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ABSTRACT

When automatically generating a sentence description for an image or video, it
often remains unclear how well the generated caption is grounded, or if the model
hallucinates based on priors in the dataset and/or the language model. The most
common way of relating image regions with words in caption models is through
an attention mechanism over the regions that are used as input to predict the next
word. The model must therefore learn to predict the attentional weights without
knowing the word it should localize. This is difficult to train without grounding
supervision since recurrent models can propagate past information and there is
no explicit signal to force the captioning model to properly ground the individual
decoded words. In this work, we help the model to achieve this via a novel cyclical
training regimen that forces the model to localize each word in the image after the
sentence decoder generates it, and then reconstruct the sentence from the localized
image region(s) to match the ground-truth. Our proposed framework only requires
learning one extra fully-connected layer (the localizer), a layer that can be removed
at test time. We show that our model significantly improves grounding accuracy
without relying on grounding supervision or introducing extra computation during
inference for both image and video captioning tasks.

1 INTRODUCTION

Vision and language tasks, such as visual captioning, combine linguistic descriptions with data from
real-world scenes. Deep learning models for such tasks have achieved great success, driven in part by
the development of attention mechanisms that focus on various objects in the scene while generating
captions. The resulting models, however, are known to have poor grounding performance (Liu et al.,
2017), leading to undesirable behaviors such as object hallucinations (Rohrbach et al., 2018), despite
having high captioning accuracy. That is, they often do not correctly associate generated words with
the appropriate image regions (e.g., objects) in the scene, resulting in models that lack interpretability.

Several existing approaches have tried to improve the grounding of captioning models. One class
of methods generate sentence templates with slot locations explicitly tied to specific image regions.
These slots are then filled in by visual concepts identified by off-the-shelf object detectors (Lu et al.,
2018). Other methods have developed specific grounding or attention modules that aim to attend
to the correct region(s) for generating visually groundable word. Such methods, however, rely on
explicit supervision for optimizing the grounding or attention modules (Liu et al., 2017; Zhou et al.,
2019) and require bounding box annotations for each visually groundable word.

In this work, we propose a novel cyclical training regimen that is able to significantly improve
grounding performance without any grounding annotations. The key insight of our work is that
current models use attention mechanisms conditioned on the hidden features of recurrent modules
such as LSTMs, which leads to effective models with high accuracy but entangle grounding and
decoding. Since LSTMs are effective at propagating information across the decoding process, the
network does not necessarily need to associate particular decoded words with their corresponding
image region(s). However, for a captioning model to be visually grounded, the model has to predict
attentional weights without knowing the word to localize.

Based on this insight, we develop a cyclical training regimen to force the network to ground individual
decoded words: decoding — localization — reconstruction. Specifically, the model of the decoding
stage can be any state-of-the-art captioning model; in this work, we follow GVD (Zhou et al.,
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Figure 1: Visual captioning models are often not visually-grounded. As human, we perform localiza-
tion to check whether the generated caption is visually-grounded. If the localized image region is
incorrect, we update the model. However, without the ground-truth grounding annotation, how does
the model know the localized region is incorrect? To overcome this issue, we propose to perform
localization and reconstruction to regularize the captioning model to be visually-grounded without
relying on the grounding annotations.

2019) to extend the widely used Up-Down model (Anderson et al., 2018). At the localization stage,
each word generated by the first decoding stage is localized through a localizer, and the resulting
grounded image region(s) are then used to reconstruct the ground-truth caption in the final stage.
Both decoding and reconstruction stages are trained using a standard cross-entropy loss. Key to
our method, both stages share the same decoder, thereby causing the localization stage to guide the
decoder to improve its attention mechanism. Our method is simple and only adds a fully-connected
layer to perform localization. During inference, we only use the (shared) decoder, thus we do not add
any computational cost.

We benchmark our proposed method on the challenging Flickr30k Entities image captioning
dataset (Plummer et al., 2015) and the ActivityNet-Entities video captioning dataset (Zhou et al.,
2019) on both captioning and grounding performances. In addition to the existing grounding metric
that calculate the grounding accuracy for each object class (Zhou et al., 2019), we further include a
grounding metric that compute grounding accuracy for each generated sentence. This new metric on
each sentence removes the stringency of the original evaluation metric (as we discuss in Sec. 4) and
provides an alternative way of measuring the grounding performance.

Despite the simplicity of our proposed method, we are able to significantly surpass prior unsupervised
models quantitatively and qualitatively on both datasets. We achieve around 18% relative improve-
ments in terms of bridging the gap between the unsupervised baseline and supervised methods on
Flickr30k Entites and around 34% on ActivityNet-Entities. We further find that our method can even
outperform the supervised method on infrequent words, owing to its self-supervised nature.

Contributions summary. We propose object re-localization as a form of self-supervision for
grounded visual captioning and present a cyclical training regimen that re-generates sentences
after re-localizing the objects conditioned on each word, implicitly imposing grounding consistency.
We evaluate our proposed approach on both image and video captioning tasks. We show that the
proposed training regime can boost grounding accuracy over a state-of-the-art baseline, enabling
grounded models to be trained without bounding box annotations, while retaining high captioning
quality across two datasets and various experimental settings. Our code will be publicly released and
can be found in supplemental.

