect the real world. At Facebook, we serve
billions of people every day; deploying a new policy directly
impacts the experience they have using Facebook. With-
out CPE, industry users would need to launch numerous
A/B tests to search for the optimal model and hyperparame-
ters. These experiments can be time-consuming and costly.
With reliable CPE, this search work can be fully automated
using hyperparameter sweeping techniques that optimize
for a model’s CPE score. CPE also makes an efficient and
principled parameter sweep possible by combining counter-
factual offline estimates with real-world testing.

Horizon includes implementations of the following CPE
estimators that are automatically run as part of training:

• Step-wise direct method estimator

• Step-wise importance sampling estimator (Horvitz &
Thompson, 1952)

• Step-wise doubly-robust estimator (Dudık et al., 2011)

• Sequential doubly-robust estimator (Jiang & Li, 2016)

• Sequential weighted doubly-robust estimator (Thomas
& Brunskill, 2016)

• MAGIC estimator (Thomas & Brunskill, 2016)

The first three estimators were originally designed to evalu-
ate polices in contextual bandit problems (Auer et al., 2002;
Langford & Zhang, 2008), the special cases of RL problems
where the horizon of episodes is one. The step-wise direct
method (DM) learns a reward function to estimate rewards
that are not logged but expected to incur by the evaluated
policy. The method suffers when the learned reward func-
tion has high bias. The step-wise importance sampling (IS)
estimator (Horvitz & Thompson, 1952) uses action propensi-
ties of logged and evaluated policies to scale logged rewards
in order to correct for different action distributions between
the two policies. The step-wise IS estimator tends to have
high variance (Dudık et al., 2011) and could be biased if
logged action propensities are not accurate. The step-wise
doubly-robust (DR) estimator (Dudık et al., 2011) combines
the ideas of the previous two methods: (1) the bias tends to
be low as long as either logged action propensities or the
learned reward function is accurate; (2) the variance tends
to be lower than the step-wise IS estimator under reasonable
assumptions (Section 4 in (Dudık et al., 2011)). Due to
these estimators’ simplicity in the concept, we still com-
pute them (averaging over steps) when evaluating longer
episodes, though they will be biased.

The last three estimators are specifically designed for eval-
uating policies on longer horizons. The sequential DR es-
timator (Jiang & Li, 2016) inherits the advantage from the
DR method that a low bias can be achieved if either action
propensities or the reward function is accurate. The esti-
mator has also been adapted to use weighted importance
sampling (Thomas & Brunskill, 2016), which is consid-
ered to “better balance it (the bias-variance trade-off) while
maintaining asymptotic consistency”. In the same line of
balancing the bias-variance trade-off, the MAGIC estima-
tor (Thomas & Brunskill, 2016) combines the DR and DM
in a way that directly optimizes the mean squared error
(MSE).

Incorporating the aforementioned estimators into our plat-
form’s training pipeline provides us with two advantages:
(1) all feature normalization improvements tailored to train-
ing are also available to CPE (2) users of our platform get
CPE estimates at the end of each epoch which helps them
understand how more training affects model performance.
The CPE estimators in Horizon are also optimized for run-
ning speed. The implemented estimators incur minimal time
overhead to the whole training pipeline.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

One of the biggest technical challenges implementing CPE
stems from the nature of how batch RL is trained. To de-
crease temporal correlation of the training data, which is
needed for stable supervised learning, a pseudo i.i.d. en-
vironment is created by uniformly shuffling the collected
training data (Mnih et al., 2015). However, the sequential
doubly robust and MAGIC estimators both are built based
on cumulative step-wise importance weights (Jiang & Li,
2016; Thomas & Brunskill, 2016), which require the train-
ing data to appear in its original sequence. In order to satisfy
this requirement while still using the shuffled pseudo i.i.d.
data in training, we sample and collect training samples
during the training workflow. At the end of every epoch
we then sort the collected samples to place them back in
their original sequence and conduct CPE on the collected
data. Such deferral provides the opportunity to calculate
all needed Q-values together in one run, heavily utilizing
matrix operations. As a side benefit, querying for Q-values
at the end of one epoch of training decreases the variance of
CPE estimates as the Q-function can be very unstable during
training. Through this process we are able to calculate reli-
able CPE estimations efficiently. Internally, end users get
plots similar to Figure 2 at the end of training. In the open
source release we surface CPE results in TensorboardX.

