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ABSTRACT

It has been of increasing interest in the field to develop automatic machineries to
facilitate the design process. In this paper, we focus on assisting graphical user
interface (UI) layout design, a crucial task in app development. Given a partial
layout, which a designer has entered, our model learns to complete the layout by
predicting the remaining UI elements with a correct position and dimension as well
as the hierarchical structures. Such automation will significantly ease the effort
of UI designers and developers. While we focus on interface layout prediction,
our model can be generally applicable for other layout prediction problems that
involve tree structures and 2-dimensional placements. Particularly, we design two
versions of Transformer-based tree decoders: Pointer and Recursive Transformer,
and experiment with these models on a public dataset. We also propose several
metrics for measuring the accuracy of tree prediction and ground these metrics in
the domain of user experience. These contribute a new task and methods to deep
learning research.

1 INTRODUCTION

Layout design is a universal task in many domains, ranging from mechanical design to graphical
layouts. There has been a long tradition in developing computer-aided design (CAD) tools in both
academia and industry 1(Hurst et al., 2009). Recently, there has been increasing interest in developing
deep learning models for design generation (Zheng et al., 2019; Ha and Eck, 2017; Li et al., 2019;
Isola et al., 2016). In this paper, we focus on models that can automate graphical user interface (GUI)
layout design, a central task in modern software development such as smartphone apps.

As a designer or app developer creates an interface design, a model recommends UI elements based
on the partial design that has been entered. The automation can significantly ease the effort of
designers and developers for creating interfaces, because it not only reduces the input required but
also brings design knowledge to the process. This is analogous to auto completion that is widely
available in text editing tools, although layout completion is a much more complicated problem. The
task is appealing to the deep learning field for a number of reasons. First, it is non-linear and involves
2D placement of elements, instead of the sequential next word prediction for text completion. Second,
the problem is highly structural that takes structural input—a partial tree—and generates structural
output—a completed tree.

For auto-completion of words, a typical choice of solution is using a language model that is trained to
predict next word wt+1 given previous words w∗t+1 = argmaxP (wt+1|w0, ..., wt). As a generative
model, a language model can essentially complete a sentence by predicting the rest words in an
auto-regressive fashion. Intuitively, we need a layout model—a layout decoder—that predicts the rest
elements and structures needed to complete a given partial tree.

Previously, models for tree structure generation have been proposed for a number of problems such
as language syntax trees (Vinyals et al., 2015b) and program generation (Chen et al., 2018; Dai et al.,
2018). In these problems, the model first encodes the source input via an encoder then generates
tree structures in a target domain via decoding. For layout auto completion, we focus on solely
involving the decoding process, although we can potentially include an encoder to bring in additional
information. Additionally, our problem involves unique aspects of 2D placements.

1https://balsamiq.com, https://www.sketch.com
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We design our layout decoder model based on Transformer, an model that has gained popularity on
a number of tasks (Vaswani et al., 2017). The attention-based nature of Transformer allows us to
easily model structures, similar to Pointer Networks (Vinyals et al., 2015a), and represent 2D spatial
relationships. In particular, we examine two versions of Transformer-based tree decoder: Pointer
Transformer and Recursive Transformer for this task.

Layout completion, as a structural prediction problem, lacks evaluation metrics. We design three sets
of metrics to measure the quality of layout prediction based on the literature and the domain specifics
of user interface interaction. We experimented with these models on a public dataset of over 50K
Android user interface layouts. The experiments indicate that these models can bring values to a user
interface layout design process.

2 RELATED WORK

Recently, there have been increasing efforts in using deep learning to enhance design practice with
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), Variational Auto Encoders
(Kingma and Welling, 2014), and Autoregressive models (Reed et al., 2017) as three major underlying
approaches. There is a rich body of work based on Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014; Isola et al., 2016; Zhu et al., 2017) where a discriminator is often introduced
during training for distinguishing synthesized and real designs, which in the end the model learns
to generate realistic designs. In particular, LayoutGAN (Li et al., 2019) is the most related to our
work in the literature, which takes a collection of randomly parameterized (e.g., positioned and sized)
elements via an encoder and generates the well-arranged elements via a generator. Although we also
generate 2D layouts, our problem is substantially different because it takes in a tree-structured 2D
partial layout and outputs a tree-structured 2D full layout. Our model does not see all the elements as
LayoutGAN does and our input and output involves a tree structure.

