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Abstract

We introduce the Multi-Agent Tracking Environment (MATE), a novel multi-agent
environment simulates the target coverage control problems in the real world.
MATE hosts an asymmetric cooperative-competitive game consisting of two
groups of learning agents—"“cameras” and “targets”—with opposing interests.
Specifically, “cameras”, a group of directional sensors, are mandated to actively
control the directional perception area to maximize the coverage rate of targets.
On the other side, “targets” are mobile agents that aim to transport cargo between
multiple randomly assigned warehouses while minimizing the exposure to the
camera sensor networks. To showcase the practicality of MATE, we benchmark
the multi-agent reinforcement learning (MARL) algorithms from different aspects,
including cooperation, communication, scalability, robustness, and asymmetric
self-play. We start by reporting results for cooperative tasks using MARL
algorithms (MAPPO, IPPO, QMIX, MADDPG) and the results after augmenting
with multi-agent communication protocols (TarMAC, 12C). We then evaluate the
effectiveness of the popular self-play techniques (PSRO, fictitious self-play) in an
asymmetric zero-sum competitive game. This process of co-evolution between
cameras and targets helps to realize a less exploitable camera network. We also
observe the emergence of different roles of the target agents while incorporating
12C into target-target communication. MATE is written purely in Python and
integrated with OpenAl Gym API to enhance user-friendliness. Our project is
released at https://github.com/UnrealTracking/mate.

1 Introduction

The target coverage problem studies the active control of the perception area of a group of agents to
track the targets of interest, e.g., wireless sensor networks [1], surveillance camera networks [2, 3],
and unmanned aerial vehicle (UAV) networks [4]. It has much real-life significance and received
wide applications relating to social well-being, security, and entertainment. For example, smart
camera networks can be used for anti-poaching [5, 6], anti-smuggling [7], border security [8]
and—for more recreational uses—person-following [9, 10, 11] in filming and ball-tracking [12]
in sports events, etc. However, it remains an open challenge to cooperatively control the cameras
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Figure 1: Five snapshots of The Multi-Agent Tracking Environment at different scales. Note that
here we abbreviate “camera” as “C”, “target” as “T” and “obstacle” as “0”.

in distributed networks. A few notable issues hinder the progress: the quantities of the cameras
and targets that vary in real-time, the increasingly diverse and unpredictable trajectories of targets,
the partial observability of the cameras, and the limited bandwidth of the communication networks.
These factors contribute to the difficulties in current research regarding multi-camera cooperation.

Recent successes in multi-agent reinforcement learning (MARL) [13] have demonstrated the
superior efficiency of multi-agent learning methods in tackling cooperative-competitive games
at super-human levels, as shown in gaming Al [14, 15, 16, 17], robotic manipulation [18, 19],
autonomous driving [20, 21], population biology [22], and etc. Assuredly, the research on
target coverage problems would benefit significantly from multi-agent reinforcement learning.
Unfortunately, we notice that the popular MARL algorithms, e.g., MADDPG [23], QMIX [24],
MAPPO [25], HAPPO [26, 27] perform poorly in the target coverage problem [28], though they
achieved great success in other existing benchmarks [23, 29, 30]. These benchmarks are either
based on video games or some simplified scenarios, neglecting which features the real-world multi-
agent applications desperately demand, e.g., heterogeneous agents, asymmetric games, the variable
population of agents, simulating partial observation, and peer-to-peer communication. We have yet
to see an open-source and standardized environment that benchmarks the MARL algorithms under
such practical settings in the context of the target coverage problem.

Motivated by these findings, we build the Multi-Agent Tracking Environment (MATE) that advocates
the proposal of a more practical multi-agent system. Our system has accounted for both aspects
of fully-cooperative and fully-competitive games, the scalability and the robustness of agents, and
the communication efficiency among agents. MATE is an open-source simulation that hosts an
asymmetric two-team stochastic game between the “cameras” and the “targets”. Inside MATE,
the camera agents need to maximize the coverage rate on the “targets” while maintaining strong
coordination within the team to minimize overlapping detection. On the other hand, the targets
are tasked to maximize transport flow between randomly assigned warehouses while minimizing
the time of being detected by the cameras. The game-theoretic theme in MATE stimulates the
emergence of innovative strategies between two teams of asymmetric agents, thus facilitating the
process of autocurriculum. As a design consideration to encourage multi-layer strategies and
counterplay, MATE adds randomly spawned obstacles and transport tasks to offset the natural
advantages of both types of agents. For example, cameras’ mobility is restricted; therefore, targets
may hide behind obstacles to temporarily avoid exposure. Still, the freight and bounties would drive
the targets to stop hiding as soon as possible and carry on with their assigned tasks.

