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ABSTRACT

We present a new approach to defining a sequence loss function to train a sum-
marizer by using a secondary encoder-decoder as a loss function, alleviating a
shortcoming of word level training for sequence outputs. The technique is based
on the intuition that if a summary is a good one, it should contain the most es-
sential information from the original article, and therefore should itself be a good
input sequence, in lieu of the original, from which a summary can be generated.
We present experimental results where we apply this additional loss function to
a general abstractive summarizer on a news summarization dataset. The result
is an improvement in the ROUGE metric and an especially large improvement
in human evaluations, suggesting enhanced performance that is competitive with
specialized state-of-the-art models.

1 INTRODUCTION

Neural networks are a popular solution to the problem of text summarization, the task of taking as
input a piece of natural language text, such as a paragraph or a news article, and generating a more
succinct text that captures the most essential information from the original.

One popular type of neural network that has achieved state of the art results is an attentional encoder-
decoder neural network See et al. (2017); Paulus et al. (2018); Celikyilmaz et al. (2018). In an
encoder-decoder network, the encoder scans over the input sequence by ingesting one word token at
a time to create an internal representation. The decoder is trained to compute a probability distribu-
tion over next words conditioned on a sequence prefix. A beam search decoder is typically used to
find a high likelihood output sequence based on these conditional word probability distributions.

Since the next word depends heavily on previous words, the decoder has little hope of a correct
distribution over next words unless it has the correct previous words. Thus the decoder is typically
trained using teacher forcing Williams & Zipser (1989), where the reference sequence prefix is
always given to the decoder at each decoding step. In other words, regardless of what distributions
are output by the decoder in training for timesteps (1, ..., t−1), at timestep t, it is given the reference
sequence prefix (y∗1 , ..., y

∗
t−1) and asked to output the distribution P (yt|y∗1 , ..., y∗t−1).

Teacher forcing suffers from exposure bias Ranzato et al. (2016). At test time, the input to the
decoder is not the reference sequence prefix (y∗1 , ..., y

∗
t−1) but a (y1, ..., yt−1) constructed based on

the decoder’s own outputs. Since the decoder is not perfect, as t increases so too does the disparity
between these two sequence prefixes, causing an increasing mismatch between training and test
conditions.

Training at the sequence level can alleviate this discrepancy, but requires a differentiable loss func-
tion. In the Related Work section we review previous efforts.

We present a novel approach to address the problem by defining a loss function at the sequence level
using an encoder-decoder network as a loss function. In training, the summarizer’s beam search
decoded output sequence is fed as input into another network called the recoder. The recoder is an
independent attentional encoder-decoder trained to produce the reference summary.

Our experiments show that adding the recoder as a loss function improves a general abstractive
summarizer on the popular CNN/DailyMail dataset Hermann et al. (2015); Nallapati et al. (2016),
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achieving significant improvements in the ROUGE metric and an especially large improvement in
human evaluations.

2 ATTENTIONAL ENCODER-DECODER MODEL FOR SUMMARIZATION

We first give a high level overview of an attentional encoder-decoder model for sequence to sequence
learning. We present the specific abstractive model of See et al. (2017), which serves as the baseline
model in our experiments for comparison. We chose this as the baseline model because it is a general
and popular model whose concepts have often appeared in other abstractive summarization works,
and its results have often been used as a comparison baseline Chen & Bansal (2018); Li et al. (2018);
Celikyilmaz et al. (2018).

The ideas presented in this paper are largely independent of the specific summarizer and may be
applicable to the training of other sequence to sequence models, many of which are also trained at
the word loss level using teacher forcing. Since our focus is to demonstrate the effectiveness of our
new loss function, the generality of the See et al. (2017) model, which does not account for specifics
of the summarization problem such as article or sentence structure Li et al. (2018), suits our purpose
well.

2.1 INPUTS AND OUTPUTS

The source article and target summary are each treated as a sequence of tokens. A token represents
either a word or a punctuation mark. Let (xi) be the sequence of tokens in an article or input
sequence, where i ranges from 1 to the length of the input sequence. Let (yt) be the sequence of
word tokens in the summary or output sequence, where 1 ≤ t.
The goal is to train a neural network to compute, at each timestep t, the probability distribution
P (yt|y1, ..., yt−1) over next tokens yt given previous tokens (y1, ..., yt−1). In the teacher forcing
training method, the network is trained to minimize the loss Jml, also called the maximum likeli-
hood loss, defined as the average over timesteps t of (Jml)t = − logP (y∗t |y∗1 , ..., y∗t−1) where the
sequence prefix y∗1 , ..., y

∗
t−1 is from the reference summary.

