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ABSTRACT

Hierarchical reinforcement learning captures sub-task information to learn mod-
ular policies that can be quickly adapted to new tasks. While hierarchies can be
learned jointly with policies, this requires a lot of interaction. Traditional ap-
proaches require less data, but typically require sub-task labels to build a task
hierarchy. We propose a semi-supervised constrained clustering approach to alle-
viate the labeling and interaction requirements. Our approach combines limited
supervision with an arbitrary set of weak constraints, obtained purely from ob-
servations, that is jointly optimized to produce a clustering of the states into sub-
tasks. We demonstrate improvement in two visual reinforcement learning tasks.

Sequential decision-making problems are an important domain within artificial intelligence. With
complex tasks, it is necessary to model such tasks in a hierarchical manner, consisting of a set
of sub-tasks that capture sub-goals. Hierarchical methods have a rich history in artificial intelli-
gence (Sutton et al., 1999; Mehta et al., 2008; Vezhnevets et al., 2017; Banihashemi et al., 2018),
and approaches for state abstractions result in more generalizable, efficient solutions.

While there are a variety of approaches using state abstraction (Bacon et al., 2017; Florensa et al.,
2018; Murali et al., 2016; Hamidi et al., 2015), they require several assumptions. For example,
there are several methods that use some (potentially weak) sub-task labels in order to model the
decomposition. Other methods strive to find certain classes of sub-tasks or sub-task separators (e.g.
bottlenecks (McGovern & Barto, 2001; Mannor et al., 2004; Simsek et al., 2005)), which limits their
generality. Recent approaches such as generative models for curriculum learning (Florensa et al.,
2018) or hierarchical reinforcement learning, on the other hand, require interaction or simulators
that can perform roll outs in the environment.

We formulate sub-task discovery as a constrained clustering (Wagstaff & Cardie, 2000; Basu et al.,
2008) problem, where limited supervision is combined with an arbitrary set of weak constraints
obtained purely from observations and jointly optimized to produce a distinct clustering of the states
into sub-tasks. These weak constraints are purely unsupervised, assuming no sub-task labels, and
do not require any simulators. Specifically, we leverage recent advancements in deep learning-
based constrained clustering (Hsu & Kira, 2016; Hsu et al., 2019) and show that we are able to
optimize over a set of noisy weak pair-wise constraints between states (representing noisy estimates
of whether two states are similar or dissimilar, i.e. belong to the same sub-task or not).

While previous work has utilized temporal information to generate constraints over objects in
video (Wu et al., 2013), we explore a more general set of unsupervised constraints that can be
learned in decision-making tasks. Specifically, we demonstrate two examples of constraints: 1) lo-
cal constraints that capture temporal information, representing whether sequences of states belong in
the same sub-task, and 2) global constraints that capture longer range similarity obtained by utilizing
policy features as well as a trained autoencoder to compute distances between states.

We make the following contributions: 1) We propose a general framework that combines weak evi-
dence via constraints in a manner that is both scalable and end-to-end, 2) We define a novel way to
learn weak constraints in decision-making tasks that can be automatically generated from observa-
tions, and 3) We demonstrate that the approach can work across two complex visual environments.
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CONSTRAINED SUB-TASK DISCOVERY

Sequential decision-making problems involve an agent interacting in the environment by iteratively
observing the current state of the world st and selecting actions at. A trajectory is a sequence of
observations and actions over time, s0, a0, s1, a1, ...an−1, sn. Trajectories may involve repeated
tasks in complex environments. Representing the task structure of a domain yields significant gains
when learning a policy. However, it is challenging to discover this task structure with limited labels.

The key feature of our Constrained Sub-task Discovery (CSD) approach is that it learns from limited
(or no) labeled data by generating weak constraints that do not require sub-task labels or access
to a simulator for evaluation. Thus, CSD, learns pairwise constraints only from the observations
of the agent’s trajectories. The pairwise similarity constraints intuitively represent whether two
observed states belong in the same sub-task (i.e., similar) or different sub-tasks (i.e., dissimilar).
CSD generates different types of weak constraints that capture the relationships between states in
a trajectory and states across trajectories. It jointly optimizes over these constraints, yielding a
clustering or sub-task assignment. We first describe the method for generating constraints and then
discuss how the constraints are naturally combined in the constrained clustering algorithm.