2 RELATED WORK

Visual captioning. Neural models for visual captioning have received significant attention recently
(Anderson et al., 2018; Ma et al., 2018; Lu et al., 2018; Donahue et al., 2015; Venugopalan et al.,
2015; Rohrbach et al., 2017b; Venugopalan et al., 2017; Rohrbach et al., 2017a; Shetty et al., 2017;
Park et al., 2019). Most current state-of-the-art models contain attention mechanisms, allowing the
process to focus on subsets of the image when generating the next word. These attention mechanisms
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can be defined over spatial locations (Vinyals et al., 2015), semantic metadata (Li et al., 2018; Yao
etal., 2017; You et al., 2016; Zhou et al., 2017) or a predefined set of regions extracted via a region
proposal network (Ma et al., 2018; Zanfir et al., 2016; Anderson et al., 2018; Lu et al., 2018; Das
et al., 2013; Kulkarni et al., 2013). In the latter case, off-the-shelf object detectors are first used to
extract object proposals (Ren et al., 2015; He et al., 2017) and the captioning model then learns to
dynamically attend over them when generating the caption.

Visual grounding. Although attention mechanisms are generally shown to improve captioning quality
and metrics, it has also been shown that they don’t really focus on the same regions as a human
would (Das et al., 2017). This make models less trustworthy and interpretable, and therefore creating
grounded image captioning models, i.e., models that accurately link generated words or phrases to
specific regions of the image, has recently been an active research area. A number of approaches
have been proposed, e.g., for grounding phrases or objects from image descriptions (Rohrbach et al.,
2016; Hu et al., 2016; Xiao et al., 2017; Deng et al., 2018; Zhou et al., 2019; Zhang et al., 2019),
grounding visual explanations (Hendricks et al., 2018), visual co-reference resolution for actors in
video (Rohrbach et al., 2017a), or improving grounding via human supervision (Selvaraju et al., 2019).
Recently, Zhou et al. (2019) presented a model with self-attention based context encoding and direct
grounding supervision that achieves state-of-the-art results in both the image and video tasks. They
exploit ground-truth bounding box annotations to significantly improve the visual grounding accuracy.
In contrast, we focus on reinforcing the visual grounding capability of the existing captioning model
via a cyclical training regimen without using bounding box annotations and present a method that can
increase grounding accuracy while maintaining comparable captioning performance with state of the
arts.

Cyclical training. Cycle consistency (Wang et al., 2013; Zhu et al., 2017; He et al., 2016; Chen
& Lawrence Zitnick, 2015) has been used recently in a wide range of domains, including machine
translation (He et al., 2016), unpaired image-to-image translation (Zhu et al., 2017), visual question
answering (Shah et al., 2019), question answering (Tang et al., 2018), image captioning (Chen &
Lawrence Zitnick, 2015), video captioning (Wang et al., 2018; Duan et al., 2018), captioning and
drawing (Huang et al., 2018) as well as domain adaptation (Hosseini-Asl et al., 2019). While the
cyclical training regime has been explored vastly in both vision and language domains, it has not yet
been used for enforcing the visual grounding capability of a captioning model.

3 METHOD

Notation. For a visual captioning task, we denote the input image as I (or input video as V') and
the target sentence as S. Each image (or video) is represented by spatial feature map(s) extracted
by a ResNet-101 model and a bag of regions obtained from Faster-RCNN (Ren et al., 2015) as
R =[r,rs,...,7n] € R¥N_ The target sentence is represented as a sequence of one-hot vectors
y; € R?, where T is the sentence length, ¢t € 1,2, ...,7T, and s is the dictionary size.

3.1 BASELINE

We reimplemented the model used in GVD (Zhou et al., 2019) without self-attention for region
feature encoding (Ma et al., 2018; Vaswani et al., 2017) as our baseline. It is an extension of the
state-of-the-art Up-Down (Anderson et al., 2018) model with the grounding-aware region encoding
(see Appendix A.5). Specifically, our baseline model uses two LSTM modules: Attention LSTM and
Language LSTM. The Attention LSTM identifies which visual representation in the image is needed
for the Language LSTM to generate the next word. It encodes the global image feature v, previous
hidden state output of the Language LSTM h} |, and the previous word embedding e;_; into the
hidden state h;*.

h! = LSTMaun([vg; hE 15 e0-1]), er—1 = Weys_1, )

where [; ] denotes concatenation, and W, are learned parameters. We omit the Attention LSTM input
hidden and cell states to avoid notational clutter in the exposition.

The Language LSTM uses the hidden state h{* from the Attention LSTM to dynamically attend on
the bag of regions R for obtaining visual representations of the image 7, to generate a word y;.

Ztn = Waatcmh(Wah;4 +r,), «a;=softmax(z;), 7 = Ra, 2)
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Figure 2: Proposed cyclical training regimen: decoding — localization — reconstruction. The
decoder attends to the image regions and sequentially generate each of the output words. The
localizer then uses the generated words as input to locate the image regions. Finally, the shared
decoder during reconstruction stage uses the localized image regions to regenerate a sentence that
matches with the ground-truth sentence.

where W, and W, are learned parameters. The conditional probability distribution over possible
output words vy, is computed as:

htL = LST My ang ([, hf‘]), p(yelyr:i—1) = softmax(WOhtL), 3)

where y1.;—1 is a sequence of outputs (y1, ..., y:—1). We refer the Language LSTM and the output
logit layer as the complete language decoder.