Figure 2. Value CPE Results. As part of training, Horizon sur-
faces CPE results indicating the expected performance of the newly
trained policy relative to the policy that generated the training data.
In this plot we see relative value estimates (y-axis) for several
CPE methods vs. training time (x-axis) on a real Facebook dataset.
A score of 1.0 means that the RL and the logged policy match
in performance. These results show that the RL model should
achieve roughly 1.5x - 1.8x as much cumulative reward as the
logged system. As the number of training epochs increases, the
CPE estimates improve.

7.3. TensorboardX

To visualize the output of our training process, we export
our metrics to tensorboard using the TensorboardX plugin
(Huang, 2018). TensorboardX outputs tensors from py-
torch/numpy to the tensorboard format so that they can be
viewed with the Tensorboard web visualization tool.

Figure 3. TensorboardX CPE Results. Example TensorboardX
counterfactual policy evaluation results on the CartPole-v0 envi-
ronment. The x-axis of each plot shows the number of epochs of
training and the y-axis shows the CPE estimate. While we only
display two CPE methods here (MAGIC and Weighted Doubly
Robust), several other CPE methods and loss plots are displayed
in the final Tensorboard dashboard post-training. In these plots
a score of 1.0 means that the RL and the logged policy match in
performance. Here we see the RL model should achieve roughly
1.2x - 1.5x as much cumulative reward as the logged policy.

8. Model Serving
At Facebook, we serve deep reinforcement learning models
in a variety of production applications.

PyTorch 1.0 supports ONNX (Exchange, 2018), an open
source format for model inference. ONNX works by tracing
the forward pass of an RL model, including the feature trans-
formation and the policy outputs. The result is a Caffe2 net-
work and a set of parameters that are serializable, portable,
and efficient. This package is then deployed to thousands of
machines.

At serving time, product teams run our RL models and log
the possible actions, the propensity of choosing each of
these actions, the action chosen, and the reward received.
Depending on the problem domain, it may be hours or even
days before we know the reward for a particular sample.
Product teams typically log a unique key with each sample
so they can later join the logged training data to other data
sources that contain the reward. This joined data is then
fed back into Horizon to incrementally update the model.
Although all of our algorithms are off-policy, they are still
limited based on the policy that they are observing, so it is
important to train in a closed loop to get the best results. In
addition, the data distribution is changing and the model
needs to adapt to these changes over time.

9. Real World Deployment: Notifications at
Facebook

9.1. Push Notifications

Facebook sends notifications to people to connect them
with the most important updates when they matter, which
may include interactions on your posts or stories, updates
about your friends, joined groups, followed pages, interested



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

events etc. Push notifications are sent to mobile devices and
a broader set of notifications is accessible from within the
app/website. It is primarily used as a channel for sending
personalized and time sensitive updates. To make sure we
only send the most personally relevant notifications to peo-
ple, we filter notification candidates using machine learning
models. Historically, we have used supervised learning mod-
els for predicting click through rate (CTR) and likelihood
that the notification leads to meaningful interactions. These
predictions are then combined into a score that is used to
filter the notifications. For example, this score could look
like:

score = weight1 ∗ P (event1) + weight2 ∗ P (event2) + ...

This however, didn’t capture the long term or incremental
value of sending notifications. There can be some signals
that appear long after the decision to send or drop is made
or that can’t be attributed directly to the notification.

