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ABSTRACT

Humans can robustly learn novel visual concepts even when images undergo var-
ious deformations and loose certain information. Incorporating this ability to syn-
thesize deformed instances of new concepts might help visual recognition systems
perform better one-shot learning, i.e., learning concepts from one or few examples.
Our key insight is that, while the deformed images might not be visually realis-
tic, they still maintain critical semantic information and contribute significantly
in formulating classifier decision boundaries. Inspired by the recent progress on
meta-learning, we combine a meta-learner with an image deformation network
that produces additional training examples, and optimize both models in an end-
to-end manner. The deformation network learns to synthesize images by fusing a
pair of images — a probe image that keeps the visual content and a gallery image
that diversifies the deformations. We demonstrate results on the widely used one-
shot learning benchmarks (miniImageNet and ImageNet 1K challenge datasets),
which significantly outperform the previous state-of-the-art approaches.

1 INTRODUCTION

Deep architectures have made significant progress in various visual recognition tasks, such as image
classification and object detection. Such a success typically relies on supervised learning from
huge amounts of labeled examples. In real-world scenarios, however, one might not have enough
resources to collect large training sets or need to deal with rare visual concepts. It is also unlike the
human visual system, which can grasp a novel visual concept under very little supervision. One-shot
or low/few-shot learning has thus attracted more and more attention, which aims to build a classifier
for a new concept from one or very few labeled examples.

Recent efforts to address this problem have leveraged a learning-to-learn or meta-learning
paradigm, which frames one-shot learning as an optimization problem (Finn et al. (2017); Li et al.
(2017); Vinyals et al. (2016); Snell et al. (2017); Ravi & Larochelle (2017)). Meta-learning algo-
rithms train a learning procedure (i.e., learner), which is a parameterized function that maps labeled
training sets to classifiers. Meta-learners are trained by sampling a collection of one-shot learning
tasks and the corresponding datasets from a large universe of labeled examples of known (base)
categories, feeding the sampled small training set to the learner to obtain a classifier, and then com-
puting the loss of the classifier on the sampled test set. The hope is that the learner is able to tackle
the recognition of unseen (novel) categories from few training examples.

Despite their noticeable performance improvement, these generic meta-learning algorithms typically
treat images as black boxes and ignore the structure of the visual world. By contrast, our biolog-
ical vision system is very robust and trustable in understanding images that undergo a variety of
deformations (Vermaak et al. (2005); Boccolini et al. (2018)). For instance, we can easily recognize
the concepts/objects in Fig. 1 as the ghost (Fig. 1(a, b)), stitched (Fig. 1(c)), montage (Fig. 1(d)),
and partially erased images (Fig. 1(e)). While these deformed images might not be visually realis-
tic, our key insight is that they still maintain critical semantic information and presumably serve as
“hard examples” that contribute significantly in formulating classifier decision boundaries. Hence,
by leveraging such modes of deformation shared across categories, the synthesized deformed images
could be used as additional training data to build better classifiers.

A natural question then is how we could produce informative deformations. As shown in Fig. (2), we
propose a simple parametrization that linearly combines a pair of images to generate the deformed
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Figure 1: Deformation illustration. Left to right: ghost, stitched, montage, and partly erased images.

Figure 2: Examples of the deformed images generated by our image deformation network.

image1. We use a probe image to keep the visual content and overlay a gallery image at a patch
level to introduce appearance variations, which could be attributed to semantic diversity, art effects,
or even random noise. Importantly, inspired by Wang et al. (2018), we learn to deform images that
are useful for classification by the end-to-end meta-optimization of a classification objective that
includes image deformation in the model.

Our Image Deformation Meta-network (IDeMe-Net) thus consists of two components: a deforma-
tion subnetwork and an embedding subnetwork. The deformation network learns to generate the
deformed image by linearly fusing the patches of probe and gallery images. Specifically, we treat
the given small training set as the probe images and sample addition images from the base categories
to form the gallery images. We evenly divide the probe and gallery images into nine patches, and
the deformation network estimates the combination weight of each patch. The synthesized deformed
images are used to augment the probe images and train the embedding network, which maps images
to feature representations and performs one-shot classification. The entire network is trained in an
end-to-end manner on base categories.