3.2 OVERVIEW

Our goal is to enforce the generated caption to be visually grounded, i.e., attended image regions
correspond specifically to individual words being generated, without ground-truth grounding supervi-
sion. Towards this end, we propose a novel cyclical training regimen that is comprised of decoding,
localization, and reconstruction stages, as illustrated in Figure 2.

The intuition of our method is that the baseline network is not forced to generate a correct correspon-
dence between the attended objects and generated words, since the LSTMs can learn priors in the
data instead of looking at the image or propagate information forward which can subsequently be
used to generate corresponding words in future time steps. The proposed cyclical training regimen, in
contrast, aims at enforcing visual grounding to the model by requiring the language decoder (Eq. 3) to
rely on the localized image regions 7! to reconstruct the ground-truth sentence, where the localization
is conditioned only on the generated word from the decoding stage. Our cyclical method can therefore
be done without using any annotations of the grounding itself.

Specifically, let y = D?(7; §,) be the initial language decoder with parameters 6 (Eq. 3), trained to
sequentially generate words y¢. Let G(y¢; 6,) define a localizer unit with parameters 6, that learns
to map (ground) each generated word to region(s) in the image, i.e., 7. = G(yd, R; 6,). Finally, let
yl = D! (L; 0;) be a second decoder, that is required to reconstruct the ground-truth caption using
the localized region(s), instead of the attention computed by the decoder itself. We define the cycle:

yl = D"(G(D(71;0a), R; 0,);:01), 04 =0, “4)

where D¢ and D' share parameters. Although parameters are shared, the inputs for the two language
decoders differ, leading to unique LSTM hidden state values during a run. Note that the Attention
LSTMs and logit layers in the two stages also share parameters, though they are omitted for clarity.

Through cyclical joint training, both D¢ and D' are required to generate the same ground-truth
sentence. They are both optimized to maximize the likelihood of the correct caption:

9 = argemaxz logp(yd; 64) + arggmaxz logp(y!; 6;), (5)
d L

During training, the localizer regularizes the region attention of the reconstructor and the effect is
further propagated to the baseline network in the decoding stage, since the parameters of Attention
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Figure 3: Proposed model architecture (left) and how the model operates during decoding, localization,
and reconstruction stages (right). During the decoding stage, the soft-attention module uses the
hidden state of the Attention LSTM to compute attention weights on image regions. During the
localization and reconstruction stage, the soft-attention module instead uses the generated word from
decoding stage to compute attention weights on image regions.

LSTM and Language LSTM are shared for both decoding and reconstruction stages. Note that the
gradient from reconstruction loss will not backprop to the decoder D¢ in the decoding stage since the
generated words used as input to the localizer are leafs in the computational graph. The network is
implicitly regularized to update its attention mechanism to match with the localized image regions
7y + PL. In Sec. 4.3, we demonstrate that the localized image regions 7! indeed have higher attention
accuracy than 7; when using ground-truth words as inputs for the localizer.

3.3 CyYCLICAL TRAINING

We now describe each stage of our cyclical model in detail, as illustrated in Figure 3.

Decoding. We first use the baseline model presented in Sec. 3.1 to generate a sequence of words
y = [y{,yd, ..., yd], where T is the ground-truth sentence length.

Localization. Following the decoding process, a localizer G is then learned to localize the image
regions from each generated word y;.

e = Weyf, zin = (VVlet)Trn and (3; = softmax(zi), (6)

where e; is the embedding for the word generated during decoding stage at step ¢, r,, is the image
representation of a region proposal, and W, and W, are the learned parameters. Based on the
localized weights 3;, the localized region representation can be obtained by 7! = R(3.

Reconstruction. Finally, the shared language decoder D' relies on the localized region representation
7! to generate the next word. The probability over possible output words is:

hi = LSTMpang([7; B{]),  p(yily1.—1) = softmax(Wohy), )

Given the target ground truth caption yJ.,» and our proposed captioning model parameterized with 6,
we minimize the following cross-entropy losses:

T T
‘C’CE(G) =-N\ Z log(pe(ymyikt—l))]l(y;‘:yfl) —A2 Z log(p9(y:‘y>lkt—l))]l(yj:yi) ®)
t=1

= t=1

decoding loss reconstruction loss

where \; and )\, are weighting coefficient selected on the validation split.

4 EXPERIMENTS

Datasets. We use the Flickr30k Entities image dataset (Plummer et al., 2015) and the ActivityNet-
Entities video dataset (Zhou et al., 2019) for evaluating our proposed approach. Flickr30k Entities
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contains 275k annotated bounding boxes from 31k images associated with natural language phrases.
Each image is annotated with 5 crowdsourced captions. ActivityNet-Entities contains 15k videos
with 158k spatially annotated bounding boxes from 52k video segments.

Captioning evaluation metrics. We measure captioning performance using four language metrics,
including BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam
et al., 2015), and SPICE (Anderson et al., 2016).

Grounding evaluation metrics. Following the grounding evaluation from GVD (Zhou et al., 2019),
we measure the attention accuracy on generated sentences, denoted by Fl,; and Flj,.. In Flgy, a
region prediction is considered correct if the object word' is correctly predicted and also correctly
localized. We also compute F1,,., which only considers correctly-predicted object words. Please see
illustration of the grounding metrics in Appendix A.1.