Constraint Generation
In order to effectively generate similarity constraints over the trajectories, CSD requires features that
capture the agent’s behavior. Thus, we use imitation learning, which directly learns the distribution
from states to actions using the agent’s trajectories, to approximate the agent’s policy (π). While
we capture this policy with Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997),
which utilizes a hidden state h to retain memory from the trajectory, any imitation learning approach
that generates intermediate features can be used to approximate this policy.

The LSTM representation, ht, at time t depends on the current state st and the LSTM representation
at the previous state ht−1. The policy is learned over this representation.

ht = LSTM([ht−1, st]) P (a|ht) ≈ π(st)
CSD uses h and P as well as a trained autoencoder to generate different types of constraints over
the trajectories (c). We now describe the generation of our temporal and state-based constraints.

Temporal Constraints (Local)
Temporal constraints, ctc, intuitively capture the idea that states occurring close in time are more
likely to be part of the same sub-tasks. Note that these local constraints are only created across
states within a single episode. Instead of creating constraints across the entire trajectory, our ap-
proach approximates changes (or transitions) in sub-task using the learned expert policy. Inspired
by traditional approaches (McGovern & Barto, 2001), we use entropy to find states with high uncer-
tainty. We use this signal to approximate bottleneck states that have been traditionally identified as
useful sub-goals (or transitions between sub-tasks).

First, CSD identifies bottleneck states B = {sb0 , sb1 , ..., sbm} where the entropy of the learned
policy is greater than threshold τ tc and highest within a sliding window:

H(P (hst)) ≥ max {τ tc, max
sw∈W

H(P (hsw))}

where W represents the states in the sliding window and H is entropy, H(P (hs)) =
−
∑

a∈A P (a|hs) logP (a|hs).

B contains the states with the highest level of uncertainty. We use B to generate the following
similarity constraints locally within a single episode1

ctcij = 1 ∀bd ∈ B s.t. d < i, j or i, j < d , ctcij = −1 ∃! bd ∈ B s.t. i < d < j or j < d < i

where ctcij = 1 when states si and sj are similar and ctcij = −1 when they are dissimilar. Intuitively,
similarity constraints are generated among states that lie between bottleneck states, i.e., there is no
bottleneck state between them. Dissimilar constraints are generated among states that are separated
by a single bottleneck.

State-based Constraints (Global)
State-based constraints, csc , capture both repeated sub-tasks in a single episode as well as similar

1∃! represents that there exists one and only one.
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sub-tasks across episodes by identifying states that share similar features. Features can be extracted
in multiple ways. We utilize two types of features: 1) h from the expert policy learned through
imitation, and 2) e from an autoencoder applied to the visual states.

While it is possible to use distances in features space to generate state-based constraints, we cluster
over the feature values as an intermediate step. These clusters provide a potentially more complex
set of constraints than distance alone. Thus, we first cluster the states wheremi represents the cluster
for si. Then, CSD creates the following constraints for each set of features (creating cschij and csceij ).

if mi = mj , cscij = 1 else if mi 6= mj , cscij = −1
where the constraints represent whether or not states were clustered together. While these are weak
constraints, we demonstrate empirically that there is value in integrating different weak constraints.

Constrained Clustering
We now discuss how the constraints can be utilized for sub-task discovery and how different types
of constraints are effectively integrated in one framework. CSD clusters using a neural network (f )
that takes the observation over the current state as input and outputs a distribution over the clusters.

Similar to Hsu et al. 2019, we train this clustering network using loss function Lk for a set of
constraints k.

Lk = −
∑
ij

kij · log(k̂ij) + (1− kij) · log(1− k̂ij) (1)

where k̂ij is the probability that si and sj are predicted to be in the same sub-task, f(si) · f(sj)T =

k̂ij . Thus, Lk leverages the constraints by maximizing the likelihood that similar states have the
same predicted cluster and minimizing the likelihood for dissimilar states.

Finally, we combine the loss w.r.t. each type of constraint. This includes the weak constraints as
well as any expert-specified constraints (cexp).

L =
∑
ij

wctc · Lctc
ij
+ wcsch · Lc

sch
ij

+ wcsce · Lcsce
ij

+ wcexp
ij
· Lcexp

ij
(2)

where wck represents the weight applied to constraints ck. The weighted combination allows the
prioritization of different types of constraints. We now demonstrate value of the different types of
constraints empirically.