Worth noting that MATE is not anchored to entirely service the target coverage problem for training
a better camera network, but it also stands out as a multi-purpose benchmark to aid the advancement
of MARL algorithms. As discussed in the related work section, MATE has many essential features
demanded in algorithm-related research in MARL. Besides mixed-motive games, MATE supports
fully cooperative and fully competitive game types, which found popularity in the current landscape
of theoretical analysis on MARL algorithms [31, 32, 33, 34, 35]. MATE also provides Peer-to-Peer
communication channels, a topic that recently gained much interest in developing means beyond
information broadcast in multi-agent communication [36, 37]. The competitive game hosted in
MATE involves two-team of heterogeneous agents. The target agents differ in carrying capacity and
moving speed, marking further heterogeneity in learning the controls of target agents or learning
counter strategies against various types of targets as the camera agents.

We showcased a series of experiments to confirm the feasibility of training for both teams
inside MATE. We reported the performance of four MARL algorithms (MAPPO [25], IPPO [38],
MADDPG [23], QMIX [24]) on different environment configurations. We also showed the
performance of our agents in the cooperative game with multi-agent communication add-ons. We
observed the emergence of different roles (e.g., “distractors” and “running backs”) while training



Table 1: Comparison between relevant MAL environments (viewing with colors is recommended).

Environment Game Type Observations Actions Communication  Agent Type  Scalable
MPE (2017) [23] Continuous Continuous & Discrete

MAgent (2018) [55] Discrete Discrete

Pommerman (2018) [56]  Fully-Competitive Continuous Discrete

MARLO (2018) [57] Continuous + Pixels Discrete

Hanabi (2019) [58] Fully-Cooperative Discrete Discrete

SMAC (2019) [29] Fully-Cooperative Continuous Discrete

Neural MMO (2019) [59] Discrete Multi-Discrete

GFootball (2019) [60] Fully-Cooperative Continuous Discrete

MAMuJoCo (2020) [61] Fully-Cooperative Continuous Continuous

LBF (2020) [62] Discrete Discrete

RWARE (2020) [62] Discrete Discrete

DM Lab2D (2020) [63] Discrete Discrete

Flatland (2020) [64] Fully-Cooperative Continuous Discrete

SMART (2020) [20] Continuous & Discrete  Continuous & Discrete

MATE (Ours) Fully-Coop. & Fully-Comp.  Continuous Continuous & Discrete Peer-to-Peer

target agents with communications. Lastly, we employed the adversarial training algorithms (Policy
Space Response Oracle (PSRO) [39], fictitious self-play (FSP) [40], and self-play (SP)) in our
environment. The results suggest that training with such methods will decrease the exploitability of
the trained policies and thus improve their robustness. Regarding the development aspects of MATE,
it is extensively integrated with the OpenAl Gym API [41], which enables excellent compatibility
with popular RL libraries such as RLIib [42], Tianshou [43], Stable-Baselines-3 [44], and other
Gym compatible frameworks. The lightweight of the MATE attributes to efficient computations on
CPUs. This property facilitates the opportunities for mass-scale parallelisms using high-throughput
architectures like Ape-X [45] and IMPALA [46], etc. Also catering to various research needs, the
setting of the environment can also be easily configured, including action space, observability,
reward structure, population, and scene layouts. The development team will provide detailed
documentation on various features and commit long-term support to this project.

2 Related Work

Target Coverage Problem. The target coverage problem is to find an optimal control strategy
for sensors such that the time to monitor every interested target can be as long as possible [47].
It is a long-standing problem in directional sensor networks [48, 49], robotics [50, 51, 52, 53],
and computer vision [3, 54]. Most previous algorithms are heuristically designed for a specific
setting or application, lacking a general solution for this problem. Recently, Xu et al. [28] built
a 2D environment, formulated the problem as a multi-agent cooperative game, and introduced a
hierarchical multi-agent reinforcement learning approach to solve this game. However, compared
with the real-world scenarios, the environment is over-simplified due to random-walking targets and
a lack of obstacles. In MATE, we aim to build a more realistic simulator for benchmarking the oft-
the-shelf learning algorithms, e.g., account for occlusion caused by obstacles, the limited observing
area of sensors, and controllable Field-of-View (FoV) of the Pan-Tilt-Zoom (PTZ) cameras. Besides,
we reformulate the problem as a cooperative-competitive game and provide an interface to control
the targets, i.e., the targets are controlled by adversaries to relentlessly challenge the camera policy
with new strategies for the purpose of improving the robustness and generalizability of the trackers.

