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ABSTRACT

Deep metric learning has been demonstrated to be highly effective in learning
semantic representation and encoding information that can be used to measure
data similarity, by relying on the embedding learned from metric learning. At
the same time, variational autoencoder (VAE) has widely been used to approxi-
mate inference and proved to have a good performance for directed probabilistic
models. However, for traditional VAE, the data label or feature information are
intractable. Similarly, traditional representation learning approaches fail to repre-
sent many salient aspects of the data. In this project, we propose a novel integrated
framework to learn latent embedding in VAE by incorporating deep metric learn-
ing. The features are learned by optimizing a triplet loss on the mean vectors
of VAE in conjunction with standard evidence lower bound (ELBO) of VAE. This
approach, which we call Triplet based Variational Autoencoder (TVAE), allows us
to capture more fine-grained information in the latent embedding. Our model is
tested on MNIST data set and achieves a high triplet accuracy of 95.60% while the
traditional VAE (Kingma & Welling} 2013)) achieves triplet accuracy of 75.08%.

1 INTRODUCTION

Learning semantic similarity between pairs of images is a core part of visual competence and learn-
ing. When applied on proper embedding of input data, similarity metric functions such as Euclidean
distances, Mahalanobis distance, cosine similarity etc result in superior metric for similarity mea-
sure and reduce many complex classification problems to simple nearest neighbor problems. But
these same similarity metric functions would perform poorly when applied on raw complex input
datasets. Image embeddings learned as a part of larger classification task using deep nets have
various practical limitations for several scenarios. In extreme classification problems (Choromanska
et al.,[2013;[Bengio et al.||2010) where the number of possible categories is very large or possibly un-
known, conventional classification learning approaches are essentially useless since the availability
of training examples for each class becomes scarce, if not totally unavailable. Hence, a new line of
approach, namely metric learning (Schroff et al., 2015 |Oh Song et al., 2016} Huang & Peng}, 2017)
has gained much popularity for its ability to learn image embedding directly using the concept of
relative distances rather than relying on specific category information. This way, it is able to learn a
metric space where nearest neighbor based methods would naturally give superior performance due
to the higher quality representation of input images in the learned embedding space. This approach
has the potential to improve the way generative models such as Variational Autoencders (Kingma
& Welling, [2013; Rezende et al) 2014) are learned. While VAE can perform extremely efficient
approximate inference in latent Gaussian model, the latent embedding space it learns lacks many
salient aspects of the original data. Motivated from Triplet Network as explained in /Hoffer & Ailon
(2013), in this project, we propose a new architecture and a loss function for training VAE, which
is capable of two tasks at the same time - learning latent image representations with fine-grained
information and doing stochastic inference.
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Figure 1: Model overview. As input a triplet of digit images (7,7,5) is given to three identical
encoder networks. The mean latent vectors of three input images are used to calculate the triplet
loss and the reconstructed images by the identical decoders are used to calculate the reconstruction
error.

2 TRIPLET-BASED VARIATIONAL AUTOENCODER

Our proposed hybrid model in Figl[l] is motivated as a way to improve VAE, so that it can learn
latent representation enriched with more fine-grained information. To achieve this we optimize the
network by minimizing the upper-bound on the expected negative log-likelihood of data and triplet
loss simultaneously.

The encoder in VAE encodes an image x to a latent vector z = Encoder(xz) ~ ¢(z|z). The
decoder decodes the latent vector z back to an image T = Decoder(z) ~ p(z|z). To regularize
the encoder, the VAE imposes a prior over the latent distribution p(z). The VAE loss consists of
two parts: the reconstruction loss and the KL Divergence loss. The reconstruction loss L. =
—Eq(2|) [logp(x|2)] is the negative expected log-likelihood of the observations in x. And the KL-
Divergence loss L1, = KL[g(z|z)||p(2)] characterizes the distance between the distribution ¢(z|z)
and prior distribution.

In each iteration of training, the input triplet (24, xp, ;) is randomly sampled from the training
set in such a way that the anchor x is more similar to the positive z,, than the negative x,,. Then
the triplet of three images are fed into encoder network simultaneously to get their mean latent
embedding f(z,), f(zp) and f(z,). We then define a loss function Liripiee() over triplets to
model the similarity structure over the images as in [Wang et al.| (2014). The triplet loss can be
expressed as

£triplet(xa7 il'p, xn) = max{O, D(fay xp) - D(xaa xn) + m}7 (1)

where D(z;, x;) = ||f(x;) — f(x;)]|2 is the Euclidean distance between the mean latent vector of
images x; and x; and m is threshold margin. Thus our final loss function for an input triplet is given
by:

»CTVAE = »C'r‘ec + EKL + »Ct'r‘iplet )

3 EXPERIMENTS

We focus our experiments on preservation of the semantic structure in the learned latent embed-
ding and image generation ability compared to original VAE in Kingma & Welling| (2013). For
experiments on MNIST (LeCun et al [1998), we adopted a simple network structure with two
fully connected layers as encoder and decoder and used pixel-to-pixel L2 distance loss function as
reconstruction loss. The dimension of the latent embedding space was 20.

Table 1: Triplet accuracy on MNIST

Model ~ Triplet Accuracy
VAE (Kingma & Welling} 2013)  75.08%
Triplet VAE 95.60%
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4 RESULTS

We visually explore the learned embedding distribution for the mean vector. With an additional
triplet loss term, the mean vectors from different groups are more compactly clustered, as shown in
Fig. 2b] On the other hand, without the added triplet loss, the image clusters are less compact and
seem to be spreading out in the spatial space as seen in Fig. 2a In this case, we also observe that
images from one class are more likely to be divided into multiple small clusters and images from
different clusters overlaps with each other more often.
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(a) VAE (Kingma & Welling, |2013) (b) Triplet-based VAE

Figure 2: t-SNE projection of the latent mean vector for MNIST test dataset.

In order to evaluate the structure quality in terms of preserved relative distance among different
classes, we analyze learned latent embedding of unseen triplets. In Table [T] we calculate triplet
accuracy which is defined by the percentage of triplets that incur a loss of zero in Eq[T] We see that
using TVAE, for 95.60% of test triplets, we get learned latent embedding which maintain the relative
distances among classes. On the other hand, for traditional VAE, we preserve this relative distances
for only 75.08% of test triplets.
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Figure 3: Comparison of reconstructed images from the MNIST dataset. The first row is the input
images from the MNIST test set. The second row is the reconstructed images generated by the plain
VAE. The third row is the reconstructed images generated by the TVAE.

5 DISCUSSION

Triplet based Variational Autoencoders (TVAESs) provide a new set of tools for learning latent em-
bedding and performing approximate inference that leverage both traditional VAE and deep metric
learning techniques. By incorporating triplet constraint in the learning process, TVAEs can learn
an interpretable latent representation that preserves semantic structure of the original dataset. Our
method provides an initial framework for learning latent embedding that would be able to encode
various notions of similarity. We demonstrate that TVAE generates high quality samples as good as
the traditional VAE while encoding more semantic structural information in the latent embedding.
Our future work will include analysis of medical datasets.
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