In the original formulation, the precision and recall for the two F1 metrics are computed for each
object class, and it is set to zero if an object class has never been predicted. The scores are computed
for each object class and averaged by the total number of classes. Such metrics are extremely
stringent as captioning models are generally biased toward certain words in the vocabulary, given the
long-tailed distribution of words. In fact, both the baseline and proposed method generate about 45%
of the annotated object words within the val set in Flickr30k Entities. The grounding accuracy of the
other 55% of the classes are therefore zero, making the averaged grounding accuracy seemingly low.

Measuring grounding per generated sentence. Instead of evaluating grounding on each object
class (which might be less intuitive), we include a new grounding evaluation metric per sentence to
directly reflect the grounding measurement of each generated sentence. The metrics are computed
against a pool of object words and their ground-truth bounding boxes (GT bbox) collected across five
GT captions on Flickr30k Entities (and one GT caption on ActivityNet-Entities). We use the same
Prec,;, Recyy, Precioc, and Recy, as defined previously, but their scores are averaged on each of the
generated sentence. As a result, the Fljoc per sene measures the F1 score only on the generated words.
The model will not be punished if some object words are not generated, but it also needs to maintain
diversity to achieve high captioning performance.

4.1 IMPLEMENTATION AND TRAINING DETAILS

Region proposal and spatial features. Following GVD (Zhou et al., 2019), we extracted 100 region
proposals from each image (video frame) and encode them via the grounding-aware region encoding.
Please refer to Appendix A.5 for more implementation details.

Training. We train the model with ADAM optimizer (Kingma & Ba, 2015). The initial learning rate
is set to le — 4. Learning rates automatically drop by 10x when the CIDEr score is saturated. The
batch size is 32 for Flickr30k Entities and 96 for ActivityNet-Entities. We learn the word embedding
layer from scratch for fair comparisons with existing work (Zhou et al., 2019).

4.2 CAPTIONING AND GROUNDING PERFORMANCE COMPARISON

Flickr30k Entities. We first compare the proposed method with our baseline with or without
grounding supervision on the Flickr30k Entities test set (see Table 1). To train the supervised baseline,
we train the attention mechanism as well as add the region classification task using the ground-truth
grounding annotation, similar to GVD (Zhou et al., 2019). We train the proposed baselines and
our method on the training set and choose the best performing checkpoints based on their CIDEr
score on the val set. Our experimental results are reported by averaging across five runs on the
test set. We report only the mean of the five runs to keep the table uncluttered. When compared
to the existing state of the arts, our proposed baselines achieve comparable captioning evaluation
performances and grounding accuracy. Using the resulting supervised baseline as the upper bound,
our proposed method with cyclical training statistically achieves around 20 to 25% relative grounding
accuracy improvements for both F'l,; and F'lj,c and 10 to 15% for F'l,y per sent and F'lioc per sent
without utilizing any grounding annotations or additional computation during inference.

ActivityNet-Entities. We adapt our proposed baselines and method to the ActivityNet-Entities video
dataset (see Table 2). We can see that our proposed method significantly improved the grounding

!The object words are words in the sentences that are annotated with corresponding image regions.
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Grounding Captioning Evaluation Grounding Evaluation
Method supervision B@l B@4 M C S Fla Fljoc Flan_per_sent Flioc_per_sent
ATT-FCN 64.7 19.9 18.5 - - - - - -

NBT 69.0 27.1 217 575 15.6 - - - -

Up-Down 69.4 273 21.7  56.6 16.0 4.14 12.3
GVD (w/o SelfAttn) 69.2 26.9 22.1 60.1 16.1 3.97 11.6 - -

GVD v 69.9 27.3 225 623 16.5 7.77 222 - -
Baseline* v 69.0 26.8 224 6l.1 16.8 844 (+100%) 2278 (+100%)  27.37 (+100%)  63.19 (+100%)
Baseline* 69.1 26.0 22.1 59.6 16.3 4.08 (+0%) 11.83 (+0%) 13.20 (+0%) 31.83 (+0%)
Cyclical* 69.4 26.9 223 608 16.6 5.11 (+24%) 14.15 (+21%) 15.15 (+14%) 35.56 (+12%)

Table 1: Performance comparison on the Flickr30k Entities test set: ATT-FCN (You et al., 2016),
NBT (Lu et al., 2018), Up-Down (Anderson et al., 2018), GVD (Zhou et al., 2019), and Baseline is
our reimplementation of GVD. *: our results are averaged across five runs. Only numbers reported
by multiple runs are considered to be bolded.

Grounding Captioning Evaluation Grounding Evaluation
Method supervision B@l B@4 M C S Fla Flioe Flan_per_sent Flioc_per_sent
GVD 23.0 2217 10.7 44.6 13.8 0.28 1.13 - -
GVD (w/o SelfAttn) 232 2.28 10.9 45.6 15.0 3.70 12.7
GVD v 239 2.59 11.2 47.5 15.1 7.11 24.1 - -
Baseline* v 23.1 2.13 10.7 45.0 14.6 7.30 (+100%) 25.02 (+100%) 17.88 (+100%) 60.23 (+100%)
Baseline*® 232 222 108 459 151 3.5 (+0%) 12.00 (+0%) 9.41 (+0%) 31.68 (+0%)
Cyclical* 23.7 2.45 111 464 148 4.68 (+26%) 15.84 (+29%) 12.60 (+38%) 44.04 (+43%)