Multi-Agent Learning Environments. Besides the context of MCMT, we have seen other multi-
agent learning (MAL) environments that service different tasks. Table 1 summarizes the most
relevant MAL environments based on our literature review. To our findings, MATE stands out as
the environment that simultaneously offers fully-cooperative & fully-competitive game types, Peer-
to-Peer communication support, and heterogeneous agents.

Self-Play and Population-Based Training Regime. MATE experimented with three training
principles to promote camera-target competition in zero-sum games. Solving zero-sum games can
be highly non-trivial due to the non-transitivity (e.g., Rock-Paper-Scissor) in the policy space [65].
Conventional self-play makes the agent continuously play against the latest copy of itself. Since the
agents in MATE are heterogeneous, we adopt the asymmetric version [66, 67, 68] of the self-play
training method. However, self-play may fail to converge due to the lack of policy diversity [69, 70],
thereby trapped by the non-transitivity. Fictitious Self-Play (FSP) [40] is a population-based method
that maintains a policy memory storing past versions of the policy and uniformly samples a policy
from memory as the response against the opponent. Policy Space Response Oracle [39] with Nash



Equilibrium solver (PSRO-Nash) is also a population-based method that computes a meta-strategy
distribution. Instead of a uniform distribution, the distribution computed by PSRO-Nash resembles
that of a mixed-strategy Nash Equilibrium. Recently, many efforts have been spent on extending
PSRO methods to diverse PSRO methods [71, 72], no-regret PSRO methods [70], and PSRO with
meta-learning [73, 74]. In this paper, we conduct experiments to demonstrate the effectiveness of
these training regimes for improving and evaluating the robustness of the tracking agents.

3 MATE: the Multi-Agent Tracking Environment

In this section, we will introduce various details about the MATE environment. There are 4 kinds

of entities in this 2D mini-world (shown in Fig. 1): N¢ proactive cameras C = {cl}fvzc1 N7 mobile
targets 7 = {tz}fV:Tl, N static obstacles, and Ny (= 4) warehouses storing cargoes. The reward
structure inside MATE resembles the “min-max” nature of a cooperative-competitive multi-agent
game. Camera agents must maximize their coverage rate collaboratively while minimizing repeated
detection on the same target. In the meantime, targets transport cargoes between warehouses as
fast as possible while minimizing the surveillance from the cameras. The role of obstacles in the
environment is to provide temporary shelter against camera surveillance, but at the same time can
act as roadblocks on the path to the destination for the target agents. The warehouses are scattered
at the four corners of the mini-world.

Plenty of cargo needed to be delivered by the targets between the warehouses, in which the cargoes
are priced based on the delivery duration.

3.1 Entities and States

We define the state as the internal attributes of the entities, which may change continuously as the
environment progresses. Every agent (or controllable entity) may obtain its own states (public +
private) but can only observe the public states of other agents.

Camera is an in-place, zoomable, directional sensor with a pie-shape field of view. The publicly
accessible state of the camera SEUb = [x,y,7, Rs, ®,0] contains the self-location data in the
world coordinate system, the physical radius r, the visible line of sight R, the viewing direction
angle ¢, and field-of-view angle 6. In addition to these, the camera’s privately accessible state

stV = [sgu s Rs max, APmax, AQmax} are constants indicating the maximum possible values for

these parameters, with A, being the camera’s maximum rotation speed and Af,,,, being the
maximum zooming speed.

Target is a mobile vehicle equipped with an advanced omnidirectional sensor for which obstacles

would not block the sensing field. The publicly accessible state st = [z,y, Rs,I[loaded]]
consists of the self-location data, the sensible range R, and an indicating variable I[loaded]
that indicates whether the target is loaded with payloads. The privately accessible state s‘t’Vt =

[s’t’”b7 Vmasx, WO, .. WEW) p) E(NW)} are the maximum movement speed vyay, a ONe-

hot-like vector W' to indicate the payload destination, and a bit array E to “memorize” if the
previously visited warehouse is empty. There are two kinds of vehicles for targets, one with high
speed and small carrying capacity, and the other with low speed and large carrying capacity. The
former is twice as fast as the latter but has a halved carrying capacity.

