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ABSTRACT

This research concerns solving the semi-supervised learning problem with gen-
erative adversarial networks for regression. In contrast to classification, where
only a limited number of distinct classes is given, the regression task is defined
as predicting continuous labels for a given dataset. Semi-supervised learning is
of vital importance for the applications where a small number of labeled samples
is available, or labeling samples is difficult or expensive to collect. A case in
point is autonomous driving in which obtaining sufficient labeled samples covering
all driving conditions is costly. In this context, we can take advantage of semi-
supervised learning techniques with groundbreaking generative models, such as
generative adversarial networks. However, almost all proposed GAN-based semi-
supervised techniques in the literature are focused on solving the classification
problem. Hence, developing a GAN-based semi-supervised method for the regres-
sion task is still an open problem. To address this problem, we introduce Reg-GAN
in two different architectures. In summary, our proposed method is able to predict
continuous labels for a training dataset which has only a limited number of labeled
samples. Moreover, the application of this technique for solving the end-to-end
task in autonomous driving will be presented. We performed several experiments
on a publicly available driving dataset to evaluate our proposed method, and the
results are very promising. The results show that our approach generates images
with high quality, gives smaller label prediction error and leads to a more stable
training compared with the state-of-the-art Improved GAN technique (Salimans
et al.,[2016).

1 INTRODUCTION

Autonomous driving (AD) has gained attention from researchers and industry in the recent years. AD
brings different fields of research such as computer vision, machine learning, and system engineering
together. To make the driving task autonomous, the AD system should replace human being, which
implies that the system should be able to recognize its peripheral environment and act accordingly.
Machine learning can facilitate this task for the AD system. Machine learning is employed for
different purposes in AD systems such as imitating driver behavior (Kuefler et al., [2017)), vehicle
detection (Huval et al.} 2015), lane detection (Huval et al.,|2015)), and end to end learning (Bojarski
et al.| 2016)). For example in (Bojarski et al., 2016)), an end to end learning for self-driving cars was
proposed where the convolutional neural network (CNN) is used to learn road features. In this regard,
a comprehensive dataset of road images and corresponding steering angles is employed. A CNN
is trained to map raw pixels from a single front facing camera directly to steering commands in a
supervised manner. This CNN is able to learn meaningful road features from a very sparse training
signal (the steering angle) without needing to decompose the front camera image into the road, lane
marking detection, semantic abstraction, path planning, or control.

The importance of the training data is undeniable for machine learning tasks. For supervised learning
algorithms, the training set should come with appropriate labels as well. Lack of enough labeled
samples for supervised training leads to poor learning. On the other hand, collecting enough training
samples and labeling them could be time consuming, difficult and costly. The cost of data collection is
different depending on the application. As a case in point, training autonomous driving systems needs
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a large number of training samples to guarantee that the system could learn all possible scenarios
such as different driving states, road conditions, and weather conditions. Failing to learn a specific
case by the AD system may result in safety problems. To tackle the issue of scarcity of the data, the
following solutions have been proposed in the literature: first, using simulated samples and synthetic
annotations rather than real datasets (Johnson-Roberson et al.|[2016); second, using generative models
for generating samples from a small unlabeled training set (Ghosh et al.,2016). However, the former
suffers from producing unrealistic samples and poor performance in real applications, and the latter
is not able to predict labels for the generated samples. The focus of this research is on the second
approach, that is enriching the training dataset using generative models. To address the mentioned
labeling issue of generative models, these models can be employed in a semi-supervised scheme, in
which a small labeled portion of the training data can be leveraged for labeling the generated samples.

Semi-supervised learning algorithms are able to target label prediction problems when only a limited
subset of training data is labeled (Kingma et al.l|2014). In this regard, many semi-supervised learning
techniques take advantage of deep generative models. Generative models aim at estimating the
probability distribution of the training data and being able to generate samples which belong to the
same data distribution manifold (Banijamali et al. |2017)). Different methods for deep generative
networks are proposed in the literature such as Deep Belief Networks (DBNs) (Hinton et al., 2006),
Restricted Boltzman Machines (RBMs) (Salakhutdinov et al.| 2007), Variational Auto-encoders
(VAEs) (Kingma & Wellingl [2013)), and Generative Adversarial Networks (GANs) (Goodfellow et al.
2014); among them, GANSs are the most recent and successful in generating realistic and good quality
images (Arjovsky & Bottou, 2017).