At test time, the network computes P (yt|y1, ..., yt−1) where y1, ..., yt−1 are chosen by a beam
search decoder based on previously output distributions. The sequence ends when the special token
STOP, appended to the end of all reference summaries in training, is output.

2.2 ENCODING

Each xi is embedded as a dense vector wi using a v × d weight matrix Wemb, where v is the size
of the vocabulary and d is the number of hidden dimensions, a hyperparameter. The weights Wemb

are learned as part of training. Each wi is given in order as input into an LSTM to get hidden
states (hfi ), and also in reverse order into another LSTM to get backward states (hbi ). The two state
sequences are then stacked to form hidden states (hi) for reference by the decoding phase’s attention
mechanism.

2.3 DECODING WITH ATTENTION

The decoding phase also uses an LSTM. At each output timestep t, a token y is embedded as a dense
vector using the sameWemb and fed into the LSTM, and the LSTM outputs a probability distribution
over next tokens. For t = 0, y is the special placeholder symbol START. For t > 0, when training
using teacher forcing, y = y∗t−1 is the corresponding token from the reference sequence. When
beam search decoding at test time, y = yt−1 is chosen based on the decoder’s output probabilities at
step t− 1. This difference in information about previous output tokens causes discrepancy between
training and test conditions.

The decoder makes use of an additional piece of information called attention Bahdanau et al. (2015),
which allows it to “read” the encoder’s output states. At each timestep with decoder LSTM state st,
the attention vector is computed as

at = softmax(gT tanh(Whhi +Wsst + battn))
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where g, Wh, Ws, and battn are parameters to be trained. This vector gives a distribution over
encoder states at timestep t. The attentional context vector h∗t , a “reading” of encoder states, is then
computed as

h∗t =
∑
i

(at)ihi

This context vector is concatenated with the LSTM state st to produce the dense vector outputs
qt = V [st, h

∗
t ] + b, where [] denotes concatenation of vectors. Finally, another linear transformation

using a weight matrix V ′ and weight vector b′ is used to map these outputs in the hidden space,
through a softmax layer, into output probabilities over the vocabulary. That is,

Pvocab(yt|y1, ..., yt−1) = softmax(V ′qt + b′)

where V , V ′, b, b′ are trainable parameters.

2.4 POINTER GENERATOR AND COVERAGE

The pointer generator mechanism allows the decoder to copy a token directly from the input. It
is particularly helpful for out-of-vocabulary tokens. The decoder “copies” source tokens with a
distribution based on the attention vector at and mixes it in with weight 1 − pgen, where pgen
is a trainable function of the context vectors, states, and next word input. The final distribution
P (yt|y1, ..., yt−1) is the combined

pgenPvocab(yt|y1, ..., yt−1) + (1− pgen)
∑

i:xi=yt

ati

The summarizer loss function JS = Jml is computed based on this distribution.

In one model variant, a coverage loss Jcov that encourages attention vectors at to look at different
encoder states i is also added to the final loss function. That is, JS = Jml + Jcov.

Full details on the pointer-generator and coverage mechanisms are found in See et al. (2017). We
have omitted them here for brevity. The recoder does not depend on these particulars of the sum-
marization model. We focus on the quantities Pvocab, P , and the total summarizer loss JS. Specific
details of how these are computed are not needed in the following sections.

3 RECODER

We are now ready to present our main contribution. The recoder is a neural network model that takes
the decoded sequence from the summarizer as input and is trained to output the reference summary.
The purpose of the recoder is to serve as a sophisticated loss function to help train the summarizer,
backpropagating errors to the summarizer’s decoded output sequence during training. The intuition
is that a good output sequence from the summarizer should allow the recoder to produce a good
summary.

In principle, the recoder can be any sequence to sequence model that can backpropagate to its inputs.
One obvious choice is to use the same model structure as the summarizer itself. For our experiments
we found it was sufficient to use the same network structure with lower dimensions, with the same
attentional pointer-generator encoder-decoder network as the summarizer, but with half the number
of hidden dimensions (from 256 to 128) and a GRU Cho et al. (2014) instead of an LSTM in the
encoder. This helped reduce the amount of memory required in training.