The Obstacle is a circular-shape static object that randomly spawns (controlled by a distribution) in
the environment. Targets may use obstacles to stay hidden from camera surveillance. We added a
transmittance attribute to the obstacles, so the cameras with a particular chance can detect the target
hidden behind the obstacle at each timestep. This design feature prevents the target agents from
over-reliance on this shortsighted strategy. The state of an obstacle includes the location and the

. b
radius, i.e., s, = sb" = [z,y,7].

3.2 Observations

Observation acquired by an agent is a partial representation of the true states of the environment.
By default, the agents in MATE have partial observability over the environment. An agent could
only observe the entities within its field of view and obtain the publicly accessible states of these
observable entities.
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Figure 2: Schematic diagram of agent sight ranges. The agent (at the center, colored in ) can

obtain its own privately accessible state, and other agents’ and obstacles’ publicly accessible states

within the sight range (colored in and ). The camera can perceive the target (colored in
) behind an obstacle with the probability value of the obstacle’s transmittance.

Camera observations The observation of a camera ¢ € C can be divided into five parts, the
preserved data sP™, its own privately accessible state sP", and the publicly accessible states of
targets and obstacles and other cameras within its field of view. The preserved data sP*"¥ contains
global information about the environment, such as the number of each category of entities, the
current agent ID in the team, etc. Fig. 2a shows an example of the camera’s perception in the

green-shaded area.

Target observations The observation of the target ¢ € 7 is also composed of multiple parts,
including the preserved data sP*™, its own privately accessible state s?*'; and the publicly accessible
states of cameras, obstacles and other targets. Fig. 2b helps to demonstrate an example of the target’s
sight range.

Please refer to the supplementary for the mathematical formulation of the observations of both
camera and target agents.

3.3 Actions

Camera is an in-place directional sensor with two types of continuous actions: rotation and zooming.
These two action parameters can be adjusted simultaneously. Together they determine the shape
of the camera’s perception zone, though the area of perception remains unchanged. This design
consideration balances the expected values of the number of perceivable targets under all possible
action parameters.

Target is a mobile agent that can move freely inside this mini-world. Target’s action space consists
of the displacement vector v = (Ax, Ay) in Cartesian coordinates.

3.4 Reward Structure and Types of Stochastic Games

MATE can switch between three reward mechanisms corresponding to the typical three types of
stochastic games. But first and foremost, we will motivate the use of Mean Coverage Rate as a
reward function, which is an important metric used for evaluating MCMT tasks.

Mean Coverage Rate One typical method in RL for evaluating different models’ performances on
an equal basis is using the mean reward of every episode. However, we argue that mean coverage
rate, while strongly correlating to episode mean reward, is comparatively a more intuitive measure
for evaluating the performance of camera agents on tracking tasks. The mean coverage rate is
also a normalized measure that eases the problem of comparing results from different environment
configurations. For an episode with length L, it is:

Number of Detected Targets at step k

(D

L
1
Mean C Rate = —
call Loverage Rate L kz_:l Total Number of Targets

In an intra-team fully-cooperative game, all agents in the same team will receive team rewards based
on the team performance and would not differ between individuals. MATE, by default, uses Mean



Coverage Rate as the team reward for the camera agents. For the target agents, we propose the
transport reward to incentivize the transport of goods with the awareness of avoiding detection.
Formally, the target team reward is 7(7) = F' 4+ B and empirically we keep F' and B roughly equal.
F stands for “freight”, a fixed-value sparse reward received upon every successful delivery of the
assigned cargoes. B is short for “bounty” on every cargo. The value of the bounty will depreciate
per time-step and further decrease if the cameras have detected the target that carries this cargo.
Whereas in the setting of inter-team fully-competitive game, we let the camera team receives the
opposite value of the team reward of the targets, i.e., 7(©) = —r(7), The two teams are kept to
play a zero-sum game in the environment. In addition to the built-in team rewards mentioned above,
users can customize the reward functions with wrappers. Depending on the user configuration, the
game setting may transform into a general mixed-motive game.

