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ABSTRACT

Program synthesis of general-purpose source code from natural language specifi-
cations is challenging due to the need to reason about high-level patterns in the
target program and low-level implementation details at the same time. In this work,
we present PATOIS, the first system that allows a neural program synthesizer to
explicitly interleave high-level and low-level reasoning at every generation step. It
accomplishes this by automatically mining common code idioms from a given cor-
pus and then incorporating them into the underlying language for neural synthesis.
We evaluate PATOIS on a challenging program synthesis dataset NAPS and show
that using learned code idioms improves the synthesizer’s accuracy.

1 INTRODUCTION

Program synthesis is a task of translating a specification, expressed as a combination of natural
language and input-output examples, into the most likely program that satisfies this specification
in a given language (Gulwani et al., 2017). In the last decade, it has advanced dramatically thanks
to the appearance of novel neural and neuro-symbolic techniques (Balog et al., 2017; Devlin et al.,
2017b; Kalyan et al., 2018), first mass-market applications (Polozov & Gulwani, 2015), and new
datasets (Devlin et al., 2017a; Ling et al., 2016; Yin et al., 2018a; Zavershynskyi et al., 2018; Zhong
et al., 2017). Figure 1 shows a few examples of typical program synthesis tasks. Most of the successful
applications apply program synthesis to manually crafted domain-specific languages (DSLs), such as
FlashFill and Karel, or to subsets of general-purpose functional languages, such as SQL and Lisp.
However, scaling program synthesis to algorithmic programs in a general-purpose language with
complex control flow remains an open challenge.

We conjecture that one of the main current challenges of synthesizing a program lies in the insufficient
separation between high-level and low-level reasoning. In a typical program generation process, be
it a neural generative model or a symbolic search, the target program is generated in terms of its
surface tokens, which typically represent low-level implementation details of the latent higher-level
patterns in the program. In contrast, expert programmers switch between high-level reasoning (“a
binary search over an array”) and low-level implementation (“m = (l + r)/2”) multiple times
when completing a single function. Reasoning over multiple levels of abstraction simultaneously
complicates the program generation task for a model.

This conjecture is supported by two key observations. First, recent work (Dong & Lapata, 2018;
Murali et al., 2018) has proposed explicitly separating the program synthesis process into sketch
generation and sketch completion. The first stage generates a high-level sketch of the target program,
and the second stage fills in missing details in the sketch. Such separation improves the accuracy

Dataset NL Spec Examples Program

NAPS
(Zavershynskyi
et al., 2018)

Given a string S, if its first
letter is uppercase, then
make all letters of S low-
ercase. Otherwise, make
the first letter of S upper-
case and make other let-
ters of S lowercase.

cAPS →
Caps

TEST →
test
...

(if (&& (>= (array_index S 0) 65)
(<= (array_index S 0) 90))

(lower S)
(concat (upper (array_index S 0))

(lower (substring S 1 -1))))

Figure 1: Representative program synthesis tasks from the NAPS dataset.
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Figure 2: Top: An overview of PATOIS. A miner 1© extracts common idioms from the programs
in a given dataset. The dataset programs are 2© compressed by replacing AST subtrees of idiom
occurrences with new idiom operators. The compressed dataset 3© is used to train a neural generative
model. At inference time, the model 4© generates programs with named idioms, which are inlined
before program execution. Notice that idioms involve named subexpressions, may be repeated,
and may occur at any program level. For clarity, we typeset idioms using an operator-like syntax
Ij(`1, . . . , `k), although they are actually represented as AST fragments with no syntax. Bottom:
AST fragment representation of the idiom I2 in the NAPS dataset grammar. Here sans-serif nodes
are fixed non-terminals, monospaced nodes are fixed terminals, boxed nodes are named arguments.

of program synthesis as compared to an equivalent end-to-end generation. However, it allows only
exactly one stage of high-level reasoning at the root level of the program, whereas (a) real-life
programs commonly involve patterns at all syntactic levels, and (b) programmers often interleave
multiple steps of high-level and low-level reasoning during the implementation process.

Second, many successful applications of program synthesis from input-output examples such as
FlashFill (Gulwani, 2011) rely on a manually designed DSL to make the underlying search process
scalable. Such DSLs contain high-level operators that implement common patterns for solving
subtasks in a given domain. This approach has two key benefits: (i) it compresses the search space,
making most syntactically valid programs in the DSL uniquely express some useful task in the
domain, and (ii) it enables logical reasoning over the domain-specific operator semantics, which
makes the search process of program synthesis more efficient. However, DSL design is laborious and
requires substantial domain expertise. Moreover, DSLs usually do not include domain-independent
patterns such as “binary search” or “updating an entry in a dictionary”.