3.1 RECODER INPUTS

Our first task is to represent the summarizer’s decoded outputs as inputs to the recoder in a way
that is differentiable. A beam search decoder will find a sequence (y1, y2, ...) of high average log
probability − logP (yt|y1, ..., yt−1) over timesteps t. We cannot use this discrete token sequence
directly, but we can look at the underlying signals that determine the choice of each token.

The output token yt is chosen based on the computed probability distributions Pt(yt|y1, ..., yt−1).
Let us denote this distribution by Pt for short. For a beam search of width k, the chosen token yt will
have a probability in Pt that is among the k highest. The exact choice is determined by the beam
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search mechanism, so we do not have a continuous function that relates Pt directly to yt. However,
Pt does determine the range of choices, and feeding it as an input to the recoder can ensure that it
contains the right information. Since each Pt is computed by the summarizer based on the decoded
prefix sequence (y1, ..., yt−1), propagating errors to Pt improves the summarizer via exposure to
what it would see at test time, even if the summarizer is not “aware” of the search mechanism and
cannot optimize for it.

Since Pt has dimensions equal to the size of the vocabulary (v = 50000 in the experiments), we
multiply Pt by a weight matrix to produce a dense representation in a lower dimensional space (128
in the experiments), just as we did for the one-hot token inputs of the summarizer. While we can use
a new weight matrix here, reusing the same embedding matrix Wemb as the summarizer helps avoid
increasing the number of parameters. For the same reason we also reuse the summarizer’s mapping
V ′ back to vocabulary space. Together they account for 90% of the summarizer’s parameters.

The input to the recoder is the sequence (wRt ) where

wRt = PtWemb

with Pt treated as a vector of length v. By training the recoder to output the reference summary,
errors are propagated to its inputs wRt and then to Pt.

Note that although the summarizer’s input wi is in effect Wemb multiplied with one-hot vectors
corresponding to xi, Pt is the output of a softmax function and will be more evenly distributed
than a one-hot vector. Embedded representations wRt will thus be a weighted sum of embedding
vectors instead of individual ones like wi. The recoder can accommodate this difference since it is
an independent network with its own parameters.

3.2 RECODER TRAINING

The recoder can be trained jointly with the summarizer from scratch. We have found that it also
suffices to add the recoder to the pretrained summarizer and continue training jointly using their
combined losses.

The recoder is trained using teacher forcing to produce the reference summary, analogously to Jml.
To be specific, we minimize the loss function JR

ml equal to the average of − logPR(y∗t |y∗1 , ..., y∗t−1)
across timesteps t, where PR denotes the recoder’s output distributions. This maximum likelihood
loss is sufficient for the recoder because its output is never used for decoding at test time.

3.3 LENGTH LOSS

Meaningful recoder output depends on relevant information from the original article being encoded
in its input wRt . However, JR

ml only places requirements on the presence of information. We have
not placed any requirements on brevity, so longer sequences wR

t would likely yield better results
under this loss metric, barring any confounding effects from too much information. The effect is
only constrained because recoder training is performed jointly with the summarizer, and summaries
that are longer than reference summaries would tend to do worse with respect to J s. Intuitively,
JR
ml encourages recall of information. We can add a loss function on length to counterbalance for

precision.

The end of an output sequence is determined when the special STOP token is output. Actual
words are likely to convey more useful information to the recoder, so training using JR

ml lowers
the STOP token’s output probability. We can control length by applying a loss to every other token
for timesteps beyond a desired length. We define the length loss as the average over t of

(Jlen)t = λ · Penalty(t)(1− Pt(STOP))

The function Penalty(t) ≥ 1 defines a penalty curve for timesteps beyond a desired length, while
hyperparameter λ defines the desired tradeoff between precision and recall.