This research concerns semi-supervised learning with generative adversarial networks for an end-to-
end task in autonomous driving. Semi-supervised methods based on GANs have shown promising
and competitive classification results as compared to traditional techniques (Salimans et al., 2016).
In the literature, there are some semi-supervised techniques with GANs such as Improved-GAN
(Salimans et al.| 2016)), Cat-GAN (Springenberg, [2015), SGAN (Odena, [2016), and Triple-GAN
(L1 et al., [2017); however, they all focus on solving the classification problem. On the other hand,
the goal of the end-to-end task in AD is to predict the steering angle, which is a continuous variable,
based on the given input image from the front camera.

Applying semi-supervised classification techniques to regression comes with the price of converting
continuous labels of the dataset to a limited number of classes. This conversion will add the
quantization error to our training, and also determining the number of classes for each application
is non-trivial. Moreover, usually classification techniques require more number of outputs and
so more number of network parameters comparing with regression techniques, which cause more
computations and longer training time. Hence, using semi-supervised classification techniques for
regression in the end-to-end task of AD is not easy and will increase the training cost. To the best of
our knowledge, a semi-supervised regression technique with generative adversarial network yet has
to be developed which is the main focus of this research. The main contributions of this paper are
summarized as following:

1. To the best of our knowledge, we introduce the first semi-supervised algorithm with genera-
tive adversarial networks which can address the regression problem. We call our method
Reg-GAN throughout the paper. Moreover, it is the first time that a semi-supervised learning
with GAN is employed for the end to end task in autonomous driving.

2. Applying semi-supervised classification techniques to regression comes with the price of
converting continuous labels of the dataset to a limited number of classes. This conversion
will add the quantization error to our training, and also determining the number of classes
for each application is nontrivial. Our proposed approach avoids this quantization error and
reduces one hyper-parameter.

3. Our approach generates high quality images, smaller label prediction error and more stable
training compared with the state-of-the-art Improved GAN technique (Salimans et al., 2016).

The remainder of the paper is organized as follows. In the next section, related works in the literature
will be reviewed. Then, some preliminary background on generative adversarial networks will be
described briefly. The proposed method will be presented in section[d} In section[5] the results of the
experiments will be depicted. Finally, section [6] will conclude the paper.
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2 RELATED WORK

In this section, we will review some relevant work to the idea of this paper in generative adversarial
network and semi-supervised learning.

Deep learning has shown great successes in various domains such as natural language processing
(NLP), autonomous driving, gaming, and generative models. One of the most recent achievements is
generative adversarial network (GAN) (Goodfellow et al.,[2014), which is well known because of gen-
erating synthetic realistic images. GAN corresponds to a minimax two-player game where two deep
networks are trained simultaneously: a generative model G that captures the data distribution, and a
discriminative model D, which computes the probability of a sample coming from the training data
rather than the generator. Although GANs have shown a great success in generating sharp looking
and fairly realistic images, they still encounter different critical issues such as stability of training (Ar¢
jovsky & Bottoul, [2017; Warde-Farley & Bengio, [2017)), mode dropping, evaluating GANs (Theis
et al.} 2015) and labeling generated samples. Hence, to address these issues, different types of GANs
have been proposed in the literature such as DCGAN (Radford et al.} 2015), WGAN (Arjovsky et al.,
2017), least-square GAN (Mao et al., [2016), and Conditional GAN (Gauthier, 2014).