Our contributions are three-fold. (1) We propose a novel meta-learning based image deformation
framework to address one-shot learning, which uses the rich structure of shared modes of deforma-
tion in the visual world. (2) Our deformation network learns to synthesize diverse deformed images,
which effectively exploits the complementarity and interaction between the probe and gallery image
patches. (3) By using the deformation network, we effectively augment and diversify the one-shot
training images, leading to the significant performance boost in one-shot learning tasks. Remark-
ably, our approach achieves the state-of-the-art performances on both the challenging ImageNet1K
and miniImagenet datasets by large margins.

2 RELATED WORK

Meta Learning. One research line of one-shot learning is the meta-learning Thrun (1996) in a
learning to learn formulation. Generally, meta-learning (Finn et al. (2017); Li et al. (2017); Zhou
et al. (2018); Ravi & Larochelle (2017); Munkhdalai & Yu (2017); Wang & Hebert (2016)) aims

1The two images could be the same image.
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at training a parametrized mapping from a few training instances to some hidden parameters that
impact the optimization procedure. Wang et al. (2018) employed meta-learner – “hallucinator”
to produce additional training examples. Intrinsically, the hallucinator is a generative adversarial
network to synthesize the realistic but imaginary images by using noise and training images. In
contrast, also as a meta-learner, our IDeMe-Net dynamically learns to fuse the probe and gallery
images as new images for one-shot learning. Our network aims at producing the deformed but real
(i.e. not synthesized) images (as illustrated in Fig. 2). Furthermore, there are also other more
general meta-learning strategies in one-shot learning, such as graph CNN (Garcia & Bruna (2018)),
memory network (Santoro et al. (2016); Cai et al. (2018)) and relation network (Sung et al. (2018)).
The attention mechanism is studied in Wang et al. (2017); Mishra et al. (2016): Wang et al. (2017)
analyzed the relation between visual and semantic representations; Mishra et al. (2016) learned the
combination of temporal convolutions and soft attention in the labeled training set. Quite different
from Wang et al. (2017); Mishra et al. (2016), our IDeMe-Net concentrates on learning to use the
complementarity and interaction among visual patches.

Metric Learning. This is another important research line in one-shot learning. The goal of metric-
learning is to learn a metric space which can be optimized for one-shot learning. The recent works in-
clude Deep Siamese Networks (Koch et al. (2015)), Matching Nets (Vinyals et al. (2016)), PROTO-
NET (Snell et al. (2017)) and Gidaris & Komodakis (2018).

Data Augmentation. The key limitation of one-shot learning is the lack of sufficient training
images. Augmenting additional instances can help train supervised classifiers (Krizhevsky et al.
(2012); Chatfield et al. (2014); Zeiler & Fergus (2014)). The standard techniques include flipping,
rotating, adding noise and randomly cropping images. The classical data augmentation includes
adding Gaussian perturbation, transforms, or rescales of training images. However, adding noise
or jittering on the origin images are particular suspect to visual similarity with the origin images.
Furthermore, previous works either seek additional training images by the semi-supervised manners
(Ren et al. (2018); Rasmus et al. (2015)), augment new instances by transforms, rescales, or directly
synthesize new instance in the feature domain (Wang et al. (2018); Hariharan & Girshick (2017)).
Comparing with these models, our IDeMe-Net learns to dynamically fuse patches of two real images
in an end-to-end manner. Our newly fused image has the best of two worlds: the IDeMe-Net can
save the important patches of original images, while, the image is visually different from both im-
ages and thus help to train the one-shot classifier. Additionally, Wang et al. (2018) and Hariharan &
Girshick (2017) both synthesize images in the feature domain while we can directly produce images
in the image domain.

3 ONE-SHOT LEARNING SETUP

Following the recent work (Vinyals et al. (2016); Ravi & Larochelle (2017); Finn et al. (2017);
Snell et al. (2017); Wang et al. (2018)), we frame one-shot learning in a meta-learning formulation:
we have a base category set Cbase and a novel category set Cnovel, in which Cbase ∩ Cnovel =
∅; correspondingly, we have a base dataset Dbase = {(Ii, yi)}, yi ∈ Cbase, and a novel dataset
Dnovel = {(Ii, yi)}, yi ∈ Cnovel. We aim to learn a classification algorithm on Dbase that is able to
generalize to unseen categories Cnovel with one or few training examples per class.