Table 2: Performance comparison on the ActivityNet-Entities val set: GVD (Zhou et al., 2019)
and Baseline is our reimplementation of GVD. *: our results are averaged across five runs. Only
numbers reported by multiple runs are considered to be bolded.

accuracy around 25% to 30% relative grounding accuracy improvements for both F'1,; and F'14c
and around 40% for F'14y1 per sent and F'lioc per sent-

4.3 ANALYSIS

Are localized image regions better than attended image regions during training? Given our
intuition described in Sec. 3, we expect the decoder to be regularized to update its attention mechanism
to match with the localized image regions #; + #.. This indicates that the localized image regions
should be more accurate than the attended image regions by the decoder during training. To verify
this, we compute the attention accuracy for both decoder and localizer over ground-truth sentences
following (Rohrbach et al., 2016; Zhou et al., 2018). The attention accuracy for localizer is 20.4%
and is higher than the 19.3% from the decoder at the end of training, which confirms our hypothesis.

Grounding performance when using a better object detector. In Table 1 and 2 we showed that our
proposed method significantly improved the grounding accuracy for both image and video captioning.
These experimental settings follow the widely used procedure for visual captioning systems: extract
regional proposal features and generate visual captions by attending to those extracted visual features.

0.14 B F1,-Baseline
Grounding Captioning Eval. Grounding Eval. v o = F1,-Cyclical
# supervision M C S Flat Flioe  Fli por sem % = F1,-Supervised
Unrealistically perfect object detector GEJ 010
Baseline v 25.3 76.5 22.3 23.19 52.83 90.76 N oos
Baseline 252 76.3 22.0 20.82 48.74 77.81 :: 006
Cyclical 258 802 227 2527 54.54 81.56 g

Grounding-biased object detector § oos
Baseline v 213 533 15.5 8.23 23.95 66.96 © o002
Baseline 212 524 154 595 1751 42.84 00

Cyclical 212 520 154 687 1965 50.25 1100 101200 201300 300460

Classes grouped by frequency (in descending order)

Table 3: Grounding performance when using better Figure 4: Average F1,;;-score per class as a
object detector on the Flickr30k Entities test set (see function of class frequency.
Table 4 for complete version).
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Baseline: A group of people are Proposed: A group of men in white | Baseline:Ayoung girlina Proposed: A young girl wearing a

watching a game. uniforms are standing in a field with blue coat is sitting in the winter hat and a purple coat is
Wwailching a game.

a watching. snow. smiling at the

Baseline: A white horse is Proposed: A white horse with a

Baseline: Four skiers are skiing Proposed: A skier is jumping over a jumping over an obstacle. rider in a blue helmet and white
down a snowy mountain. snowy hill while other skiers watch. jumping over a hurtle .

Figure 5: Generated captions and corresponding visual grounding regions with comparison between
baseline (left) and proposed approach (right). Our proposed method is able to generate more
descriptive sentences while selecting the correct regions for generating the corresponding words.

One might ask, what if we have a better object detector that can extract robust visual representation
that are better aligned with the word embeddings? Will visual grounding still an issue for captioning?

To answer this, we ran two sets of experiments (Table 3): (1) Perfect object detector: we replace the
ROIs by ground-truth bbox and represent the new ROIs by learning embedding features directly from
ground-truth object words associated with each ground-truth bbox. This experiment gives an estimate
of the captioning and grounding performance if we have (almost) perfect ROI representations (though
unrealistic). We can see that the fully-supervised method achieves an F1,; of only 23%, which further
confirms the difficulty of the metric and the necessity of our grounding metric on a per sentence
level (note that Fljoc per sent Shows 90%). We can also see that baseline (unsup.) still leaves room
for improvement on grounding performance. Surprisingly, our method improved both captioning
and grounding accuracy and surpasses the fully-supervised baseline except on the Fljoc per sen.. We
find that it is because the baseline (sup.) overfits to the training set, while ours is regularized from
the cyclical training. Also, our generated object words are more diverse, which is critical for Fl;
and F1,,.. (2) Grounding-biased object detector: we extract ROI features from an object detector
pre-trained on Flickr30k. Thus, the ROI features and their associated object predictions are biased
toward the annotated object words but do not generalize to predict diverse captions compared to the
original object detector trained from Visual Genome, resulting in lower captioning performance. We
can see that our proposed method still successfully improves grounding and maintains captioning
performance in this experiment setting as well.

How does the number of annotations affect grounding performance? In Figure 4, we present
the average Fl-score on the Flickr30k Entities val set when grouping classes according to their
frequency of appearance in the training set®>. We see that, unsurprisingly, the largest difference in
grounding accuracy between the supervised and our proposed cyclical training is for the 50 most
frequently appearing object classes, where enough training data exists. As the number of annotated
boxes decreases, however, the difference in performance diminishes, and cyclical training appears to
be more robust. Overall, we see that the supervised method is biased towards frequently appearing
objects, while grounding performance for the proposed approach is more balanced among classes.

Qualitative analysis. We additionally conduct qualitative analysis for comparing the baseline
(Unsup.) and the proposed method in Figure 5. Each highlighted word has a corresponding image
region annotated on the original image. The image regions are selected based on the region with the
maximum attention weight in a;. We can see that our proposed method significantly outperformed
the baseline (Unsup.) in terms of both the quality of the generated sentence and grounding accuracy.
In addition, we also discuss a number of correct and incorrect examples of our proposed method in
Figure 8 in the Appendix. Please refer to the Appendix A.4 for further discussions on the qualitative
results and the complete sequence of attended image regions of examples in Figure 5.