4 Core Features of MATE

Sample Efficient and Easy to Use MATE is a multi-agent environment based on numerical
simulation and implemented in pure Python with minimal dependencies'. Users can install MATE
with a single shell command. Without parallelization, a single-thread program can sample around
300 steps per second on a modern CPU” in the default configuration (4 cameras, 8 targets, 9
obstacles). Besides, MATE ships with various custom wrappers and built-in rule-based agents, and
the existing algorithms can run on MATE with few modifications. The source code is released under
the MIT Open Source License with detailed documentation. The MATE environment is out-of-the-
box compatible with OpenAl Gym API [41]. We represent the sample code at the following that
runs random action agents on our environment.

import mate
env = mate.make('MultiAgentTracking-v0') # or gym.make
env.reset()
done = False
while not done:
camera_joint_action, target_joint_action = env.action_space.sample ()
(
(camera_joint_observation, target_joint_observation),
(camera_team_reward, target_team_reward),
done,
(camera_infos, target_infos)
) = env.step((camera_joint_action, target_joint_action))

Communicative Agents MATE implements an intra-team communication channel for each team
that supports both broadcast and Peer-to-Peer communication. Unlike the widely used MPE
environment [23], we explicitly isolate messages from agent observations so the user may customize
the message format, such as vectors or texts. Communication facilitates strategic coordination
among agents, preventing unnecessary exploration and repeated efforts, especially in a partially
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Figure 3: Illumination of the multi-round communication mechanism in MATE.

'Only NumPy, SciPy, Gym, and their dependencies are required.
Tested using a single-threaded program with an Intel® i7 8700 @ 3.20GHz CPU. The agents take random
action in the environment.



Table 2: Overview of the baseline algorithms. The TarMAC and I2C algorithms are communication
add-ons that can utilize with other multi-agent reinforcement learning algorithms.

Algorithm Category Centralized Training  On/Off-Policy Action Space Communication
QMIX [24] Value-based Yes Off Discrete No
MADDPG [23] Policy-based Yes Off Continuous No

IPPO [38] Policy-based No On Discrete / Continuous No
MAPPO [25] Policy-based Yes On Discrete / Continuous No
TarMAC [78] Communication Yes On / Off Discrete / Continuous Broadcast
12C [36] Communication Yes On / Off Discrete / Continuous Peer-to-Peer

observable environment. Users may add custom wrappers to simulate random signal noise, distance-
based delays, restricted communication ranges, limited bandwidths, etc. As Fig. 3 illustrates, MATE
supports multi-round communications, allowing agents to exchange several rounds of information
within the same environment step. This mechanism can facilitate more multi-agent research
regarding negotiations [75, 76] and conversations [77].

Heterogeneous and Asymmetric The heterogeneity of the MATE environment exhibits two
aspects: inter-team and intra-team. First, the agents in two opposite teams are completely distinct
regarding their dynamics and tasks. Second, agents within the same team may have different
abilities, e.g., the vehicles for targets with varying carrying capacities and movement speeds.
These heterogeneities reflect a realistic theme and will allow agents to emerge with diversified
strategies and individuality in a complex environment. The MATE environment hosts an asymmetric
competitive game with two teams of heterogeneous agents. Asymmetry is not only reflected in the
heterogeneity of agents but also in the variable quantities of players in the teams. Under different
game setups, the equilibrium of the game change relative to the strength of both teams, and their
corresponding strategy should also adapt accordingly.

Variety, Flexibility, and Scalability In our default configuration, two groups of agents perform two
tasks — the target coverage task for the camera agents and the transport task for the target agents. But
with our user-friendly framework, researchers may extend this environment to suit more missions for
the agents, such as deciding camera placement, trajectory prediction, resource collection, etc. The
default setup of the environment reflects the most complex setting in which the following features
are enabled: 1) mixed cooperation-competition, 2) continuous action, 3) partially observable, 4)
communicative, and 5) team reward only. MATE is highly modularized so that the users can convert
to different environments to suit their particular needs with our provided wrappers (presented in the
supplementary). Users can train a target or camera network curriculum by dynamically adjusting
the difficulty levels and transferring these policies across different settings. The number of entities
in the environment is also configurable. MATE may support simultaneous interactions between
two to hundreds of agents. As the quantity of agents varies, the complexity and difficulty of the
environment also change accordingly, which allows the emergence of diverse strategies. Simply by
varying the number of agents on both sides, the users can test the robustness of the newly-developed
Multi-Agent Learning (MAL) algorithms.

S Experiments

In this section, we will present the results for (1) collaborative game where training one team of
agents (either cameras or targets) against rule-based opponents (2) additionally incorporates multi-
agent communications into the collaboration games (3) competitive game where training two teams
of agents using asymmetric self-play or Population Based Training (PBT).

For fair comparisons in the cooperative games, we ran each experiment between different algorithms
for 10 million environment steps. The model performance was averaged across experiments from
three random seeds to reflect statistical properties. We use and extend the RLIib [42] to implement
QMIX [24], MADDPG [23], IPPO [38], MAPPO [25], TarMAC [78], and 12C [36] algorithms in
all of our experiments. Table 2 lists the properties of the baseline algorithms.
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Figure 4: The learning curves for the camera agents in the cooperative game. The intervals (shaded
region) indicate one standard deviation over three separate runs. The target agents are (greedy) rule-
based controlled.