Other ways to control output length are possible, such as by explicitly adding the desired length into
decoder state Kikuchi et al. (2016); Fan et al. (2017), although these methods require changes to the
model.
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Article

some teenagers get driving lessons from their parents . other teens are taught by licensed instructors .
but malia obama is n’t your average 16-year-old : her driving lessons were provided by the u.s. secret service .
asked who taught malia how to drive , first lady michelle obama told celebrity chef and daytime talk-show host rachael ray
in an interview that it was the armed agents who provide around-the-clock security for the family . [...]

pgen cov
first lady michelle obama told celebrity chef and daytime talk-show host rachael ray in an interview
that it was the armed agents who provide around-the-clock security for the family .
mrs. obama has n’t driven herself in seven or eight years .

pgen cov+recoder

malia obama , seen with her mother michelle obama in april 2009 , reportedly was taught how to drive by secret service agents .
but malia obama is n’t your average 16-year-old : her driving lessons were provided by the u.s. secret service .
asked who taught malia how to drive , first lady michelle obama said in an interview
that it was the armed agents who provide around-the-clock security for the family .

reference
michelle obama told talk-show host rachael ray that secret service agents taught her daughter malia how to drive .
mrs. obama has n’t driven herself in seven or eight years , she said .
she added that driving gives malia ’ a sense of normalcy , ’ helping her feel like the rest of her friends who are also driving .

Figure 1: Sample output from the CNN/DailyMail dataset.

3.4 COMBINED LOSS

The final recoder loss JR is comprised of the teacher forced recoder loss and the length loss

JR = JR
ml + Jlen

Abstracting away individual components of the summarizer’s and recoder’s loss functions, the end
to end training is performed using a combination of their losses J :

J = JS + JR

3.5 EXAMPLE

In Figure 1 comparing output summaries from the baseline pgen cov model trained with JS (de-
scribed in Experiments section below) and the pgen cov+recoder model additionally trained
with loss JS+JR, the latter’s output contains mention of “malia”, a relevant name in the article that
also appears in the reference summary.

If we trained only with the recoder loss JR, we would encourage the summarizer to output the right
information, but the output may not conform to a language model, except to the extent it helps make
the output more intelligible for the recoder. For the purpose of illustration, we continued training
the pgen cov model using only JR. It produced the following summary for one of the articles in
the CNN/DailyMail dataset:

boston ’s miserable winter is now also
its snowiest season it had a special
2.9 inches pushed the city into 108.6
inches in one season .

This example output contains some relevant information but has grammatical errors.

4 RELATED WORK

Summarization is a well studied problem, including both extractive Zhou et al. (2018) and abstractive
approaches Zeng et al. (2016); Nallapati et al. (2016); Rush et al. (2015). Many of the existing
abstractive models are based on encoder-decoders and trained using teacher forcing. In this work
we focus on improving the training of models such as these, and we have picked one particular model
as the baseline for improvement. Many aspects of the See et al. (2017) baseline model also appear
in other works. For example, Li et al. (2018) applies a similar attentional coverage mechanism at the
sentence level, while Chen & Bansal (2018); Celikyilmaz et al. (2018) employ a pointer-generator
mechanism at the word or sentence levels.

While more recent work, such as Celikyilmaz et al. (2018); Chen & Bansal (2018); Li et al. (2018),
have reported better ROUGE results on the CNN/DailyMail dataset, we chose the See et al. (2017)
model for its generality. By using an unspecialized model with commonly occurring elements as
baseline, we hope the same concepts can apply to more advanced and specialized models.
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4.1 REINFORCEMENT LEARNING

There are a number of related techniques to address exposure bias from teacher forcing in a sequence
learning problem. One class of such techniques is motivated by the ideas of reinforcement learning
(RL) for training actors to make discrete decisions Paulus et al. (2018); Ranzato et al. (2016); Rennie
et al. (2017); Bahdanau et al. (2016).

The encoder-decoder is analogous to an actor being trained to learn a policy for choosing an output
word at each time step. These decisions are evaluated in training not based on its output probabilities,
but based on a reward function defined on the full output sequence, selected via beam search or other
methods.

Broadly speaking, there are a couple ways to turn rewards into gradients for training probability dis-
tributions at each timestep. One technique is the REINFORCE algorithm, Williams (1992); Rennie
et al. (2017); Paulus et al. (2018), which is based on computing expected future rewards, and the
related technique of minimum risk training in Makino et al. (2019). Another approach is to train an
estimator called a critic model to estimate expected rewards, as in Ranzato et al. (2016); Bahdanau
et al. (2016).

The common key to these approaches is the reward function. Typically the reward is defined based
on n-gram overlap, such as the use of ROUGE Paulus et al. (2018); Rennie et al. (2017), BLEU
Ranzato et al. (2016), or METEOR Bahdanau et al. (2016) scores. The reward function serves as
one component, while a technique such as REINFORCE or a critic model serves as the second
component. Together they turn full sequences into gradients for training the output of each timestep.