In this work, we present a system, called PATOIS, that equips a program synthesizer with automatically
learned high-level code idioms (i.e. common program fragments) and trains it to use these idioms
during program generation. While syntactic by definition, code idioms often represent useful semantic
concepts. They compress and abstract the programs by explicitly representing common latent patterns
with new unique tokens. When explicitly named and tagged in the training data, idioms are associated
with language patterns in the associated task specifications, and simplify the generative process for
the synthesis model.

PATOIS has three main components, illustrated in Figure 2. First, it employs nonparameteric Bayesian
inference to learn a DSL of code idioms that frequently occur in a given dataset. Second, it rewrites
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the training dataset, extending each program with explicit usages of named idioms. Finally, it trains a
neural generative model on the rewritten dataset, which allows it to learn a model of idiom usage
conditioned on a task specification. During generation, the model has the ability to emit entire idioms
in a single step, instead of multiple steps of individual AST nodes or program tokens constituting
their definitions. As a result, PATOIS interleaves high-level idioms with low-level tokens at any level
during program synthesis, generalizing beyond fixed top-level sketch generation.

We evaluate PATOIS on NAPS, a challenging dataset for synthesis of large programs from algorithmic
competitions from natural language specifications with optional input-output examples (Zavershyn-
skyi et al., 2018). We find that equipping the synthesizer with a moderate amount of learned idioms
improves its accuracy in generating programs that satisfy the task description.

2 OVERVIEW

2.1 BACKGROUND

Program Synthesis We consider the following formulation of the program synthesis problem.
Assume an underlying programming language L of programs. Each program P ∈ L can be rep-
resented either as a sequence t1 · · · t|P | of its tokens, or, equivalently, as an abstract syntax tree
(AST) T parsed according to the context-free grammar (CFG) G of the language L. A specification
ϕ = 〈X, [〈i1, o1〉, . . . , 〈im, om〉]〉 consists of (i) a natural language task description X , represented
as a sequence of words x1 · · ·x|X|, and (ii) an optional set of input-output examples {〈ik, ok〉}mk=1,
m ≥ 0. The goal of a program synthesis model f : ϕ 7→ P is to generate a program P that (i) maxi-
mizes the conditional probability Pr (P | ϕ) i.e. the most likely program given the specification, and
(ii) satisfies the given input-output examples if available: P (ik) = ok ∀1 ≤ k ≤ m. We also assume
a training set D = {〈ϕj , Pj〉}|D|

j=1, sampled from an unknown true distribution D, from which we
wish to estimate the conditional probability Pr (P | ϕ).
In this work, we consider imperative programming languages L with a known context-free grammar G,
such as Python. We do not impose any restrictions on the architecture of the generative model f . The
PATOIS framework is applicable to sequence-to-sequence models (Sutskever et al., 2014), common in
semantic parsing, as well as to more sophisticated sequence-to-tree models (Yin & Neubig, 2017)
and graph neural networks (Brockschmidt et al., 2018; Li et al., 2016).

Code Idioms The key idea of PATOIS is to simplify program synthesis by learning and explicitly
demarcating common code idioms in the programs P ∈ D. Following Allamanis & Sutton (2014),
we define code idioms as fragments I of valid ASTs T in the CFG G, i.e. trees of nonterminals and
terminals from G that may occur as subtrees of valid parse trees from G. A leaf nonterminal of an
idiom is an “argument”, which must be instantiated with a concrete subtree in each AST instantiation
of this idiom. See Figure 2 for an example.

Additionally, we associate a (non-unique) label ` with each nonterminal in every idiom, and require
that every instantiation of an idiom I in a concrete AST T must have its nonterminals with the same
label instantiated to identical subtrees. Intuitively, this formulation enables the role of idioms as
higher-order functions, allowing them to have “named arguments” that are used multiple times in the
“body” of an idiom.

2.2 THE PATOIS FRAMEWORK

Algorithm 1 shows an overview of the PATOIS framework. At training time, PATOIS performs
the following three steps. First, it mines the most common code idioms Ĩ = {I1, . . . , IN} from
the training set D. Then, it extends the underlying language L with N new high-level operators
representing the idioms, thus creating a higher-level language L′. For this, PATOIS finds all the
occurrences of these idioms in the golden programs and replaces them with the newly introduced
operators. Finally, it trains a neural program synthesis model f on the rewritten dataset.