To mimic the one-shot learning scenario, meta-learning algorithms learn from a collection of N -
way-m-shot classification tasks/datasets sampled from Dbase and are evaluated in a similar way on
Dnovel. Each of these sampled datasets is termed as an episode, and we thus have different meta-
sets for meta-training and meta-testing. Specifically, we randomly sample N classes L ∼ Ck for
meta-training (i.e., k = base) and meta-testing episode (i.e., k = novel). We then randomly sample
m and q labeled images per class in L to construct the support set S and query set Q, respectively,
i.e., | S |= N×m; and | Q |= N×q. During meta-training, we sample S andQ to train our model.
During meta-testing, we evaluate by averaging the classification accuracy on query sets Q of many
meta-test episodes.

We view the support set as supervised prob images and different from the previous work, we intro-
duce an additional gallery image set G that serves as an unsupervised image pool to help generate
deformed images. To construct G, we randomly sample some images per base class from the base
dataset, i.e., G ∼ Dbase. The same G is used both in the meta-training and meta-testing episodes.
Note that since it is purely sampled from Dbase, the newly introduced G does not break the standard
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Figure 3: Overall architecture of our image deformation meta-network (IDeMe-Net).

one-shot setup as in (Xu et al. (2016); Snell et al. (2017); Finn et al. (2017); Ravi & Larochelle
(2017)). We do not introduce any additional images from the novel categories Cnovel.

4 IMAGE DEFORMATION META-NETWORKS

We now explain our image deformation meta-network (IDeMe-Net) for one-shot learning. Figure
3 shows the architecture of IDeMe-Net fθ(·) parametrized by θ. IDeMe-Net is composed of two
modules — a deformation subnetwork and an embedding subnetwork. The deformation network
adaptively fuses the prob and the gallery images to synthesize the deformed images. The embedding
network maps the images to feature representations and construct the one-shot classifier. The entire
meta-network is trained in an end-to-end manner.

4.1 DEFORMATION SUBNETWORK

This subnetwork fθdef (·) learns to explore the interaction and complementarity between the prob
images Iprobe ({Iprobe, yprobe} ∈ S) and the gallery images Igallery ∈ G, and fuses them to generate
the synthesized images Isyn, i.e., Isyn = fθdef (Iprob, Igallery). Our key insight is to synthesize
meaningful deformed images such that ysyn = yprobe. This is achieved by using two strategies:
(1) ysyn = yprobe is explicitly enforced as a constraint during the end-to-end optimization of the
network; (2) we propose an approach to sampling Igallery that are visually or semantically similar
to the images of yprobe. Specifically, for a prob image {Iprobe, yprobe}, we directly use the feature
extractor and one-shot classifier learned in embedding network to select the top ε% images from G
that has the highest class probability as yprobe as the Igallery . We randomly sampled Igallery from
the selected set, which are visually or semantically similar to the probe image Iprobe.

Two branches, ANET and BNET, are used to parse Iprobe and Igallery , respectively. Each of them
is a residual network (He et al. (2015)) without fully-connected layers. The outputs of ANET and
BNET are then concatenated to be fed into a fully-connected layer, which produces a 9-D weight
vector w. We use w to construct a weight matrix W as shown in Fig. 3. The deformed image is thus
produced as a simple linear weighted combination of Iprobe and Igallery as follows:

Isyn = W � Iprobe + (1−W )� Igallery, (1)

where � is the element-wise multiplication. We assign the class label yprobe to the synthesized
image Isyn. For any probe image Iiprobe, we sample naug gallery images from the selected set
and produce naug synthesized images

{
Iisyn

}
. We thus obtain an augmented support set S̃k ={

Sk,
{

(Iisyn, y
i
probe)

}N∗m
i=1

}
.

4.2 EMBEDDING SUBNETWORK

As shown in Fig. 3, the embedding subnetwork fθemb
(·) consists of a deep convolutional network for

feature extraction and a non-parametric one-shot classifier which will be explained later. Given an
input image I, we use a residual network (He et al. (2015)) to produce the corresponding feature rep-
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resentation fθemb
(I). To facilitate the training process, we introduce an additional fully-connected

layer on top of the embedding network with cross-entropy loss (CELoss) that outputs |Cbase| scores.