Cast in these terms, the recoder serves the role of both components. However, instead of training
toward a heuristic such as ROUGE, the recoder uses an encoder-decoder network, allowing it to
account for complexities in evaluation of quality that are as sophisticated as the model being trained.
An algorithm can only be as good as the metric toward which it is trained, and the recoder helps ease
this upper bound on quality. In short, the key difference from reinforcement learning approaches is
that the recoder replaces a simple reward heuristic with an encoder-decoder and its loss function.

4.2 SEQUENCE OUTPUT LOSS

Another approach to account for the beam search decoded output sequence is Wiseman & Rush
(2016). In this work, beam search is performed as part of training, and a loss is defined that pe-
nalizes the reference sequence prefix falling out of the beam. In Goyal et al. (2017) on two non-
summarization word sequence tasks, a differentiable approximation to beam search is used, and loss
is defined on the sequence using Hamming distance. While these approaches can account for the
decoder test time sequence output, they do not have the flexibility to credit alternative summaries
that differ slightly in phrasing. In comparison, our approach can account for a range of correct sum-
maries that differ from one another, regardless of subsequence overlap. Since the recoder is itself a
type of summarization network, it too can keep pace should further improvements in summarizers
be developed that output more varied summaries of high quality. However, using a differentiable
approximation to beam search enhances backpropagation, and may be a direction for future im-
provement.

The idea of re-encoding an output summary also appears in Chu & Liu (2019), where Straight-
Through Gumbel-Softmax reparameterization Jang et al. (2017) is used to derive a loss function that
allows backpropagation. Their reconstruction cycle loss variant is closest in concept to
our work, except that since there is no reference summary in their problem, they train their analogue
of the recoder to produce the original source. We did not take this approach because in general the
summary is a lossy representation of the original, so training the recoder to produce it would subject
it a large source of error that it cannot possibly reduce.

In the extension Xu et al. (2019) to scheduled sampling for machine translation, a decoded sequence
prefix is used in training to predict the next reference word after weighting over possible alignments,
which allows for flexibility in word ordering. For the summarization problem, alternative summaries
that differ by more than word alignment can still be of high quality.
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4.3 COMPLEMENTARY MODELS

The idea of using a second model to help train the primary model has appeared in other contexts. In
Sennrich et al. (2016); He et al. (2016) for machine translation, the decoded output of a translation
model is fed as input into a second backtranslation model. The two separate models translate back
and forth between source and target languages. We can think of the backtranslation model from
target to source language as serving an analogous role to the recoder, although the aim of these
works has been to generate synthetic training data to augment limited human training data, rather
than to compute gradients directly in an end-to-end model for the purpose of improving the original
network. In contrast to the translation problem, we also cannot expect the original article to be
recreated from the summary, which in general will be a lossy representation of the article, so the
recoder is asked to recreate the reference summary and not the original article. An analogous idea
also appears in the problem of sentence compression Miao & Blunsom (2016); Févry & Phang
(2018), where decoding from a shortened version of a sentence back to the original sentence is
analogous to backtranslating from target to source language.

In the related work Xia et al. (2018) on dual learning, the two models for the forward and backward
problems share parameters to mutual benefit. In contrast, the recoder shares no parameters with the
summarizer except vocabulary mappings, relying instead on direct backpropagation.

In Kim & Rush (2016), the decoded output sequence of a translation model is used to train a student
model to mimic the original model’s output. The aim there is to better distill knowledge into a
smaller student model, not to improve the original model.

5 EXPERIMENTS

We ran experiments to test the effectiveness of adding the loss function to the attentional encoder-
decoder summarization model of See et al. (2017). The Tensorflow code, which is based on their
published code, will also be made public along with trained models.

We started with the provided trained summarizer models and added on recoder losses and continued
training. The additional training consumes about double the memory and computation time, as it
requires a beam search decoding as part of training, using a beam width of 4. The additional time
was about 24 hours for each model, using an Nvidia Tesla P100 GPU on a cloud service provider.
Test times are not affected since the recoder is only used during training.

We ran experiments using the two versions of the model from See et al. (2017), with and without
the coverage mechanism, as baselines. The model with coverage is pgen cov, while pgen omits
the coverage mechanism. In terms of loss functions, pgen cov is trained using a loss of JS =
Jml+Jcov as presented above, while pgen is trained using JS = Jml. In either case, the comparison
models with recoder is additionally trained using JS + JR.