At inference time, PATOIS is given a task spec ϕ for a desired pro-
gram and a new test input i. Since the model emits programs in the
new language L′ (including new operators representing high-level idioms),
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Algorithm 1 The PATOIS training and inference.
function TRAIN-PATOIS(Dataset D)
1: {I1, . . . , IN} ← MINECOMMONIDIOMS(D)
2: D′ ← ∅
3: for all training instances 〈ϕ, P 〉 ∈ D do
4: P ′ ← REPLACEOCCURRENCES(P, I1, . . . , IN )
5: D′ ← D′ ∪ 〈ϕ, P ′〉
6: Model f ← TRAINMODEL(D′)
7: return f

function INFER-PATOIS (Model f , task spec ϕ, input i,
idioms I1, . . . , IN )

8: Program P ′ ← f(ϕ)
9: P ← INLINEOCCURRENCES(P ′, I1, . . . , IN )

10: return P (i)

PATOIS rewrites the generated program
back in terms of the original language L
before evaluating it on the input i.

The framework in Algorithm 1 includes
four parameterizable components. Of them,
REPLACEOCCURRENCES and INLINEOC-
CURRENCES involve straightforward tree-
to-tree rewriting as defined by the tree sub-
stitution grammar formalism (Allamanis &
Sutton, 2014; Cohn et al., 2010). We detail
our implementation of MINECOMMONID-
IOMS and TRAINMODEL in Section 3 and
Section 4, respectively.

3 MINING CODE IDIOMS

The goal of MINECOMMONIDIOMS is to obtain a set of common and useful AST fragments that we
designate as idioms. The trade-off between frequency and usefulness is crucial: it is trivial to simply
mine commonly occurring short patterns, but they are often meaningless (Aggarwal & Han, 2014).
Instead, we employ and extend the methodology of Allamanis et al. (2018), and frame idiom mining
as a nonparameteric Bayesian problem.

We represent idiom mining as inference over probabilistic tree substitution grammars (pTSG). A
pTSG is a probabilistic context-free grammar extended with production rules that expand to a whole
AST fragment instead of a single level of symbols (Cohn et al., 2010; Post & Gildea, 2009). The
grammar G of our original language L induces a pTSG G0 with no fragment rules and choice
probabilities estimated from the corpus D. To construct a pTSG corresponding to the desired
idiom-extended language L′, we define a distribution G over pTSGs as follows.

We first choose a Pitman-Yor process (Teh & Jordan, 2010) as a prior distribution G0 over pTSGs.
It is a nonparameteric process that has proven to be effective for mining code idioms in prior work
thanks to its modeling of production choices as a Zipfian distribution (in other words, it implements
the desired “rich get richer” effect, which encourages a smaller number of larger and more common
idioms). Formally, it is a “stick-breaking” process (Sethuraman, 1994) that defines G0 as a distribution
for each set of idioms ĨN rooted at a nonterminal symbol N as

Pr(I ∈ ĨN )
def
=

∞∑
k=0

πk δ (I = Ik) Ik ∼ G0 (1)

πk
def
= uk

k−1∏
j=1

(1− uj) uk ∼ Beta (1− d, α+ k · d) (2)

where δ(·) is a delta function, α and d are hyperparameters. See Allamanis et al. (2018) for details.

PATOIS uses G0 to compute a posterior distribution G1 = Pr (G1 | T1, . . . , TN ) via Bayes’ rule,
where T1, . . . , TN are concrete AST fragments in the training set D. As this calculation is com-
putationally intractable, we approximate it using type-based MCMC (Liang et al., 2010). At each
iteration t of the MCMC process, PATOIS generates a pTSG Gt whose distribution approaches G1 as
t → ∞. The final idioms are extracted from the pTSG obtained at the last MCMC iteration.

While the Pitman-Yor process definition helps avoid overfitting the idioms to D, not all sampled
idioms are useful for the subsequent synthesis process. Thus we rank and filter the sampled idioms
before using them to compress the dataset. In this work, we use the ranking function defined by
Allamanis et al. (2018) and introduce a new filtering criterion:

Coverage-entropy ranking ScoreCXE (I)
def
= coverage · cross-entropy gain

=
count(T ∈ D | I ∈ T )

|D|
· 1

|I|
log

PrG1(I)
PrG0

(I)
(3)

Reused argument criterion Filterarg (I)
def
= 1 iff ∃ `j ∈ I s.t. count(` ∈ I | ` = `j) > 1 (4)
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In other words, Filterarg(I) accepts an idiom I for usage iff it contains a named argument `j that is
used more than once in the idiom’s body.