4.3 ONE-SHOT CLASSIFIER

Due to its superior performance, we use the non-parametric prototypical classifier (Snell et al.
(2017)) as the one-shot classifier. During each episode, given the sampled S, Q, and G, the defor-
mation network produces the augmented support set S̃. Following Snell et al. (2017), we calculate
the prototype vector pjθ for each class j in S̃ as

pjθ =
1

Z

∑
(Ii,yi)∈S̃

fθemb
(Ii) · Jyi = jK , (2)

where Z = Σ(Ii,yi)∈S̃ Jyi = jK is the normalization factor and fθemb
(Ii) is the feature extracted by

the embedding network. J·K is the Iverson’s bracket notation: JxK = 1 if x is true, and 0 otherwise.
Given any query image Ii ∈ Q, its probability of belonging to class k is compute as

Pθ (yi = k|Ii) =
exp

(∥∥fθ (Ii) , p
k
θ

∥∥)∑N
j=1 exp

(∥∥∥fθ (Ii) , p
j
θ

∥∥∥) , (3)

where ‖ · ‖ indicates the Euclidean distance. The one-shot classifier thus predicts the class label of
Ii as the highest probability over N classes.

5 TRAINING STRATEGY OF IDEME-NET

Algorithm 1 The training procedure of the IDeMe-Net. G is the fixed gallery. fθ is our IDeMe-Net.
1: procedure TRAIN EPISODE . The procedure of one training episode
2: L← randomly chosen n classes from Cbase
3: S ← randomly sample instances belong L . sample the support set
4: Q← randomly sample instances belong L . sample the query set
5: learn the prototypical classifer P from fθemb

(S)

6: S̃ ← S . initialize the augment support set
7: for c in L do . enumerate the choosing class
8: pool←use P to select ε% images in G having highest class probability of c
9: for (Iprob, c) in Sc do . enumerate the instance of class c in S

10: Igallery ← randomly sampled from pool
11: Isyn ← fθdef (Iprob, Igallery)

12: S̃ ← S̃ ∪ (Isyn, c)
13: end for
14: end for
15: learn the prototypical classifer P̃ from fθemb

(S̃)

16: use P̃ to classify fθemb
(Q) and get the prototypical Loss

17: use fθemb
to classify S̃ and get the CELoss

18: update θemb with the CELoss
19: update θdef with the prototypical Loss
20: end procedure

5.1 TRAINING LOSS

Training the entire IDeMe-Net includes two subtasks: (1) training the deformation network which
maximally improves the one-shot classification accuracy; and (2) building the robust embedding
network which effectively deals with various synthesized images. Note that our one-shot classifier
has no parameters, which does not need to be trained. We use the prototypical loss and the cross-
entropy loss to train these two subnetworks, respectively.
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Methods n = 1 2 5 10 20

Baselines

Softmax – /16.3 – /35.9 – /57.4 - / 67.3 – /72.1
LR 18.3/42.8 26.0/54.7 35.8/66.1 41.1/71.3 44.9/74.8
SVM 15.9/36.6 22.7/48.4 31.5/61.2 37.9/69.2 43.9/74.6
Prototype Classifier 17.1/39.2 24.3/51.1 33.8/63.9 38.4/69.9 44.1/74.7

Competitors

Matching Network – / 43.0 – / 54.1 – / 64.4 – / 68.5 – /72.8
Prototypical Network 16.9/41.7 24.0/53.6 33.5/63.7 37.7/68.2 42.7/72.3
Generation-SGM – / 34.3 – / 48.9 – / 64.1 – / 70.5 – /74.6
PMN – / 43.3 – / 55.7 – / 68.4 – / 74.0 – / 77.0
PMN w/ H – / 45.8 – / 57.8 – / 69.0 – / 74.3 – / 77.4
Cos & Att. – / 46.0 – / 57.5 – / 69.1 – / 74.8 – / 78.1

Augmentation
Flipping 17.4/39.6 24.7/51.2 33.7/64.1 38.7/70.2 44.2/74.5
Gaussian Noise 16.8/39.0 24.0/51.2 33.9/63.7 38.0/69.7 43.8/74.5
Gaussian Noise(feature level) 16.7/39.1 24.2/51.4 33.4/63.3 38.2/69.5 44.0/74.2

Ours IDeMe-Net 23.1/51.0 30.1/60.9 39.0/69.8 42.7/73.4 45.0/75.1

Table 1: Top-1 / Top-5 accuracy on ImageNet1K Challenge Dataset (ResNet-10). We use
ResNet-10 as the embedding subnetwork. n indicates the number of training examples per class.