Our approach is related to SketchRNN (Ha and Eck, 2017), a model that can generate sketch
drawings. SketchRNN takes a latent representation that is learned via Variational Inference (Kingma
and Welling, 2014) and generate or complete a drawing using an autoregressive decoder (Reed et al.,
2017). Similar to SketchRNN, our decoder is also an autoregressive model. The unique challenge in
our case is the structure representation and generation. We can easily extend our models to take a
varitional input as SketchRNN, although we focus on tree 2D decoding in this paper and leave the
varitional input to future work. pix2code is another work that is related to our effort, which generates
UI specifications from a screenshot pixels (Beltramelli, 2017). It uses a CNN to encode a UI screen
and generate UI specification with an LSTM autoregressive decoder. In this work, a tree structure is
handled as a flattened sequence such that the decoding can be handled in the same way as language
sentences, which a similar treatment is conducted for syntax parse tree prediction (Vinyals et al.,
2015b). Zhu et al. took one step further to propose an attention-based hierarchical decoder (Zhu
et al., 2018) where two LSTMs are used: one for deciding the blocks that the program needs and the
other generating tokens within a block. Our recursive Transformer is applied hierarchically as well
although we use the same model repetitively.

While our target domain is user interface layouts, our problem is fundamentally related to structure
prediction. Previously, much efforts have been devoted to program generation (Chen et al., 2018; Dai
et al., 2018; Si et al., 2019). Jenatton et al. (Jenatton et al., 2017) proposed an approach to predict
tree structures by using Bayesian optimization to combine independent Gaussian Processes with a
linear model that encodes a tree-based structure. An important strategy that was explored previously
is to extend inherently sequential recurrent models such as LSTM to the hierarchical situation (Tai
et al., 2015), which can handle a range of tree structures. Particularly, Chen et al.’s decoder generates
a binary tree by applying LSTM recursively (Chen et al., 2018), with one LSTM for generating the
left child and the other for generating the right child. Dong and Lapata applied LSTM in a recursive
fashion to generate logic forms from language input (Dong and Lapata, 2016). Based on the previous
work, we design our recursive tree decoder based on Transformer (Vaswani et al., 2017) to handle
arbitrary trees. Rather than carrying the hidden state and cell values as recurrent nets, our model can
access all the nodes on the ancestry path via attention. Our positional encoding of 2D coordinates is
similar to Image Transformer (Parmar et al., 2018). It is possible to employ tree positional encoding
as proposed in (Shiv and Quirk, 2019) when we keep the hidden states of all the previously generated
nodes. Our current design for recursive Transformer decoder is to make the ancestry hidden states
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accessible for decoding child nodes. Another version of the tree decoder we experiment with in the
paper is designed based on Pointer Networks (Vinyals et al., 2015a) where each node points to its
parent based on the dot product similarity of their hidden states, which is an simple extension based
on Transformer.

Finally, the problem we focus on is originated from the domain of human computer interaction (HCI)
and graphical layout design. A rich body of works have been produced previously (Hurst et al., 2009).
The idea of UI auto completion has been previously envisioned (Li and Chang, 2011). DesignScape
is a full-fledged tool that provides both refinement suggestions and brainstorming suggestions during
graphical layout design. Recently, Liu et al. mined a rich set of Android apps that produced over
66K UI screens with semantically labeled elements (Liu et al., 2018), including their types, bounding
boxes and the hierarchical tree structures. This dataset lays the foundation for investigating the
problem of structured graphical layout prediction, which constitutes the dataset for our work.