4 USING IDIOMS IN PROGRAM SYNTHESIS

After mining, PATOIS obtains a set of common idioms Ĩ = {I1, . . . , IN}. We wish for our program
synthesis model f to explicitly emit entire idioms Ij during generation instead of individual AST
nodes or program tokens that constitute the definition of Ij as a fragment. We achieve this by (a)
extending the programming language L using the mined idioms as new named operators in the
language, and (b) rewriting the training set D in terms of the found idioms to allow f to learn a
distribution of the idiom usage conditioned on a specification.

First, PATOIS represents each idiom I as a new named operator opI(`1, . . . , `k) where `1, . . . , `k are
unique nonterminal labels in the definition of I and opI is a unique name. It then extends the language
L by adding these new operators at appropriate grammar levels: L′ def

= L ∪
{
opI1

, . . . , opIN

}
.

Next, PATOIS trains a neural synthesis model to emit programs in the new language L′. To provide it
with information about occurrences of idioms in the training set D, we take the simplest approach
and rewrite D by incorporating the new operators opI wherever the corresponding idiomatic code
fragments appear in the ground programs. This rewriting process is non-deterministic, since a
program may contain multiple overlapping occurrences of different idioms and CFG rules. To resolve
this non-determinism, we rely on ranking and filtering of idioms as defined in Section 3, and find
their occurrences greedily.1

After rewriting, PATOIS obtains a new training set D′, which is used to train a neural program
synthesis model f . The approach is orthogonal to the choices of model architecture and training
objectives, as long as the training is supervised by rewritten new golden programs in D′, either as
sequences of tokens or as trees/graphs of AST nodes. In this work, we apply the PATOIS framework
to sequence-to-sequence models, which still obtain competitive performance in numerous semantic
parsing tasks (Dong & Lapata, 2018; Ling et al., 2016). Extending PATOIS to grammar-based tree
decoders would require only to extend the programming language grammar G using the mined idioms.

To apply sequence-to-sequence models to program synthesis with code idioms, we assume a lin-
earization process on the AST T of the target program P . While prior neural synthesis work (e.g. by
Devlin et al. (2017b)) applies sequence-to-sequence models to the terminal tokens of the program, we
assume a linearization that transforms the entire AST, similarly to Jia & Liang (2016). This is because
(i) we want to explicitly expose the model to the new nonterminal choices in the grammar of L′, and
(ii) the new idiom operators in L′ have no new surface syntax, hence their syntactic representation as
a sequence of terminal tokens is identical to the original program. For example, the idiom fragment
in Figure 2 is linearized as

( If ( Invoke ( == ( Invoke array_index `0 `1 ) ) )
( ( Assign `3 ( Invoke (+ `3 1 ) ) ) ... ) ).

In practice, we shorten the linearization as much as possible by omitting obvious nonterminals
(e.g. StatementList), types, inlining single-element lists, etc.

After linearization, each program in the dataset D′ is represented as a sequence Y of tokens y1 · · · y|Y |
where each token yj is either a terminal token t ∈ P , a nonterminal symbol token N ∈ T , or an
idiom operator token opI . PATOIS thus trains a sequence-to-sequence model f : X̂ 7→ Y where

X̂
def
= X || [emb(i1); emb(o1)] || . . . || [emb(im); emb(om)] (5)

is a sequence representation of the specification ϕ (here || denotes concatenation). In pure semantic
parsing (i.e., m = 0) we get X̂ = X . In practice, for the model f we use a bidirectional encoder-

1It is possible to learn the rewriting process jointly with training the synthesis model f . This requires
extending the training process with a non-deterministic oracle: whenever a idiom appears in a golden program,
mark the corresponding token/node choices from L as well as from L′ as correct in the training objective. The
objective would thus be amended to allow multiple correct continuations (i.e. idiom-based rewritings) of the
program being generated in a current training instance, based on the tokens/nodes generated so far. We leave this
instantiation of the PATOIS framework to future work.
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decoder RNN (Sutskever et al., 2014) with multiplicative attention (Luong et al., 2015) and a pointer
mechanism (See et al., 2017) to enable copying tokens from the problem description X .