Semi-supervised techniques based on deep generative networks target improving the supervised task
by learning from both labeled and unlabeled samples (Kingma et al., 2014). Using semi-supervised
learning would be beneficial when labeled samples are not easy to obtain and we have a small
set of labeled samples and more number of unlabeled data. Using deep generative models (and
generative adversarial networks recently) in semi-supervised learning has introduced remarkable
improvements to the field (Kingma et al.,|2014} Salimans et al., 2016;|Odenal 2016; |[Nguyen et al.|
2016; |Springenbergl 2015} [Tachibana et al.l 2016} |Denton et al.l [2016; [Rasmus et al., |2015; |Li
et al., 2017). For example, the Improved-GAN technique shows competitive test errors and high
quality generated samples over MNIST, CIFAR-10, SVHN and ImageNet datasets. In contrast to
Improved-GAN, Triple-GAN (Li et al.,[2017) employs two separate networks for classification and
discrimination, which has more parameters to learn, and training the networks would be more difficult.
However, almost all of these techniques target the classification problem and if we want to apply
them to a regression problem, we need to classify (or quantize) the continuous labels to a limited
number of classes. On the other hand, there are a couple of semi-supervised regression methods in
the literature (Zhou & Li,|2005; Yang et al., 2016), but they do not use the power of deep learning
based generative models such as GAN.

3 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks include two separate deep networks: the generator and discriminator.
The generator takes in a random variable, z, with the distribution p.(z) and maps it to the data
distribution Pyt (). The output distribution of the generator should converge to the data distribution
during the training. On the other hand, the discriminator is expected to discern real samples from
generated samples by giving the output of 1 or O respectively. In the GAN training process, the
generator and discriminator are used to generate samples and classify them respectively by improving
the performance of each other in an adversarial manner. In this regard, an adversarial loss function is
employed in training the generator and discriminator (Goodfellow et al.,[2014):

min max By p,,,, (2)[10gD(@)] + B, (=) [log(1 — D(G(2)))] (1)

This is a two-player minimax game for which the Nash-equilibrium point should be derived. Find-
ing the solution of this game is non-trivial and there has been a huge volume of research in this
domain (Shrivastava et al.,[2016; |Sixt et al.,[2016; |Springenberg, |2015; |L1 et al.,2017; |Salimans et al.,
2016).

The original GAN technique is not able to predict the label of the generated samples. The beauty
of the Improved-GAN method (Salimans et al., 2016) is to combine the task of classification and
discrimination into the discriminator network (i.e. using one network for performing the two tasks).
Improved-GAN modifies the architecture of the discriminator to have N+1 outputs, where N represents
the number of classes in the training dataset (see the Fig. [I)). The first N outputs should predict the
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probability of an input to belong to each class, p(y|z,y < N + 1); and the last output represents the
probability of the sample to be fake p(y = N + 1|z). Then Improved-GAN tries to maximize the
probability of predicting correct labels over the real and generated data as follows:

max Em,yNPd,,,t,,,(a:,y) [lOg pdata(y|x)] + EQJNG[log pdala(y =K+ 1|x)] )

Discrimination + Prediction
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Figure 1: A simplified schematic of the original Improved-GAN technique

Moreover, Improved-GAN uses the feature matching technique to address the instability issue of
the generator. In contrast to traditional GAN techniques which try to maximize the output of the
discriminator for generated samples, feature matching tries to maximize the matching between the
statistics of the generated and real samples inside the discriminator:

Lfeature_matching = HEszdala f(x) - EZsz (z)f(G(Z))H 3)

where f(z) represents the output of an activation function of an intermediate layer of the discriminator.

4 METHODOLOGY

The focus of this research is on semi-supervised learning based on generative adversarial networks to
solve the regression problem. We intend to apply GAN to generate realistic and high quality samples,
as well as predicting the continuous labels corresponding to those generated samples. The core idea
of our work is inspired by the Improved-GAN technique (Salimans et al.}[2016), and we try to extend
Improved-GAN to be able to cover regression as well.

Our proposed method, Reg-GAN, is comprised of a generator, which is responsible for generating
realistic samples close to the content of the training dataset, and a discriminator, which is responsible
for both validating the generated samples and predicting continuous labels of these samples. The
generator is trained by employing the feature matching loss technique which is explained in the
previous section. It is worth mentioning that the feature matching loss is the average of the absolute
difference between the output of an intermediate layer of the discriminator for the real and generated
samples.