Our work is also nourished by the rich literature in the HCI domain on human performance modeling.
One important aspect that is significantly underexplored for tree prediction is the accuracy metrics.
We design a tree-edit distance metric based on keystroke level GOMS models (Card et al., 1980)
that estimates how much effort it needs for a designer to transform the predicted layout tree into
the ground-truth tree, which indicates the usefulness of a predicted layout tree. Along a few other
metrics, these define a new problem that deep learning models can further tackle.

3 UI LAYOUT COMPLETION PROBLEM

Here, we consider the problem of completing a partial tree, which represents the graphical layout that
has been entered by the designer so far (see Figure 1). A design process starts with an empty design
canvas, which corresponds to a partial tree with only the root node. Each node has several properties,
including its type, e.g., a button or a list, whether the node is terminal, and the rectangular bounds of
the node. As the designer adds more elements to the canvas, the tree grows. Node A is a parent of
node B if A is a non-terminal node and A contains B. The problem is extremely challenging due to
the large space of possibilities.

Figure 1: A schematic illustration of UI layout completion problems. The elements with solid
bounding boxes are already added by the designer, and those with dashed bounding boxes are
predicted to complete the layout given the solid elements—the partial layout. The tree on the right
shows the UI structure with the line colors and styles corresponding the UI elements on the left. The
figure is best viewed in color.

3.1 PROBLEM DEFINITION

A graphical layout tree, Ĝ, contains a collection of |Ĝ| nodes where its i-th node carries both spatial
and semantic properties: (ci, di, ti, pi, bi), 1 ≤ i ≤ |Ĝ| and |Ĝ| is the number of nodes in the tree.
ci is a categorical value that indicates the node type, ci ∈ C where C is the set of possible element
types. di is an integer that represents the depth of the node in the tree. ti is a binary value that
represents whether the node is a terminal node. pi is the index position of the node i’s parent node,
1 ≤ pi ≤ |Ĝ|. bi is a tuple that represents the bounding box of the node, including its top-left and
right-bottom corners: bi = (xi, yi, x̂i, ŷi).
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A partial tree, P̂ , contains a collection of k nodes (k < |Ĝ|). It is required that the root node must
be in P̂ . In addition, the parent of each node in P̂ , except the root node, should also be in P̂ , i.e.,
pj ∈ P̂ if j ∈ P̂ , such that the parent index, pj , is always valid and addresses an existing node in
the partial tree. This requirement matches how a design tool is typically implemented where each
UI element (a node) is added to either the design canvas (the root node) or a container node that is
already attached to the layout tree.

Given the partial tree P̂ , the task here is to predict the full tree Ĝ
′

based on the partial tree: Ĝ
′
= F (P̂ ).

We elaborate on how the function F can be realized with a variety of Transformer decoders in the
next section.

4 TRANSFORMER-BASED TREE DECODERS

Previous work for tree prediction is primarily based on LSTM, a recurrent neural network that is
amenable to handle data with an arbitrary length. In this work, we design all our tree decoder models
based on Transformer (Vaswani et al., 2017), an architecture that has shown advantages on a number
of tasks. Particularly, the positional embedding that Transformer’s attentional mechanism is based on
can be easily extended to represent 2D spatial relationships. We here discuss three versions of the 2D
layout tree decoder model: Vanilla, Pointer and Recursive Transformer.

4.1 REPRESENTING LAYOUT NODES & DECODING STEPS

Before diving into each decoder model, we first discuss the representation of each node in the layout
tree, which is shared by all three decoder models. We use the general concept of embedding to
represent each node (Bengio et al., 2003). More specifically, for node i, we first embed each property
of that node as the following. For the type property, ci, and the terminal property, ti, we embed these
categorical values as Equation 1 and 2:

eci = 1(ci)E
c (1)

eti = 1(li)E
t (2)

where eci and eti are embedding for ci and ti respectively; 1(·) is a one-hot vector and Ec ∈ R|Vc|×|E|

and El ∈ R|Vt|×|E| are the embedding matrix, where |Vc| and |Vt| are the vocabulary size of each
property, and |E| is the embedding dimension. For each coordinate value in bi, we treat them
as discrete values and represent them through a similar embedding process. See Equation 3 for
embedding a coordinate x. A similar treatment is done previously for pixel coordinates in an image
(Parmar et al., 2018).