EXPERIMENTS

We evaluate our CSD approach in two visual VizDoom (Kempka et al., 2016) scenarios. Both
scenarios have states that are first-person images. We now describe each domain in more detail.

The goal of the Pickup domain is to collect the different colored orbs that spawn in each of the four
corners of the domain. The expert selects from 4 strategies for picking up orbs corresponding to 4
different pickup orders. The agent can move forward, turn left, and turn right. Collecting each orb
is a different sub-task. The Maze domain is a navigation task in a fixed maze, where the goal is to
reach the health pack at the end. Within the maze there are multiple branching and joining paths
which all lead to the health pack. At each fork, the agent randomly chooses a path to follow. The
sections between each branch and join are labeled with a different sub-task, for a total of 6 sub-tasks.

Methodology
The policy networks follow the same architecture in both domains. The input is a single 60 x 80 x 3
image given by the game pixels from VizDoom, followed by 3 convolutional layers, an LSTM layer,
and a fully connected layer. We set the number of predicted clusters (for CSD and K-means) to 8 in
both domains. Similarly, the autoencoder has 3 convolutional/deconvolutional layers.

We sample trajectories from expert policies where we have ground truth labels for the different sub-
tasks. To train the LSTM architecture, we construct a minibatch by randomly selecting 8 trajectories
within our dataset and take subsequences of length 32 from each trajectory. We sequentially con-
tinue to feed in the next subsequences of the corresponding trajectories, and randomly select a new
trajectory when one trajectory has been fully consumed. Note that there may be an imbalance in
number among the different type of constraints. In all of our experiments we set the weights of all
constraints to 1 and average over 10 runs. Both domains use 100 train and 25 test trajectories.
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Figure 1: Results for two visual tasks. Performance is measured in normalized mutual information.

Constraint Accuracy Coverage
Pickup Maze Pickup Maze

csch 66.6% 72.6% 100% 100%

csce 69.2% 75.3% 100% 100%

ctc 72.4% 95.8% 10.4% 11.2%

Table 1: Statistics over the constraints used by the different approaches.

We compare CSD, which utilizes unsupervised constraints and limited ground truth, to several base-
lines: 1) clustering with K-means using either features h or e, 2) learning with only the unsupervised
constraints (CSDU ), and 3) learning with only limited ground truth constraints (CSDGT ).

We measure performance using normalized mutual information (NMI) compared to the ground truth
sub-task labels.

Discussion
In both domains (Maze and Pickup), shown in Figure 1, our approach with only unsupervised con-
straints CSDU is able to outperform the K-means baseline with both features from the policy h as
well as those generated from the autoencoder e. Furthermore, CSD is able to outperform CSDGT

with few ground truth constraints in both domains. This demonstrates the utility of our method for
generating weak constraints and combining them via constrained clustering for sub-task discovery.
Note that with a sufficient amount of ground truth constraints, CSDGT outperforms CSD. This may
be due to the fact that CSD is combining different types of potentially noisy constraints with a static
weight. Dynamically selecting this trade-off is an area for future work.

Next, we examine the quality of the unsupervised constraints by computing the accuracy and cover-
age (averaged over batches during training), shown in Table 1. Accuracy corresponds to the number
of correct constraints out of all constraints generated. Coverage corresponds to the number of gen-
erated constraints over all possible constraints. Across the two domains, each of the different types
of constraints are better than random, suggesting there is weak information that can be utilized. The
quality of the different constraint types varies across domains, suggesting that each type of constraint
is capturing a different type of information that CSD can leverage for sub-task discovery.

CONCLUSION AND FUTURE WORK

We have presented Constrained Sub-task Discovery, a semi-supervised strategy for discovering sub-
tasks utilizing unlabeled expert trajectories. First, supervised imitation learning is used to approxi-
mate the expert policy from trajectories. Using that policy, we extract two types of weak constraints
which capture local and global information and are used in constrained clustering. We also learn
another set of features through learning an autoencoder directly over the visual states. We demon-
strate its improved performance over the baselines in both visual domains. Our method is general in
the sense that any approach for feature generation (imitation learning) or constrained clustering can
be used. Its key strength is that it does not require any sub-task labels nor the ability to simulate the
domain, but can effectively incorporate limited labeled information.
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