After generation, the linearized AST Y is transformed back into a tree and all the idioms are inlined
in order to translate the generated program back into the original language L for evaluation.

5 EVALUATION

5.1 DATASETS

We implement and evaluate the PATOIS framework on a challenging program synthesis dataset
NAPS (Zavershynskyi et al., 2018). It is a recent dataset of 19,126 problems in the style of algorithmic
programming competitions, along with their solutions in an imperative Java-like UAST (“Universal
AST”) language. It includes a mix of synthetic and real problems, and every problem description
is paraphrased by an expert to eliminate commonsense or algorithmic reasoning and make the
description more similar to the code that solves the problem. The synthetic (resp. real) descriptions
are on average 173 (resp. 93) words long. Every problem also includes a set of 7± 2 input-output
examples.

5.2 IMPLEMENTATION

Idiom mining We mine the idioms separately using the training set of each dataset. Thus, by
construction, PATOIS cannot indirectly overfit to the test set by learning its idioms, but on the other
hand, it cannot generalize beyond the idioms that occur in the training set.

We run type-based MCMC (Section 3) for 10 iterations with α = 5 and d = 0.5. After ranking and
filtering, we take K top-ranked idioms and use them to rewrite the dataset, as described in Section 4.
We ran ablation experiments with K ∈ {10, 100, 1000}.

Program synthesis model As described in Section 4, for all our experiments we used a sequence-
to-sequence model with attention and pointer mechanism to represent the synthesizer f .2 Specifically,
we use 500-dimensional hidden representations in the encoder and decoder, two-layer RNNs, and a
dropout of 0.2 between the RNN layers.

The models are trained using the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999
for 25,000 steps, with a starting learning rate of 5 × 10−4 and a learning rate decay of 0.5t/5000. We
clip the gradients at 0.5 to improve training stability. For NAPS, we follow the training procedure
of Zavershynskyi et al. (2018) and draw batches of size 100 from synthetic or real problem dataset
uniformly at random during training. At inference time, we run a beam search of size 64 and pick the
best model.

5.3 EXPERIMENTAL RESULTS

In each configuration, we compare the performance of equivalent trained models on the same dataset
with and without idiomatic rewriting by PATOIS. Following Zavershynskyi et al. (2018), we measure
(i) exact match accuracy, (ii) the number of programs that pass all the input-output examples, (iii) the
number of programs that pass at least 50% of the input-output examples. Since generated programs
are not guaranteed to be resource-efficient, we execute them in a sandbox with a timeout of 10× the
runtime of the corresponding ground truth program.

Table 1 shows the experimental results on NAPS test set (NAPS has no predefined dev split). NAPS is
an exceedingly difficult dataset: no model, including ones in prior work (Zavershynskyi et al., 2018),
has ever achieved a non-zero exact match accuracy on it. However, the models can still generate
semantically equivalent programs that satisfy the given input-output examples. Our results show that
including a moderate number of filtered idioms improves the synthesizer’s performance from 3.92%
to 4.74% on the perfect accuracy metric and from 5.57% to 5.77% on the “50% examples” accuracy
metric. Including more idioms worsens the performance, probably due to the increased sparsity in

2Experiments with more advanced tree-based architectures should be completed by the review period; we
will post them on the submission forum and update the draft later.
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Table 1: Experimental results on the NAPS test set.

Model Exact match IO Accuracy 50% IO Accuracy

Baseline Seq2Seq 0.0 3.92 5.57
Seq2Seq + PATOIS (K = 1000, filtering) 0.0 2.06 2.88
Seq2Seq + PATOIS (K = 100, filtering) 0.0 1.65 2.06
Seq2Seq + PATOIS (K = 10, filtering) 0.0 4.74 5.77

the vocabulary. However, we believe that this can be alleviated with learned dataset rewriting (as
described in Section 4), as it will increase the number of observed idiom occurrences in the data.