Update the deformation network. We optimize the following prototypical loss function to endow
the deformation network with the desired one-shot classification ability:

minθEL∼Dbase
ES,G,Q∼L

 ∑
(Ii,yi)∈Q

−logPθ (yi | Ii)

 , (4)

where Pθ (yi | Ii) is the one-shot classifier in Eq. (3). Using the prototypical loss to update the
deformation network encourages to generate diverse instances to augment the support set.

Update the embedding network. We use the cross-entropy loss to train the embedding network
to directly classify the augmented support set S̃. Note that with the augmented support set S̃, we
have enough training instances to train this subnetwork and the cross-entropy loss is the standard
loss function in training a supervised classification network. Empirically, we found that using the
additional cross-entropy loss speeds up the convergence and improves the recognition performance
than using the prototypical loss solely.

5.2 TRAINING STRATEGY

We summarize the entire training procedure of our IDeMe-Net on the base dataset Dbase in Alg. 1.
During meta-training, we have the gallery G and sample the N -way-m-shot training episode to
produce S and Q. The embedding subnetwork learns an initial one-shot classifier g (·) on the orig-
inal support set S using Eq. (3). Given a probe image Iprobe, we then sample the gallery images
Igallery ∼ G and train the deformation subnetwork to produce the augmented support set S̃ using
Eq. (1). S̃ is further used to update the embedding subnetwork and learn a better one-shot classifier.
We then conduct the final one-shot classification on the query set Q and backpropagate the predic-
tion error to update the entire network. During meta-testing, we sample the N -way-m-shot testing
episode to produce S and Q from the novel dataset Dnovel.

6 EXPERIMENTS

Our IDeMe-Net is evaluated on two standard benchmarks: miniImageNet and ImageNet 1K chal-
lenge datasets. The codes and models will be released upon acceptance.

The miniImageNet dataset proposed by Vinyals et al. (2016) is a widely used benchmark in one-shot
learning, which includes 600 images per class and has 100 classes in total. Following the data split
in Ravi & Larochelle (2017), we use 64, 16, 20 classes as the base, validation, and novel category
set, respectively. The hyper-parameters are cross-validated on the validation set. Consistent with
Vinyals et al. (2016) and Ravi & Larochelle (2017), we evaluate our model in 5-way-5-shot and
5-way-1-shot settings.
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Methods n=1 2 5 10 20
Softmax – /28.2 – /51.0 – / 71.0 – /78.4 – /82.3
SVM 20.1/41.6 29.4/57.7 42.6/72.8 49.9/79.1 55.8/83.2
LR 22.9/47.9 32.3/61.3 44.3/73.6 50.9/78.8 56.2/82.4
Prototype Classifier 20.8/43.1 29.9/58.1 42.4/72.3 49.5/79.0 56.0/83.0

Generation SGM Hariharan & Girshick (2017) – /47.3 – /60.9 – /73.7 – /79.5 – /83.3
IDeMe-Net 30.3/60.1 39.7/69.6 47.5/77.4 51.3/80.2 56.5/83.6

Table 2: Top-1 / Top-5 results on ImageNet1K Challenge Dataset (ResNet-50). We use ResNet-
50 as the embedding subnetwork. n indicates the number of training examples per class.

Our model is also evaluated on the large-scale ImageNet 1K dataset. Following the data split in
Hariharan & Girshick (2017), we divide the original 1K categories into 389 base (Dbase) and 611
novel (Dnovel) categories. The base categories are further divided into two disjoint subsets: base
validation set Dcv

base (193 classes) and base evaluation set Dfin
base (196 classes) and the novel cat-

egories are divided into two subsets as well: novel validation set Dcv
novel (300 classes) and novel

evaluation set Dfin
novel (311 classes). We use the base/novel validation set Dcv for cross-validating

hyper-parameters and use the base/novel evaluation set Dfin to conduct the final experiments. The
same experimental setup is used as in Hariharan & Girshick (2017) and the reported results are
averaged over 5 trails. Here we focus on synthesizing novel instances and we thus evaluate the
performance primarily on novel categories, i.e., 331-way-n-shot settings, which is also consistent
with most of the contemporary work (Vinyals et al. (2016); Snell et al. (2017); Ravi & Larochelle
(2017)).