exi = 1(xi)E
x (3)

where Ex ∈ R|Vx|×|E|/4 and |Vx| is the number of possible x positions. Similarly, we embed the
four coordinates in bi, xi, yi, x̂i, ŷi as exi

i , eyi

i , ex̂i
i , eŷi

i . We concatenate these coordinate embeddings
to form the bounding box embedding (see Equation 4), which form the positional embedding for
using Transformer:

ebi = [exi
i ; eyi

i ; ex̂i
i ; eŷi

i ]. (4)

We then combine these embeddings of node properties to form the final embedding for i-th node
using Equation 5:

ei = ebi + eci + eti. (5)

With each node represented as an embedding vector, we now discuss how the Transformer decoder
model (Vaswani et al., 2017) is used to represent each decoding step. The Transformer decoder model
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is a multi-layer, multihead attention-based architecture. It computes, hl
i, the hidden state of step i at

layer l by attending to the hidden states of all the steps so far in the previous layer (See Equation 9).
For an L-layer Transformer, 0 ≤ l ≤ L, and h0

i = ei. hl
i ∈ R|H| where |H| is the dimension of the

hidden state.

hl
i = Attention(Q(hl−1

i ),K(hl−1
1:i ), V (hl−1

1:i )) (6)

We use Attention to represent the multihead attention operation in Transformer. Q(·), K(·), and V (·)
are feedforward nets to compute queries, keys and values for attention computation (Vaswani et al.,
2017).

4.2 VANILLA TRANSFORMER DECODER

For the vanilla version of Transformer Tree Decoder, similar to previous work for predicting language
parsing trees (Vinyals et al., 2015b), we linearize a tree, based on the preorder depth-first traversal, as
a sequence of tokens. The process adds the opening "(" and closing ")" tokens for the children of
each parent except the case when the parent has a single child, as illustrated in Figure 2 in (Vinyals
et al., 2015b). Note that this representation requires the partial tree to be a prefix of the depth-first
traversal. This data representation transforms tree prediction to a sequence prediction problem.

We can then define the distribution over a sequence of m decoded tree nodes, nj , k+1 ≤ j ≤ k +m,
given a sequence of k nodes from a given partial tree P̂ : nj , 1 ≤ j ≤ k, as the following (see
Equation 7).

P (nk+1, nk+2, ..., nk+m|n1, n2, ..., nk) =

k+m∏
i=k+1

P (ni|n1, n2, ..., nk, nk+1, ..., ni−1)

=

k+m∏
i=k+1

P (ci, ti, xi, yi, x̂i, ŷi|n1, n2, ..., nk, nk+1, ..., ni−1)

=

k+m∏
i=k+1

∏
z∈{ci,ti,xi,yi,x̂i,ŷi}

softmax(Wzh
L
i )

(7)

where ni = (ci, ti, xi, yi, x̂i, ŷi). Wz ∈ R|Vz|×|H| is the output embedding weights for each property
of a node where |Vz| is the vocabulary size for the property and |H| is the embedding dimension. The
model does not directly predict pi. Instead, pi is acquired by reconstructing the tree from brackets.
Note that the opening and closing bracket are considered two special nodes that need to be embedded
and predicted as well. For these two nodes, only ci matters while other node properties are irrelevant.

4.3 POINTER TRANSFORMER DECODER

Instead of introducing the beginning and closing tokens to represent tree hierarchies and being limited
to only the depth-first traversal order, Pointer Networks (Vinyals et al., 2015a) provide a natural
way to represent child-parent relationship. We define n

′

i = (ci, ti, xi, yi, x̂i, ŷi, pi) that includes the
index position of the node’s parent, pi. We then extend Equation 7 to predict pi as the following (see
Equation 8).