We used the summarizer’s (Pvocab)t directly in place of Pt in computing recoder inputs, bypassing
backpropagation to the pointer-generator mechanism, which is most helpful for out-of-vocabulary
words that will be treated as UNK for wRt anyway. This yielded similar results while converging
faster and requiring less computational resources.

We fixed the length penalty Penalty(t) to be a graduated curve 1.04max(t−0.8L,0) where L is the
length of the reference summary for the example. We experimented with different settings of λ to
see its effects on output lengths and quality. The final setting of λ = 0.1 used for the ROUGE
comparison in Table 1, discussed below, was selected based on its having the highest ROUGE-1
score on the validation set, where scores appeared in the same relative order as on the test set results
shown in Table 2.

5.1 ROUGE COMPARISONS

In line with the baseline and for comparison with previous work, we first assess quality using the
ROUGE metric Lin (2004). The recoder can in principle capture more complex notions of quality
than ROUGE, so this heuristic cannot fully capture all aspects of improvement that the human eval-
uations described below can. Nonetheless, since we do not train toward this metric, it should serve
as an independent indicator of overall quality improvements.
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Model ROUGE-1 ROUGE-2 ROUGE-L
pgen (baseline) 36.08 15.60 32.95
pgen+recoder (λ = 0.1) 37.07 16.02 33.83
pgen cov (baseline) 39.47 17.37 36.26
pgen cov+recoder (λ = 0.1) 40.44 18.15 36.90
lead-3 39.94 17.45 36.23
hierarchical Li et al. (2018) 40.30 18.02 37.36
pgen (postproc) 39.28 17.40 36.13
pgen+recoder (postproc) 39.42 17.30 36.18
pgen cov (postproc) 39.83 17.56 36.61
pgen cov+recoder (postproc) 40.71 18.20 37.12

Table 1: ROUGE F1 scores for 1-gram, 2-gram, and longest common subsequence on CNN/DailyMail test
set. The scores shown for pgen and pgen cov differ slightly from that listed in See et al. (2017), e.g. 39.47
vs 39.53 for ROUGE-1. The pretrained models provided with their published code resulted in lower scores
(differences may be due to changes in the underlying software libraries over time), but we were able to achieve
these comparable scores by further training with a lower learning rate.

The results are shown in Table 1. For pgen, we see that adding the recoder loss results in an
improvement in scores from (36.08, 15.60, 32.95) to (37.07, 16.02, 33.83). For the higher scoring
pgen cov baseline, adding the recoder loss improves scores from (39.47, 17.37, 36.26) to (40.44,
18.15, 36.90). In both cases we see close to a 1 point improvement in ROUGE-1 scores, and a
smaller improvement in ROUGE-2 and ROUGE-L scores versus the baseline.

We see that adding the recoder to two variations of a strong abstractive summarizer has improved
their performance by a significant amount, even though we have not changed the models, only
the loss function used to train them. These scores are also an improvement over using the first 3
sentences from the article as the summary (lead-3), which had outperformed the baseline models.

To get a sense of the magnitude of improvement, we look at one recently published model that uses
the same non-anonymized version of the dataset without further processing, allowing for a relatively
direct comparison. The “hierarchical” model of Li et al. (2018) is an abstractive model that accounts
for sentence level structure. Overall results are close to pgen cov+recoder, which has higher
ROUGE-1 and ROUGE-2 scores but lower ROUGE-L. Applying the recoder to a generic baseline
has resulted in ROUGE gains that match that of a model with more advanced mechanisms.

There are other sophisticated abstractive models with higher reported ROUGE scores, especially
those that are extractive hybrids Chen & Bansal (2018) or employ RL techniques Paulus et al. (2018);
Chen & Bansal (2018); Celikyilmaz et al. (2018), with a high of 41.69 ROUGE-1 score in the
latter work after eliminating duplicate trigrams in post-processing. If we also eliminated duplicate
trigrams in post-processing, the pgen cov+recoder scores would be (40.71, 18.20, 37.12), but a
full treatment should also eliminate duplicate trigrams during training, requiring a far more complex
implementation. These models are generally more tuned to the specific problem and metric, such as
accounting for sentence boundaries or including the ROUGE metric as reward, and it is reasonable
that they achieve higher scores on this metric.