3We group the 460 object classes in 10 groups, sorted by the number of annotated bounding boxes.



Under review as a conference paper at ICLR 2020

5 CONCLUSION

Working from the intuition that typical attentional mechanisms in the visual captioning task are not
forced to ground generated words since recurrent models can propagate past information, we devise a
novel cyclical training regime to explicitly force the model to ground each word without grounding
annotations. Our method only adds a fully-connected layer during training, which can be removed
during inference, and we show thorough quantitative and qualitative results demonstrating around
20% or 30% relative improvements in visual grounding accuracy over existing methods for image
and video captioning tasks.
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Grounding Captioning Evaluation Grounding Evaluation
Method supervision B@l B@4 M C S Fla Flioc Flait_per_sent Flioc_per_sent
Unrealistically perfect object detector
Baseline v 75.6 32.0 253 756 223 23.19 (+100%)  52.83 (+100%)  51.43 (+100%)  90.76 (+100%)
Baseline 75.1 32.1 252 763 220 20.82 (+0%) 48.74 (+0%) 43.21 (+0%) 77.81 (+0%)
Cyclical 76.7 32.8 258 802 227 2527 (+188%)  54.54 (+142%) 46.98 (+46%) 81.56 (+29%)
Grounding-biased object detector
Baseline v 65.9 234 213 533 155 8.23 (+100%) 23.95 (+100%)  28.06 (+100%)  66.96 (+100%)
Baseline 66.1 23.5 212 524 154 5.95 (+0%) 17.51 (+0%) 18.11 (+0%) 42.84 (+0%)
Cyclical 65.5 233 212 520 154 6.87 (+40%) 19.65 (+33%) 20.82 (+27%) 50.25 (+31%)

Table 4: Grounding performance when using better object detector on the Flickr30k Entities test set
(results are averaged three runs). Fully-supervised method (Sup.) is used as upper bound, thus its
numbers are not bolded.

Ground-truth: Predicted:

A man is hiking while holding a water bottle.
A man wearing a and hiking shoes is hiking.

A man wearing a is hiking with a dog.

Object words: {man, bottle, hat, shoes} Object words: {man, hat, dog}

( Grounding Metrics Grounding Metrics
Averaged per object class Averaged per generated sentence

] E_
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Figure 6: Illustration of Grounding metrics.

A APPENDIX

A.1 GROUNDING EVALUATION METRICS ILLUSTRATED

To help better understand the grounding evaluation metrics used in this work, we illustrated the
grounding evaluation metrics in Figure 6.

We define the number of object words in the generated sentences as A, the number of object words in
the GT sentences as B, the number of correctly predicted object words in the generated sentences as
C and the counterpart in the GT sentences as D, and the number of correctly predicted and localized
words as E (see illustration of the grounding metrics in Appendix A.1). A region prediction is
considered correct if the object word is correctly predicted and also correctly localized (i.e., IoU with

GT box > 0.5). We then compute two version of the precision and recall as Prec,; = —, Recy =

E E
A B’

E E
Precio. = ok and Recjo. = D

The original grounding evaluation metric proposed in GVD (Zhou et al., 2019) average the grounding
for each object class. We additionally calculate the grounding accuracy for each generated sentence
as demonstrated in the figure. From this example, we can see that while Precisiong; counts dog as
a wrong prediction for the dog object class, the Precision;,. only cares if man and hat are predicted
and correctly localizer (IoU > 0.5).
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Captioning Eval. Grounding Eval.
# M C S Flall Flloc
Baseline (Unsup.) 22.3 62.1 16.0 4.18 11.9
Cyclical 222 622 162  5.63 14.6
- Attention consistency ~ 22.3  61.8 16.2 4.19 11.3
- Localizer using hA 222 618 16.1 4.58 11.3

Table 5: Model ablation study on the Flickr30k Entities val set.

Captioning Evaluation Grounding Evaluation
Method B@l B@4 M C S Fla Flijoc Flai_per sent Flioc per sent
Baseline 69.1 26.0 22.1 59.6 16.3 4.08 11.83 13.20 31.83
Cyclical 69.4 26.9 223 60.8 16.6 5.11 14.15 15.15 35.56
Cyclical (1) 69.7 27.0 222  60.1 16.5 5.14 14.32 15.36 36.33
Cyclical (2) 69.9 27.5 224  62.0 16.6 5.13 13.99 16.30 38.45

Table 6: Performance comparison on the Flickr30k Entities test set. All results are averaged across
five runs.

A.2 ADDITIONAL ANALYSIS

Should we explicitly make attended image regions to be similar to localized image regions?
One possible way to regularize the attention mechanism of the decoder is to explicitly optimize
7 — 7! via KL divergence over two soft-attention weights ; and (3;. The experimental results
are shown in Table 5 (Attention consistency). We use a single run unsupervised baseline with a
fix random seed as baseline model for ablation study. We can see that when explicitly forcing the
attended regions to be similar to the localized regions, both the captioning performance and the
grounding accuracy remain similar to the baseline (unsup.). We conjecture that this is due to the noisy
localized regions at the initial training stage. When forcing the attended regions to be similar to noisy
localized regions, the Language LSTM will eventually learn to not rely on the attended region at each
step for generating sequence of words. To verify, we increase the weight for attention consistency
loss and observed that it has lower grounding accuracy (F1,; = 3.2), but the captioning will reach
similar performance while taking 1.5x longer to reach convergence.