6 RELATED WORK

Program synthesis & Semantic parsing Program synthesis from natural language and input-
output examples has a long history in Programming Languages (PL) and Machine Learning (ML)
communities (see Gulwani et al. (2017) for a survey). When an input specification is limited to natural
language, the resulting problem is an instance of semantic parsing (Liang, 2016). There has been a
lot of recent interest in applying recurrent sequence-based and tree-based neural networks to semantic
parsing (Dong & Lapata, 2016; Jia & Liang, 2016; Li et al., 2016; Yin & Neubig, 2017; Yin et al.,
2018b). These approaches commonly use insights from the PL literature, such as grammar-based
constraints to reduce the search space, non-deterministic training oracles to enable multiple executable
interpretations of intent, and supervision from program execution. They typically either supervise
the training on one or more golden programs, or use reinforcement learning to supervise the training
from a neural program execution result (Neelakantan et al., 2017). Our PATOIS approach is applicable
to any underlying neural semantic parsing model, as long as it is supervised by a corpus of golden
programs. In this work, we evaluate PATOIS on sequence-to-sequence models, but more advanced
tree-based and graph-based architectures would equally benefit from training on learned code idioms.

Sketch generation Two recent works (Dong & Lapata, 2018; Murali et al., 2018) learn abstractions
of the target program to compress and abstract the reasoning process of a neural synthesizer. Both
of them split the generation process into sketch generation and sketch completion, wherein the first
stage emits a partial tree/sequence (i.e. a sketch of the program) and the second stage fills in the
holes in this sketch. While sketch generation is typically implemented with a neural model, sketch
completion can be either a different neural model or a combinatorial search. In contrast to PATOIS,
both works define the grammar of sketches explicitly by a manual program abstraction procedure and
only allow a single top-level sketch for each program. In PATOIS, we learn the program abstractions
(code idioms) automatically from a given corpus and allow them to appear anywhere in the program,
as is common in real-life programming.

Learning abstractions Concurrently with this work, Ellis et al. (2018) developed a Search, Com-
press & Compile (SCC) framework for automatically learning DSLs for program synthesis from
input-output examples (such as the DSLs used by FlashFill (Gulwani, 2011) and DeepCoder (Balog
et al., 2017)). The workflow of SCC is similar to PATOIS, with three stages: (a) learn new DSL
subroutines from a corpus of tasks, (b) train a neural recognition model that maps a task specification
to a distribution over DSL operators, similarly to DeepCoder (Balog et al., 2017), and (c) use these
operators in a program synthesizer. PATOIS differs from SCC in three aspects: (i) we assume a natural
language specification instead of examples, (i) to handle NL specifications, our synthesizer is a neural
semantic parser model instead of enumerative search, and (iii) we discover syntactic idioms that
compress general-purpose languages instead of extending DSLs. In both systems, the underlying
subroutine mining procedure is a Bayesian process, sampling program fragments that optimize for
the subroutines’ expressiveness and size.

As described previously, our code idiom mining is an extension of the procedure developed by
Allamanis & Sutton (2014); Allamanis et al. (2018). While they are the first to use the tree substitution
grammar formalism and Bayesian inference to find non-trivial common idioms in a corpus of code,
their problem formalization does not involve any application for the learned idioms beyond their
explanatory power. In this work, we show that the mined code idioms correlate with latent semantic
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abstractions that are involved in solving programming tasks, and thus using these idioms as explicit
programming abstractions improves the performance of neural program synthesis models.

7 CONCLUSION

Neural program generation, or synthesis from natural language and input-output examples, has made
tremendous progress over the past years, but state-of-the-art models still struggle with generating
complex programs that involve multiple levels of abstraction. In this work, we present a framework
that allows directly incorporating learned program patterns from the code corpus into the vocabulary
of neural program synthesizer, thus enabling it to emit high-level or low-level program constructs
interchangeably at each generation step. Our current instantiation of the PATOIS framework uses
Bayesian inference to mine common code idioms, inlines them into the dataset as new named
operators, and trains a sequence-to-sequence model on the rewritten linearized ASTs. The same
workflow is applicable to more advanced tree-based and graph-based generative models, as well as to
learned AST rewritings. We show that explicit abstraction of the dataset using idioms improves the
performance of neural program synthesis.

PATOIS represents the first step toward learned abstractions in program synthesis. While code idioms
correlate with latent semantic concepts that we would like to be used during program generation, our
current method does not mine them with the intent to directly optimize their usefulness for program
generation. In future work, we want to alleviate this by jointly learning the mining, rewriting, and
synthesis models, thus optimizing our idioms for their usefulness for synthesis by construction. We
also want to explore incorporating more semantic patterns into the idiom definition, such as natural
language phrases from task descriptions or data flow patterns. We believe that such a workflow will
push neural synthesis models more toward human-like programming by allowing them to reason
directly about semantic program abstractions.
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