6.1 RESULTS ON IMAGENET1K CHALLENGE DATASET

Setup. We use ResNet-10 architectures for ANET and BNET. For a fair comparison with Hariharan
& Girshick (2017), we evaluate the performance of using ResNet-10 (Table 1) and ResNet-50 (Table
2) for the embedding network. Stochastic gradient descent (SGD) is used to train IDeMe-Net in an
end-to-end manner. It gets converged over 300 epochs. The initial learning rates of ANET, BNET,
and the embedding network are set as 3 × 10−3, 3 × 10−3 and 10−1, respectively and decreased
by 1/10 every 30 epochs. The batch size is set as 32. We randomly sample 10 images per base
category to construct the gallery G and we set ε as 2. Note that G is fixed during the entire experi-
ments. ANET, BNET, and the embedding network are trained from scratch on Dbase. Our model is
evaluated on Dnovel. naug is cross-validated as 8, which balances between the computational cost
and the augmented training data scale.

Baselines and competitors. We compare against several baselines and competitors as follows. (1)
We directly train a ResNet-18 feature extractor on Dbase and use it to compute image features on
Dnovel. We then train standard supervised classifiers onDnovel, including neural network(Softmax),
support vector machine (SVM), logistic regression (LR), and prototype classifier. The neural net-
work classifier consists of 1 fully-connected layer and 1 softmax classification layer. (2) We also
compare with state-of-the-art approaches to one-shot learning, such as matching network (Vinyals
et al. (2016)), generation SGM (Hariharan & Girshick (2017)), prototypical network (Snell et al.
(2017)), Cosine Classifier & Att. Weight Gen(Cos & Att.) (Gidaris & Komodakis (2018)),PMN and
PMN w/H (Wang et al. (2018)) . (3) The standard data augmentation methods are also compared
here: “flipping”: the input image is flipped from left to right; “Gaussian noise”: cross-validated
Gaussian noiseN (0, 10) is added to each pixel of the input image; “Gaussian noise (feature level)”:
cross-validated Gaussian noise N (0, 0.3) is added to each dimension of the ResNet feature of each
image. For fair comparisons, all theses augmentation methods use the prototype classifier as the
one-shot classifier.

Results. Tables 1 and 2 summarize the results of using ResNet-10 and ResNet-50 as the embedding
sub-network, respectively. Fig. 4(a) further highlights that our IDeMe-Net consistently outperforms
all the baselines and competitors by large margins. For example, using ResNet-10, the top-1 accu-
racy of IDeMe-Net in Table 1 is superior to prototypical network by 6% when n = 1, 2, 5, showing
the sample efficiency of IDeMe-Net for one-shot learning. The top-5 accuracy in Table 1 demon-
strates the similar trend, and our IDeMe-Net beats prototypical network, the second best competitors,
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Methods n = 1 2 5 10 20

Baselines LR 18.3/42.8 26.0/54.7 35.8/66.1 41.1/71.3 44.9/74.8
Prototype Classifier 17.1/39.2 24.3/51.1 33.8/63.9 38.4/69.9 44.1/74.7

Variants IDeMe-Net - CE Loss 21.3/50.0 28.0/58.3 37.7/69.4 41.3/71.6 44.3/74.3
IDeMe-Net - Proto Loss 15.3/36.7 21.4/50.4 31.7/62.0 37.9/69.0 43.7/73.7
IDeMe-Net - g (Igallery) 17.0/39.3 24.0/50.7 33.6/63.5 38.0/69.2 43.7/73.8
IDeMe-Net - Aug. Testing 17.0/39.1 24.30/51.3 33.5/63.8 38.0/69.1 43.8/74.5
IDeMe-Net - Def. Network 15.9/38.0 24.1/50.1 32.6/63.3 38.2/68.9 42.4/73.1
IDeMe-Net - Gallery 17.5/39.4 24.2/51.4 33.5/63.7 38.7/70.3 44.5/74.5
Gallery Baseline 15.7/37.8 22.7/49.8 31.9/62.6 38.0/68.7 43.5/73.8

Block Size IDeMe-Net (1× 1) 16.2/39.3 24.4/52.1 32.9/63.0 38.8/69.5 42.7/73.2
IDeMe-Net (5× 5) 24.1/51.7 30.3/61.2 39.6/70.4 42.4/73.2 44.3/74.6
IDeMe-Net (7× 7) 23.8/52.1 30.2/61.3 39.1/70.2 42.7/73.1 44.5/74.7
IDeMe-Net (pixel level) 17.3/39.0 23.8/51.2 34.1/63.7 38.5/70.2 43.9/74.5

Ours IDeMe-Net 23.1/51.0 30.4/60.9 39.0/69.8 42.7/73.4 45.0/75.1

Table 3: Top-1 / Top-5 accuracy of the ablation study on ImageNet1k challenge dataset
(ResNet-10). We use ResNet-10 as the embedding subnetwork.

by more than 9% when n = 1. Using ResNet-50 as the embedding sub-network, the performance
of all the approaches improves and our IDeMe-Net consistently achieves the best performance, as
shown in Table 2.