Is using only the generated word for localization necessarily? Our proposed localizer (Eq. 6 and
Figure 3) relies on purely the word embedding representation to locate the image regions. This forces
the localizer to rely only on the word embedding without biasing it with the memorized information
from the Attention LSTM. As shown in the Table 5 (localizer using h*), although this achieves
comparable captioning performance, it has lower grounding accuracy improvement compared to our
proposed method.

Can words that are not visually-groundable handled differently? In the proposed method, all the
words are handled the same regardless of whether they are visually-groundable or not. Yet, typically
words that are nouns or verbs are more likely to be grounded, and words like ”a”, ’the”, efc, are not
visually-groundable.

We explored a few method variants to handle nouns and verbs differently. Mainly, we explored with
two variants. Cyclical (1): the reconstruction loss is only computed when the target word is either
nouns or verbs. Cyclical (2): the localized region representation will be invalid (set to zero) if the
target word is neither nouns nor verbs.

The experimental results are shown in Table 6, 7, and 8. For the first variant, Cyclical (1), we
observed that the captioning performance stays the same while grounding accuracy has a small
improvement. On the other hand, for the second variant, Cyclical (2), we can see that all captioning
scores are improved over baseline with CIDEr improved 2.4. We can also see that grounding
accuracy on per sentence basis further improved as well. We then conducted further experiments
on both ActivityNet-Entities and Flickr30k Entities with unrealistically perfect object detector, but
the improvements however are not consistent. In summary: on the Flickr30k Entities test set, we
observed that CIDEr is better and grounding per sentence better, on the ActivityNet-Entities val set,
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Captioning Evaluation Grounding Evaluation
Method B@l B@4 M C S Fla Flioc Flan per sent Flioc per sent
Baseline 232 222 10.8 459 151 3.5 12.00 9.41 31.68
Cyclical 2317 2.45 1.1 464 148 4.68 15.84 12.60 44.04
Cyclical (2) 23.9 2.58 112 46.6 148 448 15.01 11.53 40.30

Table 7: Performance comparison on the ActivityNet-Entities val set. All results are averaged across
five runs.

Captioning Evaluation Grounding Evaluation
Method B@1 B@4 M C S Fla Flioc Flan per sent Flioc per sent
Unrealistically perfect object detector
Baseline 75.1 32.1 252 763 220 20.82 48.74 43.21 77.81
Cyclical 76.7 32.8 25.8 802 227 2527 5454 46.98 81.56
Cyclical (2) 75.8 322 256 79.0 224 25.65 55.81 48.99 85.99

Table 8: Grounding performance when using better object detector on the Flickr30k Entities test set
(results are averaged three runs).

the captioning performances are about the same but grounding accuracy became worse, and on the
Flickr30k Entities test set with unrealistically perfect object detector, captioning performances are
slightly worse but grounding accuracy improved.

A.3 HUMAN EVALUATION ON GROUNDING

We conduct a human evaluation on the perceptual quality of the grounding. We asked 10 human
subjects to pick the best among two grounded regions (by baseline and Cyclical) for each word. The
subjects have three options to choose from: 1) grounded region A is better, 2) grounded region B
is better, and 3) they are about the same (see Figure 7 for example). Authors or other colleagues
familiar with the proposed method were excluded from the study. Each of the human subjects were
given 25 images, each with a varying number of groundable words. Each image was presented to two
different human subjects in order to be able to measure inter-rater agreement. To avoid being biased
towards the object words defined in the dataset for automatic grounding evaluation, for the study we
define a word to be groundable if it is either a noun or verb. The order of approaches was randomized
for each sentence.

Our experiment on the Flickr30k Entities val set showed that: 28.1% of words are more grounded by
Cyclical, 24.8% of words are more grounded by baseline, and 47.1% of words are similarly grounded.

We also measured inter-rater agreement between each pair of human subjects: 72.7% of ratings are
the same, 4.9% of ratings are the opposite, and 22.4% of ratings could be ambiguous (e.g., one chose
A is better, the other chose they are about the same).

We would also like to make a note that the grounded words judged to be similar largely consisted
of very easy or impossible cases. For example, words like mountain, water, street, etc, are typically
rated to be about the same” since they usually have many possible boxes and is very easy for both
models to ground the words correctly. On the other hand, for visually ungroundable cases, e.g., stand
appears a lot and the subject would choose about the same since the image does not cover the fact
that the person’s feet are on the ground.

We see that the human study results follow the grounding results presented in the paper and show an
improvement in grounding accuracy for the proposed method over a strong baseline. The improvement
is achieved without grounding annotations or extra computation at test time.
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A man and woman, each wearing a white , are walking down the sidewalk.
shirt

O Ais better. QO Ais better. O Ais better.

O Bis better. QO Bis better. O Bis better.
A and B are about A and B are about Aand B are about
the same the same the same

Figure 7: Demonstration of our human evaluation study on grounding. Each human subject is
required to rate which method (A or B) has a better grounding on each highlighted word.

A man_in é red shirt is standing A man in a yellow jacket and blue A man _in an orange shirt and a A man _sits on a chairin front of
on a wooden platform. helmet riding a A hat is standing next to a blue . alake.