P (n
′

k+1, ..., n
′

k+m|n1, ..., nk) =

k+m∏
i=k+1

P (ci, ti, xi, yi, x̂i, ŷi, pi|n1, ..., nk, nk+1, ..., ni−1)

=

k+m∏
i=k+1

[softmax(HL
<ih

L
i )

∏
z∈{ci,ti,xi,yi,x̂i,ŷi}

softmax(Wzh
L
i )]

(8)
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where HL
<i ∈ R(i−1)×|H| is the embedding weights with jth row be hL

j , 1 ≤ j ≤ i− 1.
softmax(HL

<ih
L
i ) computes a softmax over the dot product alignments between the hidden state

of the ith node and that of each previous node.
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Figure 2: A schematic illustration of Recursive Transformer for decoding the tree on the left. The
same Transformer model is applied to decoding the children for each parent, top-down from the root.
The hidden states of ancestry nodes are used for computing attention in downstream layers. The gray
boxes represent Transformer layers and the dashed lines denote attention dependencies. The dashed
nodes are predicted.

4.4 RECURSIVE TRANSFORMER DECODER

The third version of decoder models that we investigate here applies a Transformer decoder model in
a recursive manner by using the same model to decode the children of each parent node (see Figure
2). To do so, we first compute the decoder self attention in a similar way to Equation 9, except that
we only use the parent and sibling nodes for computing attention keys and values. h̃l

s represents the
hidden state after taking the sth sibling node.

h̃l
s = Attention(Q(hl−1

s ),K(hl−1
1:s ), V (hl−1

1:s )) (9)

To leverage the information beyond the parent node and siblings, we involve the ancestry nodes in
the attention computation by attending to their hidden states.

hl
s = Attention(Q(h̃l

s),K(HL
A), V (HL

A)) (10)

where A donates the set of ancestry nodes, and HL
A are the set of hidden states of the ancestry nodes,

which have been previously computed as the decoding is performed in a top-down manner starting
from the root node. The first node fed into the decoder is the parent node. The hidden states hL

s
capture the information beyond the ancestry nodes as these nodes were able to access other nodes in
the tree during attention computation. We can then define the distribution over a sequence of sibling
nodes given the partial tree P̂ in a similar fashion to Equation 7.

The process not only decodes siblings but also produces hidden states that will be accessed in the
downstream layers of the tree as ancestry states. The decoding process starts from decoding the the
children of the root node, because the root node that corresponds the blank design canvas is always
given. For each non-terminal nodes, ti = 0, we apply the same transformer model to decode its
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children. The size of ancestry state grows linearly with respect to the depth of the tree (see the schema
illustration in Figure 2). Note that in this model, we do not flatten the tree representation and we do
not compute parent pointer either. This design allows us to easily batch the training and decoding for
multiple trees at the same time, where multiple trees can be treated as a forest.

5 EVALUATION

In this section, we evaluate the tree decoders we propose for UI layout completion. We start by
describing the dataset we use and elaborate on data processing we conducted. We then define the
metrics for this new problem. Lastly, we report on the results of our experiments.

5.1 DATASETS

We use a public dataset that includes over 60K UI layouts where each element in a layout is labeled
with a set of properties including its type and bounding boxes (Liu et al., 2018). These screens and
hierarchies capture 25 UI component categories, such as text, buttons lists and icons. For each layout,
a corresponding UI hierarchy represents the tree structure of the UI.

We preprocess the data to filter out ill-formed layouts. When a node is out of screen or outside its
parent, we remove the entire layout out of the dataset. We also filter out long-tail examples when a
layout has more than 100 nodes in the tree or a parent has more than 30 children. These long-tail
examples are a small portion of the entire dataset. The resulted dataset has more than 55K examples.
There are 25 type categories, the average number of nodes per layout is 16 (max=49 and min=2),
and the average depth of each layout tree is 3 (max=5, min=2). We also scale down the coordinate
values to the range of 72x128 for the horizontal and vertical dimensions. At this scale, a layout is still
readable for human eyes.

5.2 METRICS

As far as we know, there are no established metrics for the problem of layout design completion. To
evaluate the quality of each decoder model, we propose three metrics, which address different user
scenarios.