6.2 ABLATION STUDY ON IMAGENET1K

We conduct extensive ablation study to evaluate the contribution of each component in our model.

Variants of IDeMe-Net. We consider seven different variants of our IDeMe-Net, as shown in
Fig. 4(b) and Table 3. (1) IDeMe-Net-CE Loss: the embedding sub-network is trained using only
the prototypical loss without the cross-entropy loss (CE loss). (2) IDeMe-Net - Proto Loss: the em-
bedding sub-network is trained using only the cross-entropy loss without the prototypical loss. (3)
IDeMe-Net - g (Igallery): the gallery images are randomly chosen in IDeMe-Net without predicting
their class probability. (4) IDeMe-Net - Aug. Testing: the deformed images are not produced in the
testing phase. (5) IDeMe-Net - Def. Network: the weight matrixW in Eq. (1) is randomly generated
instead of using the learned deformation sub-network. (6) IDeMe-Net - Gallery: the gallery images
are directly sampled from the support set instead of constructing an additional Gallery. (7) Gallery
Baseline: we simply use the gallery images to serve as the deformed images. As shown in Fig. 4(b),
our full IDeMe-Net model outperforms all these seven variants, showing that each component is es-
sential and complementary to each other. We note that (1) Using CELoss and prototypical loss to
update the embedding sub-network and the deformation sub-network, respectively, achieves
the best result. As shown in Fig. 4(b), the accuracy of IDeMe-Net - CELoss is marginally lower
than IDeMe-Net but still higher than the prototypical classifier baseline, while IDeMe-Net - Proto
Loss underperforms the baseline. (2) Our strategy for selecting the gallery images is the key to
diversify the deformed images. As we can see, randomly choosing the gallery image (IDeMe-Net
- g (Igallery)) or sampling the gallery images from the support set (IDeMe-Net - Gallery) obtains
no performance improvement. One reasonable explanation is that they only introduce noise or re-
dundancy and do not bring in efficient information. (3) Our improved performance comes from
the diversified deformed images, rather than the embedding sub-network. Without producing
the deformed images in the testing phase (IDeMe-Net - Aug. Testing), the performance is close to
the baseline, suggesting that training on the deformed images does not obviously benefit from the
embedding sub-network. That is, the performance gain of our IDeMe-Net mainly results from the
deformed images generated in the testing phase. (4) Our meta-learned deformation sub-network
effectively exploits the complementarity and interaction between the probe and gallery image
patches, producing the key information in the deformed images. To show this point, we in-
vestigate two deformation strategies: randomly generating the weight vector w (IDeMe-Net - Def.
Network) and setting all the weights to be 0 (Gallery Baseline); in the latter case, it is equivalent
to purely using the gallery images to serve as the deformed images. Both strategies perform worse
than the prototypical classifier baseline, indicating the importance of meta-learning a deformation
strategy.
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(a) (b) (c) (d)

Figure 4: Ablation study on the ImageNet1k challenge dataset: (a) highlights the comparison
with several competitors; (b) shows the impact of different components in our IDeMe-Net; (c) ana-
lyzes the impact of different division schemes; (d) shows how the performance changes with respect
to the number of synthesized images. Best viewed in color with zoom.

(a) Gaussian Baseline (b) Gallery Baseline (c)IDeMe-Net

Figure 5: t-SNE visualization. Dots, stars, and triangles represent the real examples, the probe
images, and the synthesized images, respectively. (a) synthesis by adding Gaussian noises. (b)
synthesis by directly using the gallery images. (c) synthesis by our IDeMe-Net.