Since the recoder has the potential to capture notions of similarity beyond n-gram overlap as used in
ROUGE, we performed further evaluation using human readers.

Parameter λ Length R-1 R-2 R-L
0 87.1 40.17 18.17 36.80
0.1 74.9 40.44 18.15 36.90
0.2 68.7 40.29 18.02 36.70
0.3 52.1 39.18 17.24 35.52
pgen cov (baseline) 66.1 39.47 17.37 36.26

Table 2: Length and ROUGE scores on CNN/DailyMail test set for different settings of length loss weight λ
on the pgen cov+recoder model.
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Model Overall Readability Relevance
pgen cov+recoder (λ = 0.1) 181 (60.3%) 164 (54.7%) 188 (62.7%)
pgen cov+recoder (λ = 0.2) 165 (55.0%) 160 (53.3%) 166 (55.3%)

Table 3: Human rater preference versus pgen cov on 300 random examples from the CNN/DailyMail test
set. 95% confidence intervals for pgen cov+recoder (λ = 0.1) preference are (54.6%, 65.9%) overall,
(48.8%, 60.4%) readability, and (56.9%, 68.2%) relevance, and (49.2%, 60.7%), (47.5%, 69.1%), (49.5%,
61.1%) respectively for pgen cov+recoder (λ = 0.2).

5.2 HUMAN EVALUATIONS

We ran human evaluation experiments comparing both the pgen cov+recoder λ = 0.1 model
and the λ = 0.2 model against the pgen cov baseline. The λ = 0.2 model’s average summary
length of 68.7 is close to the baseline’s 66.1, which minimizes differences due to length.

From the CNN/DailyMail test set where the model gave beam search decoded outputs that differed
from the baseline (95.2% for λ = 0.1 model and 95.5% for λ = 0.2 model, out of 11490 examples),
we randomly sampled 300 examples from each model. Workers from Amazon Mechanical Turk
were shown up to the first 400 tokens from the article (same as model inputs), the reference summary,
and the two generated summaries, randomly assigned to side A and side B. They were asked to select
an overall preference between A and B, and then preference in terms of readability and relevance.
Since we do not need a confident score for any one example for the purpose of evaluating the model,
we limited each example to one worker and each worker to 5 examples to increase diversity across
example-worker pairs.

Workers were asked the following questions with no other guidance on interpretation:

• Which summary is better overall?

• Which summary has better readability?

• Which summary contains information that is more relevant?

The preference results are shown in Table 3. We see that pgen cov+recoder was preferred
overall 60.3% (λ = 0.1) and 55.0% (λ = 0.2) of the time over the pgen cov baseline. If we
account for the remaining 4.8% and 4.5% of cases where the models gave outputs identical to the
baseline by assigning equal preference to them, the preference ratios would be adjusted slightly to
59.8%, 54.8% overall and 62.1%, 55.1% relevance respectively. The overall improvement may be
largely explained by the improvement in relevance, as the relevance preference was different from
overall preference for only 19 and 25 examples respectively.

The most direct comparison from previous work may be the human evaluations of Chen & Bansal
(2018) that had also compared their model (rnn-ext+abs+RL+rerank), with a ROUGE-1 score
of 40.88, against the pgen cov baseline. They allowed a choice of “Equally good/bad” which
our survey did not, but if we assign those ratings equally to the two sides, their results suggest a
preference for relevance 52.8% of the time.

If we similarly split “equal” ratings in the head-to-head human evaluations in Celikyilmaz et al.
(2018), their overall preference results would be 59.3%. However, their comparison pitted a model
(m7) with a ROUGE-1 score of 41.69 against a baseline model (m3) that had only achieved a
ROUGE-1 score of 38.01, which is lower than our pgen cov comparison baseline.

Differences such as post-processing and survey format make these comparisons imprecise, but they
give us a sense of the magnitude of improvement reflected by a 54.8%-59.8% overall preference
over the pgen cov baseline.

6 CONCLUSION

We have presented the use of an encoder-decoder as a sophisticated loss function for sequence
outputs in the problem of summarization. The recoder allows us to define a differentiable loss
function on the decoded output sequence during training. Experimental results using both ROUGE
and human evaluations show that adding the recoder in training a general abstractive summarizer
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significantly boosts its performance, without requiring any changes to the model itself. In future
work we may explore whether the general concept of using a model as loss function has wider
applicability to other problems.
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