Layout Tree Edit Distance The purpose of this metric is to estimate how much effort is required
for a designer to transform a predicted layout into the target one. We implement this metric based on
optimal tree edit distance calculation (Zhang and Shasha, 1989), and ground each tree manipulation
cost into time effort based on Keystroke-level GOMS model (Card et al., 1980; Kieras, 2019).
There are three edit operators in the edit distance calculation: Insertion, Deletion and Change. For
Keystroke-level GOMS analysis, we assume a typical layout editing environment with all the UI
elements presented in a palette. For Insertion, the effort involves the designer selecting a target
element from the palette, dragging and dropping it onto the design canvas and then resizing it to a
target dimension. For Change, if the type is incorrect, the designer needs to right click on the element
and then select a target type. If the location or size is different, the designer needs to correct them by
dragging and dropping as well. Lastly, for Deletion, since the designer can ignore the predictions, the
cost is set to minimal. Note that these cost analyses should not be treated as an absolute measure of
effort. Rather, this metric should be considered as a relative measure to compare models.

Parent-Child Pair Retrieval Accuracy The other measure we propose is to treat the task as an
information retrieval problem (IR) in which we measure how well the model can predict parent-child
pairs against the set of pairs in the ground-truth tree. This metric is less sensitive to the overall
tree structure and is only concerned with local layout structures. A parent-child node pair, (p, s), is
defined as a concatenation of their type and spatial properties, (cp, xp, yp, x̂p, ŷp, cs, xs, ys, x̂s, ŷs).
A pair is successfully retrieved only if all the values in the predicted tuple match a ground-truth tuple.
With this formation, we can compute scores such as precision, recall and their combination F1 scores.

Next-Element Prediction Accuracy Because it is challenging to predict the entire tree, we look
into the metrics that can capture how well a model predicts next element the designer needs. This
is analogous to next word prediction in language models. For this metric, given a prefix of the
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preorder or breadth-first traversal sequence of the ground-truth layout tree, we test if the next element,
immediately following the prefix, is predicted by the model.

5.3 EXPERIMENTS

Model Configuration & Training We implemented these models in TensorFlow based on the
Transformer implementation in Tensor2Tensor2. We split the dataset for training (80%), valida-
tion (10%) and test (10%). Based on the training and the validation datasets, we determined an
optimal model architecture and hyperparameters, including finding the hidden size in the range of
[128, 256, 512] and the number of layers [2, 4, 6] as well as tuning on the learning rates and dropout
ratios. We trained each of the models on a single machine with 8 Tesla P100 or V100 GPU cores,
using a batch size of 128—the number layout trees. The training strategy is similar to the one
introduced by Transformer (Vaswani et al., 2017). We trained these models until they converge.

Partial Tree Setups Our models do not require a design process to be carried out in a certain order.
However, to examine how these models would aid a design, we need to assume a variety of design
flows that a designer might follow in a realistic design process, which would lead to different layout
trees.

One factor is the order that the designer wants to progress a design structurally: the depth-first versus
the breadth-first strategies. For the depth-first strategy, the designer starts by adding the container
elements (parent nodes) and then finishes the child elements in the container before moving onto the
next group of elements. For the breadth-first strategy, the designer will layout top-level elements
before adding more detailed designs to each container. In reality, a designer might alternate between
the two, which we leave for future evaluation. All these strategies are assumed for examining the
models although the models can be used for completing a design of an arbitrary order.

For each of these flows, we vary the size of the partial layout given to the model, including 10%, 50%
and 80% of the full tree. These correspond to the portion of a layout design that has been already
entered by the designer. Given a partial tree, there can be more than one way to complete the layout.
Given a 10%, 50% and 80% BFS partial layout, the mean number of completions of the layout is
2.97, 1.23 and 1.17 respectively. Given a 10%, 50% and 80% DFS partial layout, the mean number
of completions is 3.63, 1.24, and 1.17 respectively.