We propose two architectures for the discriminator in our GAN (see Figs. 2] and [3) to address
the semi-supervised regression with generative adversarial networks. In the first approach, the
discriminator is built with two outputs: one is responsible for predicting the label, and the other
predicts the probability that the generated sample is real/fake. If we assume that the labels can be
mapped (or normalized) to the range of [0, 1], then we can use a sigmoid nonlinearity in the last layer
of the discriminator network. The discriminator is trained by using the combination of the usual
unsupervised GAN loss function and a supervised regression loss:

LOSSD = Lunsupervised + Lsupervised
Lsupervised = ||y - ZJH (4)
Lunsupervised = EwNPdam(:v) [(1 - D(a:))z] + EzNPZ(z)[D(G(Z))2]

4
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where z represents the noise drawn from a uniform or normal distributions. = and G(z) describe the
true and generated images respectively. The term y refers to the true value of the label and ¢ indicates
the predicted labels. It is worth mentioning that, we employ least-square loss functions (Mao et al.,
2016) in the unsupervised part of the equation. In addition, the supervised regression error (i.e. the
difference between the predicted and the true labels) is added to the discriminator loss function which
helps to generate labels for the unseen or generated samples. The block diagram of the proposed
method is shown in Fig. [2}
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Figure 2: Architecture 1: the proposed semi-supervised regression with GAN (Reg-GAN) where both
the D(z) and predicted labels are generated from the deep convolutional neural network. ger,, Ziqb,
and 45 represent the unlabeled generated, labeled real and unlabeled real samples respectively.

In the second approach (Fig.[3), instead of having two outputs in the discriminator, we keep only the
regression output from the deep convolutional neural network to predict labels. Then we feed the
labels to another function to assign an index to the generated samples based on the predicted label
from the preceding convolutional neural network. In other words, instead of differentiating true and
generated samples by the network directly, we can employ a separate kernel function (Eq.[5) on the
regression output for deciding whether predicted labels are realistic or not. The kernel function is
responsible to assign an index to each input label. If the predicted label is within the normalized
range of true labels (i.e. between 0 and 1), then the assigned index is 1 and otherwise, the index will
be assigned exponentially by a number less than 1 according to the distance of the predicted value
from the target range of true labels. The training procedure of the proposed approaches are briefly
portrayed in Algorithm T}

exp(9), 0<9
Kernel Function K (§) = ¢ 1, 0<yg<1 (5)
1<y
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Figure 3: Architecture 2: the proposed semi-supervised regression with GAN (Reg-GAN) where
only the labels are predicted by the deep convolutional neural network (CNN). Zgen, Ziap, and Tyniap
represent the unlabeled generated, labeled real and unlabeled real samples respectively.
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Algorithm 1 Semi-supervised regression with GAN. We use default values for o = 0.0005, 5=0.5

Require: The Adam hyperparameters «, /3, the number of batches m
Require: Initial discriminator parameters w and initial generator parameters
1: for 6 has not converged do
2 fori=1,....,mdo
3: Sample real data z,y ~ Pyata(2,y), z ~ P.(2)
4 L) = Brpyyy )1 = D(2))2] + Benp. () [D(G(2))%] + |ly — 9
5 w 4 Adam(Lg),w,a,ﬁ)
6 L(é) <~ Lfeaturefl_natching
7 0 < Adam(LY 6, v, B)

' f
endet%(ll' or

5 EXPERIMENTS AND RESULTS

In this section, our method will be evaluated through some experiments from different point of
views such as regression prediction error, quality of generated samples and stability of training. The
main objective of the experiments is to show that our proposed architectures are able to learn data
generation and label prediction even in the case of having limited data and among them only a small
amount of samples are labeled.

5.1 DATA AND EXPERIMENTAL SETUP

For our experiments, we use a publicly available driving dataset The dataset contains images taken
from a front facing camera mounted on the car with their corresponding steering angles as labels. We
randomly choose 7200 samples from the dataset for training and 9000 samples for test. We aim at
evaluating our technique when the number of available samples and the number of labeled samples
are small. Hence, we did not incorporate more samples from the test set into our training data. The
label of the samples falls within the range of [-2.79, 8.75] which are further normalized into the range
of [0, 1] in a linear way. We use the average normalized prediction error over the test set to compute
the test error as following:

195 — vl

N
1

test_error = — E x 100 (6)
N~ ly

max ~ ymlnH

where IV is the number of test samples, and ¥, and ¥4, represents the minimum and maximum
value of the groundtruth labels (i.e. 0 and 1 respectively). We use the available Improved-GAN code,
which is written using *Theano’ python library and *Lasagne’ deep learning library, as a baseline to
implement our proposed methods. We perform experiments for 800 iterations with a learning rate of
a=0.0005 for our methods and 0.0003 for the original improved GAN (Salimans et al.,|2016)). The
experiments are run on a single NVIDIA Tesla P100 GPUs.