We introduced a new policy that uses Horizon to train a
Discrete-Action DQN model for sending push notifications
to address the problems above. The Markov Decision Pro-
cess (MDP) is based on a sequence of notification candidates
for a particular person. The actions here are sending and
dropping the notification, and the state describes a set of fea-
tures about the person and the notification candidate. There
are rewards for interactions and activity on Facebook, with
a penalty for sending the notification to control the volume
of notifications sent. The policy optimizes for the long term
value and is able to capture incremental effects of sending
the notification by comparing the Q-values of the send and
drop action. Specifically, the difference in Q-values is com-
puted and passed into a sigmoid function to create an RL
based policy:

{
send; if sigmoid(Q(send)−Q(drop)) ≥ threshold
drop; if sigmoid(Q(send)−Q(drop)) < threshold

}

If the difference between Q(send) and Q(drop) is large,
this means there is significant value in sending the notifi-
cation. If this difference is small, it means that sending a
notification is not much better than not sending a notifica-
tion.

As an implementation trick, we use a proportional integral
derivative (PID) controller to tune the threshold used in
the RL policy. This helps to keep the RL policy’s action
distribution inline with the previous production policy’s
action distribution.

The model was incrementally retrained daily on data from
people exposed to the model with some action exploration
introduced during serving. The model is updated with
batches of tens of millions of state transitions. We observed

this to help online usage metrics as we are doing off-policy
batch learning. The benefit of this is shown in figure 1.

We observed a significant improvement in activity and mean-
ingful interactions by deploying an RL based policy for
certain types of notifications, replacing the previous system
based on supervised learning.

9.2. Page Administrator Notifications

In addition to Facebook users, page administrators also rely
on Facebook to provide them with timely updates about the
pages they manage. In the past, supervised learning models
were used to predict how likely page admins were to be
interested in such notifications and how likely they were to
respond to them. Although the models were able to help
boost page admins’ activity in the system, the improvement
always came at some trade-off with the notification quality,
e.g. the notification click through rate (CTR). With Horizon,
a Discrete-Action DQN model is trained to learn a policy to
determine whether to send or not send a notification based
on the state represented by hundreds of features. The train-
ing data spans multiple weeks to enable the RL model to
capture page admins’ responses and interactions to the noti-
fications with their managed pages over a long term horizon.
The accumulated discounted rewards collected in the train-
ing allow the model to identify page admins with long term
intent to stay active with the help of being notified. After
deploying the DQN model, we were able to improve daily,
weekly, and monthly metrics without sacrificing notification
quality.

9.3. More Applications of Horizon

In addition to making notifications more relevant on our
platform, Horizon is applied by a variety of other teams at
Facebook. The 360-degree video team has applied Hori-
zon in the adaptive bitrate (ABR) domain to reduce bitrate
consumption without harming people’s watching experi-
ence. This was due to more intelligent video buffering and
pre-fetching.

While we focused our case studies on notifications, Horizon
is a horizontal effort in use or being explored to be used by
many organizations within Facebook.

10. Future Work
The most immediate future additions to Horizon will be new
models & model improvements. We will be adding more
incremental improvements to our current models and plan
on continually adding the best performing algorithms from
the research community.

We welcome community pull requests, suggestions, and
feedback.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

References
Adomavicius, G. and Tuzhilin, A. Toward the next genera-

tion of recommender systems: A survey of the state-of-
the-art and possible extensions. IEEE Transactions on
Knowledge & Data Engineering, (6):734–749, 2005.

Agarwal, A., Bird, S., Cozowicz, M., Hoang, L., Langford,
J., Lee, S., Li, J., Melamed, D., Oshri, G., Ribas, O.,
et al. Making contextual decisions with low technical
debt. arXiv preprint arXiv:1606.03966, 2016.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1):48–77, 2002.

Bellemare, M., Castro, P. S., Gelada, C., Kumar, S., and
Moitra, S. Dopamine. 2018. URL https://github.
com/google/dopamine.

Bellemare, M. G., Dabney, W., and Munos, R. A distri-
butional perspective on reinforcement learning. arXiv
preprint arXiv:1707.06887, 2017.

Bellman, R. A markovian decision process. Journal of
Mathematics and Mechanics, pp. 679–684, 1957.

Bishop, C. M. Mixture density networks. Technical report,
1994.