Results As we can see, Recursive Transformer Decoder outperforms the Pointer Decoder for most
cases when the design flow follows the breadth-first traversal (see Table 3), even though Pointer
Decoder has the direct access to all the partial tree and previously decoded nodes and Recusive
Decoder does not. Vanilla Decoder is not tested for the BFS case because it is only structured for
DFS as discussed earlier. For the depth-first traversal case (see Table 2), both Pointer and Recursive
outputform the Vanilla version with a large margin. However, the trend between Pointer and Recursive
decoders is less obvious than the BFS case. This is understandable because the Recursive Transformer
decodes in a top-down manner, which cannot leverage the given nodes in the partial tree in deeper
layers. The depth-first traversal tree put Recursive decoder in a disadvantageous position. In contrast,
Pointer decoder has direct access to all the nodes in the given partial tree. Nevertheless, Recursive
Transformer still consistently outperforms Pointer Transformer on Next Item prediction with a large
margin.

Table 1: The prediction accuracy for the breadth-first layout design flow. The F1 score (%) for
retrieving parent-child pairs, next item accuracy (%), and Edit distances are calculated given 10%,
50% and 80% of the ground-truth tree as the partial tree. For F1 and Next Item Accuracy, the larger
is the better, while for Edit Distance, the smaller the better.

Models
BFS 10% BFS 50% BFS 80%

F1 Next Edit F1 Next Edit F1 Next Edit

Pointer 11.19 12.25 87.40 61.31 16.76 35.78 87.24 27.56 13.55
Recursive 15.23 18.4 71.26 64.07 26.84 46.47 86.41 36.58 27.22

2https://github.com/tensorflow/tensor2tensor
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Table 2: The prediction accuracy for the depth-first layout design flow. The F1 score (%), next item
accuracy (%), and Edit distances are calculated given 10%, 50% and 80% of the ground-truth tree.

Models
DFS 10% DFS 50% DFS 80%

F1 Next Edit F1 Next Edit F1 Next Edit

Vanilla 5.35 0.74 234.17 40.4 5.35 138.88 68.82 17.03 84.32
Pointer 13.12 20.21 76.44 65.49 12.03 21.41 88.96 22.38 9.13
Recursive 15.05 29.02 62.49 60.79 22.93 52.26 84.65 33.16 34.24

Table 3: The prediction accuracy for the breadth-first layout design flow with a random spatial
ordering. The F1 score (%) for retrieving parent-child pairs, next item accuracy (%), and Edit
distances are calculated given 10%, 50% and 80% of the ground-truth tree as the partial tree. For F1
and Next Item Accuracy, the larger is the better, while for Edit Distance, the smaller the better.

Models
BFS 10% BFS 50% BFS 80%

F1 Next Edit F1 Next Edit F1 Next Edit

Pointer 11.19 12.25 87.40 61.31 16.76 35.78 87.24 27.56 13.55
Recursive 15.23 18.4 71.26 70.0 17.0 22.46 91.8 30.47 11.79

6 DISCUSSIONS

In this paper, we introduce a new problem of auto completion for UI layout design. We formulate the
problem as partial tree completion, and investigate a range of variations of layout decoders based
on Transformer. The two models we proposed, Pointer and Recursive Transformer, gave reasonable
predictions (see Figure 3). We also define task setups and evaluation metrics for examining the quality
of prediction and report the results based on a public dataset.

While both Pointer and Recursive Transformer clearly outperformed the baseline model, we found
that layout completion remains a challenging task. Our model is often able to predict layout structures
and semantic properties well, but less accurate on bounding boxes. There are many UIs with the
same layout structure but different spatial details, while our current eval is using hard metrics. When
relaxing the metrics by only considering structures and semantic properties, all the models got much
better accuracy, e.g., Next item for 80% BFS partial (Recursive: 95.3%, Pointer: 92.9%) and for 80%
DFS partial (Recursive: 93.4%, Pointer: 88.4%, Vanilla: 76.6%). Recursive still shows significant
advantages over other models. We experimented with continuous coordinate output using squared
errors for loss. The results showed that the model with continuous coordinates performs substantially
worse than treating coordinates as one-hot categorical values, which deserves further investigation.
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