5.2 EXPERIMENTAL RESULTS

For training our proposed architectures, we used different scenarios with different number of labeled
samples in a semi-supervised learning setting. We perform the training by considering 1000, 2000,
4000, and “All” labeled samples. Moreover, for each scenario, we also feed all the training set
without labels as unlabeled samples to the algorithm. We compare our proposed architectures with
the state-of-the-art Improved-GAN semi-supervised learning approach (Salimans et al.||2016)). We
chose this method over other similar techniques because it outperforms them. In order to fit our
dataset into the Improved-GAN classification framework, we discretized the normalized continuous
labels into 10 number of classes (we assign labels in the range of [0, 0.1)—0, and [0.1 0.2)— 1, and
... [0.9,1]—9). Bear in mind that this discretization will add some unavoidable quantization error to
our training.

'"The dataset can be downloaded from: https://drive.google.com/file/d/
0B-KJCaaF7elleGlRbzVPZWVATlk/view
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Table 1: Test errors using 1000, 2000, 4000 and All labeled samples

Model 1000 2000 4000 Al

Improved_GAN 438% 4.22% 4.07% 4.06%
Reg-GAN (Architecture 1) 2.43% 2.40% 2.39% 2.36%
Reg-GAN (Architecture 2) 3.81% 3.58% 2.23% 2.21%

The results of the experiments are depicted in Table[I] From Table[T} we can note that our proposed
architectures outperform the Improved-GAN approach in all scenarios significantly. Our method,
Reg-GAN, gives the average improvement of 42.7% and 29.7% over the traditional improved-GAN
approach for the architecture 1 and 2 respectively. An example of the generated samples from
different techniques is shown in Fig. ] These samples are derived after training the networks over
1000 samples.

et -

e
(a) Architecture 1 (b) Architecture 2 (c) Improved-GAN

Figure 4: Sample generated images by using (a) Architecture 1, (b) Architecture 2, and (c) Improved-
GAN when 1000 labeled samples are used for training.

Furthermore, to assess the training stability of the methods, we plot the training and test errors in
Fig.[5] The plots are given for 400 iterations -rather than 800- to be able to track the variations of each
plot more clearly. Fig. [5|shows that some sharp peaks occur while training Improved-GAN which
can affect the stability of training. On the other hand, we can note that our proposed approaches (see
Fig.[5}(a) and (b)) are performing more stable and smoother than the original Improved GAN.
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Figure 5: Train and test errors are compared over 400 iterations using (a) Architecture 1, (b)
Architecture 2, and (c) Improved-GAN when 2000 labeled images are used

6 CONCLUSION AND FUTURE WORK

This work concerned solving the semi-supervised regression task by incorporating generative adver-
sarial networks. The conventional semi-supervised learning with GAN are suitable for classification
task that is using them for the regression task requires to convert continuous labels to a limited number
of classes. This conversion will add the quantization error to the training, and also determining the
number of classes for each application is non-trivial. This work proposes a semi-supervised regression
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task using GAN which overcomes the above mentioned problems that arise using semi-supervised
classification techniques to solve the regression task. We did experiments on a publicly available
driving dataset where continuous steering angles were used as the labels with the corresponding
images. We showed that our proposed approaches outperform the state-of-the-art Improved-GAN
technique in the literature. We summarize our plan for future work in the following:

1. The idea of this work can be extended to cover classification problems as well by assigning
the regression label output to predict the class labels. However, the performance of this
approach on the classification problems needs to be investigated.

2. The idea of semi-supervised regression may have other applications such as face detection,
and apparent age estimation from a single image. Our method can be evaluated on those
applications as well.
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