Different division schemes. In the deformation sub-network and Eq. (1), we equally split the image
into 3 × 3 patches. Some alternative division schemes are compared in Table 1 and Fig. 4(c).
Specifically, we consider the 1 × 1, 5 × 5, 7 × 7, and pixel level division schemes in Eq. (1) and
report the results as IDeMe-Net (1 × 1), IDeMe-Net (5 × 5), IDeMe-Net (7 × 7), and IDeMe-
Net (pixel level), respectively. The experimental results suggest the patch-level fusion, rather than
image-level or pixel-level fusion in our IDeMe-Net. The image-level division (1 × 1) ignores the
local combination and deforms through a global combination, thus decreasing the diversity. The
pixel-level division is particularly suspect to the disarray of the local information while region-level
division (3×3, 5×5, 7×7) considers the region as the basic unit to maintain some local information.
In addition, the results show that using a fine-grained patch size (i.e., 5×5 division and 7×7 division)
may achieve slightly better results than our 3×3 division. This also makes senses since fine-grained
patch deformed information is learned. In brief, our region-level division not only maintains the
significant region information but also deforms it to increase diversity.

Number of synthesized images. We also show how the top-1 accuracy changes with respect to the
number of synthesized images in Fig. 4(d). Specifically, we change the number of synthesized im-
ages naug in the deformation sub-network, and visualize the 5-shot top-5 accuracy on the Imagenet-
1K dataset. It shows that when naug is changed from 0 to 8, the performance of our IDeMe-Net
is gradually improved. The performance saturates when enough synthesized images are generated
(naug > 8).

Visualization. Fig. 5 shows t-SNE van der Maaten & Hinton (2008) visualizations for novel classes
from our IDeMe-Net, the Gaussian baseline, and the Gallery baseline. For the Gaussian baseline, the
synthesized images are heavily clustered and close to the prob images. By contrast, the synthesized
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Methods
miniImageNet (%)

1-shot 5-shot

MAML 48.70±1.84 63.11±0.92
Meta-SGD 50.47±1.87 64.03±0.94

Matching Nets 43.56±0.84 55.31±0.73
Prototypical Network 49.42±0.78 68.20±0.66

RELATION NET 57.02±0.92 71.07±0.69
SNAIL 55.71±0.99 68.88±0.92

Delta-encoder 58.7 73.6
Cos & Att. 55.45±0.89 70.13 ±0.68

Prototype Classifier 52.54±0.81 72.71±0.73
IDeMe-Net 57.71±0.89 74.34±0.78

Table 4: Top-1 accuracy on miniImageNet. The “±” indicates 95% confidence intervals over tasks.

images of our IDeMe-Net scatter widely in the class manifold and tend to locate more around the
class boundaries. For the Gallery baseline, the synthesized images are the same as the gallery
images and occasionally fall into manifolds of other classes. Interesting, comparing Fig. 5(b) and
Fig. 5(c), our IDeMe-Net effectively deforms those misleading gallery images back to the correct
class manifold.

Deformed Images. Here we show some examples of our deformed images in the Fig.2. In the first
example, IDeMe-Net synthesizes a ghost image combining two lions with different head poses. In
the second and the third samples, we have the same prob image but with different gallery images.
Our IDeMe-Net has different react according to the contents of the gallery image: ignore most
patches in the misleading gallery image and utilize the significant patch in the highly relevant gallery
image. We can observe that the weight(first row) in the second sample is much larger than in the
third sample. This intuitively shows why our model work.

6.3 RESULTS ON miniIMAGENET

Setup and competitors. We use a ResNet-18 architecture as the embedding sub-network. We use
the same experimental setting as the ImageNet1k challenge dataset. As summarized in Table 4, we
mainly focus on three groups of the competitors: (1) meta-learning algorithms, such as MAML (Finn
et al. (2017)) and Meta-SGD (Li et al. (2017)); (2) metric-learning algorithms, including Matching
Nets (Vinyals et al. (2016)), Prototypical Network (Snell et al. (2017)), RELATION NET (Sung et al.
(2018)), SNAIL(Mishra et al. (2016)), Delta-encoder(Schwartz et al. (2018)) and Cosine Classifier
& Att. Weight Gen(Cos & Att.) (Gidaris & Komodakis (2018)).

Results. We report the results in Table 4 (a). Impressively, our IDeMe-Net consistently outperforms
all these state-of-the-art competitors by large margins in 5-shot classification scenarios. This further
validates the general effectiveness of our proposed model in addressing one-shot learning tasks.

7 CONCLUSIONS

In this paper, we proposed a conceptually simple but powerful approach to one-shot learning that
uses a trained image deformation network to generate additional examples. Our deformation net-
work leverages unsupervised gallery images to synthesize deformed images and is trained end-to-
end with meta-learning. Extensive experiments demonstrate that our approach achieves the state-of-
the-art performance on multiple one-shot learning benchmarks by large margins.
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