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X.,
Chickering, D. M., Portugaly, E., Ray, D., Simard, P.,
and Snelson, E. Counterfactual reasoning and learning
systems: The example of computational advertising. The
Journal of Machine Learning Research, 14(1):3207–3260,
2013.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Caspi, I., Leibovich, G., Novik, G., and Endrawis, S. Rein-
forcement learning coach, December 2017. URL https:
//doi.org/10.5281/zenodo.1134899.

Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F.,
and Chi, E. H. Top-k off-policy correction for a rein-
force recommender system. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining, pp. 456–464. ACM, 2019.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-based
and data-efficient approach to policy search. In Proceed-
ings of the 28th International Conference on machine
learning (ICML-11), pp. 465–472, 2011.

Dudık, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. 2011.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P.,
Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., and
Coppin, B. Deep reinforcement learning in large discrete
action spaces. arXiv preprint arXiv:1512.07679, 2015.

Exchange, O. N. N. Onnx github repository, 2018.

Finn, C. and Levine, S. Deep visual foresight for planning
robot motion. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2786–2793. IEEE,
2017.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I.,
Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin,
O., et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep re-
inforcement learning without exploration. arXiv preprint
arXiv:1812.02900, 2018.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. arXiv preprint arXiv:1710.02298,
2017.

Horvitz, D. G. and Thompson, D. J. A generalization of sam-
pling without replacement from a finite universe. Journal
of the American statistical Association, 47(260):663–685,
1952.

Huang, T.-W. Tensorboardx. https://github.com/
lanpa/tensorboardX, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference
on Multimedia, pp. 675–678. ACM, 2014.

Jiang, N. and Li, L. Doubly robust off-policy value evalu-
ation for reinforcement learning. In Proceedings of the
33rd International Conference on International Confer-
ence on Machine Learning (ICML), volume Volume 48,
pp. 652–661. JMLR. org, 2016.

https://github.com/google/dopamine
https://github.com/google/dopamine
https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.5281/zenodo.1134899
https://github.com/lanpa/tensorboardX
https://github.com/lanpa/tensorboardX


Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Langford, J. and Zhang, T. The epoch-greedy algorithm for
multi-armed bandits with side information. In Advances
in neural information processing systems, pp. 817–824,
2008.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gon-
zalez, J., Goldberg, K., and Stoica, I. Ray rllib: A com-
posable and scalable reinforcement learning library. arXiv
preprint arXiv:1712.09381, 2017.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R.,
Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and Dean,
J. Device placement optimization with reinforcement
learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 2430–2439.
JMLR. org, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 7559–7566. IEEE, 2018.

Paszke, A., Gross, S., Chintala, S., and Chanan, G. Pytorch,
2017.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sutton, R. S., Barto, A. G., et al. Reinforcement learning:
An introduction. MIT press, 1998.

Thomas, P. and Brunskill, E. Data-efficient off-policy policy
evaluation for reinforcement learning. In Proceedings of

the 33rd International Conference on International Con-
ference on Machine Learning (ICML), pp. 2139–2148.
JMLR. org, 2016.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In AAAI, volume 2,
pp. 5. Phoenix, AZ, 2016.

Variani, E., McDermott, E., and Heigold, G. A gaussian
mixture model layer jointly optimized with discrimina-
tive features within a deep neural network architecture.
In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4270–4274.
IEEE, 2015.

Wang, Y.-X., Agarwal, A., and Dudik, M. Optimal and
adaptive off-policy evaluation in contextual bandits. In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 3589–3597. JMLR. org,
2017.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanc-
tot, M., and De Freitas, N. Dueling network architec-
tures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller,
M. Embed to control: A locally linear latent dynamics
model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. Spark: Cluster computing with working
sets. HotCloud, 10(10-10):95, 2010.

Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., and Tang,
J. Deep reinforcement learning for page-wise recommen-
dations. In Proceedings of the 12th ACM Conference on
Recommender Systems, pp. 95–103. ACM, 2018a.

Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., and Yin, D.
Recommendations with negative feedback via pairwise
deep reinforcement learning. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1040–1048. ACM, 2018b.

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J.,
Xie, X., and Li, Z. Drn: A deep reinforcement learning
framework for news recommendation. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web,
pp. 167–176. International World Wide Web Conferences
Steering Committee, 2018.