A qirl in a purple sweater is A young girl in a pink shirt and jeans An Asian woman is holdinga red A man_in a black shirt is holding
jumping on rocks. is walking down a brick A umbrella_and walking down the up a flag.

sidewalk.

Figure 8: Correct (top) examples and examples with errors (bottom) from the proposed method.

A.4 ADDITIONAL QUALITATIVE RESULTS

In Figure 8, we show a number of correct and incorrect examples of our proposed method. We
observe that while the model is able to generate grounded captions for the images, it may sometimes
overlook the semantic meaning of the generated sentences, for example, A young girl [...] walking
down a brick wall”. Similarly, the model can overlook the spatial relationship between the objects,
for instance, "A man [...] is holding up a flag”. While a flag is present in the scene and was able to
be successfully located with the corresponding word, the man in a black shirt is spatially far from the
flag.

In Figure 9, 10, 11, 12, 13, 14, 15, and 16, we illustrated the sequence of attended image region
when generating each word for a complete image description. At each step, only the top-1 attended
image region is shown. This is the same as how the grounding accuracy is measured. Please see the
description for Figure 9 - 16 for further discussions on the qualitative results.
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A.5 ADDITIONAL IMPLEMENTATION DETAILS

Region proposal features. We use a Faster-RCNN model (Ren et al., 2015) pre-trained on Visual
Genome (Krishna et al., 2017) for region proposal and feature extraction. In practice, besides the
region proposal features, we also use the Conv features (conv4) extracted from an ImageNet pre-
trained ResNet-101. Following GVD (Zhou et al., 2019), the region proposals are represented using
the grounding-aware region encoding, which is the concatenation of i) region feature, ii) region-class
similarity matrix, and iii) location embedding.

For region-class similarity matrix, we define a set of object classifiers as W, and the region-class
similarity matrix can be computed as M, = softmax(W," R), which captures the similarity between
regions and object classes. We omit the ReLLU and Dropout layer after the linear embedding layer for
clarity. We initialize W, using the weight from the last linear layer of an object classifiers pre-trained
on the Visual Genome dataset (Krishna et al., 2017).

For location embedding, we use 4 values for the normalized spatial location. The 4-D feature is then
projected to a ds = 300-D location embedding for all the regions.

Software and hardware configuration. Our code is implemented in PyTorch. All experiments were
ran on the 1080Ti, 2080Ti, and Titan Xp GPUs.

Network architecture. The embedding dimension for encoding the sentences is 512. We use
a dropout layer with ratio 0.5 after the embedding layer. The hidden state size of the Attention
and Language LSTM are 1024. The dimension of other learnable matrices are: W, € R *512,
W, € RI02D512 'y - RO12X1 W, ¢ R1024xde W}/, ¢ R512X512 where the vocabulary size d,,
is 8639 for Flickr30k Entities and 4905 for ActivityNet-Entities.

A.5.1 TRAINING DETAILS.

The hyper-parameters A\; and A5 are set to 0.5 after hyper-parameter search between 0 and 1.

Flickr30k Entities. Images are randomly cropped to 512 x 512 during training, and resized to
512 x 512 during inference. Before entering the proposed cyclical training regimen, the decoder was
pre-trained for about 35 epochs. The total training epoch with the cyclical training regimen is around
80 epochs. The total training time takes about 1 day.

ActivityNet-Entities. Before entering the proposed cyclical training regimen, the decoder was pre-
trained for about 50 epochs. The total training epoch with the cyclical training regimen is around 75
epochs. The total training time takes about 1 day.
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Figure 9: A group of men in white uniforms are standing in a field with a crowd watching. We can see
that our proposed method attends to the sensible image regions for generating visually-groundable
words, e.g., man, uniforms, field, and crowd. Interestingly, when generating standing, the model pays
its attention on the image region with a foot on the ground.

wearing winter

smiling camera

Figure 10: A young girl wearing a winter hat and a purple coat is smiling at the camera. The
proposed method is able to select the corresponding image regions to generate girl, hat, and coat
correctly. We have also observed that the model tends to localize the person’s face when generating
camera.
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Figure 11: A white horse with a rider in a blue helmet and white shirt jumping over a hurdle.
While the model is able to correctly locate objects such as horse, rider, helmet, shirt, and hurdle, it
mistakenly describes the rider as wearing a blue helmet, while it’s actually black, and with white shirt
while it’s blue.

_ shirt

platform

Figure 12: A man in a red shirt is standing on a wooden platform. Our method correctly attends on
the correct regions for generating man, shirt, and platform.
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Figure 13: A man in a yellow jacket and blue helmet riding a bike. The proposed method correctly
generates a descriptive sentence while precisely attending to the image regions for each visually-
groundable words: man, jacket, helmet, and bike.

standing
Y

Figure 14: A man in an orange shirt and a hat is standing next to a blue wall. While our method is
able to ground the generated sentence on the objects like: man, shirt, hat, and wall , it completely
ignores the person standing next to the man in the orange cloth.
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Figure 15: A girl in a white shirt and black pants is jumping on a red couch. Our method is able to
ground the generated descriptive sentence with the correct grounding on: girl, shirt, pants, and couch.

cobblestone

Figure 16: A man in a blue robe walks down a cobblestone street. Our method grounds the visually-
relevant words like: man, robe, and street. We can also see that it is able to locate the foot on ground
for walks.
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