5.1 Training Cameras in Fully-cooperative Game

We conduct feasibility checks on the train-ability of camera agents using MARL algorithms on
MATE and accordingly report the training performance of the camera’s policies on the 4C vs. 8T
(90).% setting. We presented a hierarchical RL (HRL) model with a selection-based low-level policy,
which is controlled by a rule-based executor. The MARL algorithms only learn the high-level policy.
Moreover, we added a 5-steps frame-skip to the high-level policy, in which the low-level policy
would receive a signal from the high-level policy once in 5 timesteps.

The results in Fig. 4a demonstrate the superior performance of the HRL methods and the
steady convergence of the PPO-based methods. Fig. 4b shows the effect of adding multi-agent
communication modules to various MARL algorithms on the Mean Coverage Rate. Enabling
communication for the MAPPO algorithm with the hierarchical agent structure hardly shows
improvement in convergence. We believe it is because of the strong inductive bias of the HRL
method, given that the policies for the low-level executors are based on pre-set rules (recall that only
the manager policy is trained).

5.2 Training Targets in Fully-cooperative Game
2C vs. 4T (00) (Partial)

In this section, we run multiple MARL algo-  °°] - Rule(Random) —-— Rule (Greedy)

rithms to train the target agents competing against _

rule-based (greedy) cameras. As expressed in g os

Fig. 5, target agents experience more conclusive %

performance gains by incorporating the multi-agent 3 o«

communication module compared to the camera &

agents shown in Fig. 4b. IPPO with the TarMAC E“ f §

protocol may achieve comparable performance to g W i — warPO
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methods implemented. Fig. 6 reflects the difficulty
in normalized reward for two different settings. In Figure 5: The learning curves (with inter-
2C vs. 4T (00), partial observability does not sig- vals of one standard deviation across three
nificantly hinder learning for MAPPO but causes an  separate runs) of various MARL methods in
approximately 0.35 decrease in normalized episode training target agents. Rule-based greedy
reward for the IPPO. In 4C vs. 8T (00), IPPO failed agents control the cameras.

99 G

3 Abbreviated “camera” as “C”, “target” as “T” and “obstacle” as “0”. Collectively 4C vs. 8T (90) refers to a
game setting where four camera agents play against eight target agents with nine obstacles in the environment
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Figure 6: A comparison between two different settings shows the significance of the observability
mode in learning meaningful policies for the target agents.

in both modes of observability while MAPPO suffered an approximately 0.1 decrease in the reward
when switched to partial observability.

5.3 Zero-sum Fully-competitive Game

In Section 5.1 and 5.2, we present the results of training camera or target agents against fixed-
policy opponents. However as these models implicitly treat their opponents as integrated parts of
the non-stationary environment, this would often result in over-fitting or failure to generalize against
new opponents [39]. In realistic deployment, a stable and robust solution is often preferred over a
better-performing but brittle solution. Therefore to improve the robustness of the camera policy, we
proposed to train camera and target agents in co-evolution with a zero-sum payoff structure. For the
experiment, we trained the agents with three population-based methods: PSRO-Nash [39], Fictitious
Self-Play [40], (asymmetric) self-play, and present the performance comparison in Fig. 7.

Note that the exploitability of a policy or a population of policies is an intuitive measure of
robustness. The exploitability, in the context of MATE, is formally defined as:

exploitablility(Hc,HT):% > [UBR(ITY), ) - U, 1T, )

i€{C, T}

where C, T refer to “camera group” and “target group”, —i = {C,7} \ {i}, BR stands for “best
response”, U'(-,-) (i € {C,T}) are the utility functions, and IT* (i € {C,T}) are the policy
populations accordingly. For fully-competitive settings, U¢ 4+ U7 = 0.

The exploitability can be interpreted as the average performance difference between the best-
response (BR) and current policies. Low exploitability implies that both opposing groups have
approximately converged to their best-response policies at the current iteration, indicating proximity
to the Nash equilibrium. In Fig. 7, both sub-figures show that PSRO-Nash and self-play can
converge to policy populations that are less exploitable than the populations trained against non-

2C (Partial) vs. 4T (Full) 4C (Partial) vs. 8T (Full)
.0 \ —— PSRO-Nash 107y —— PSRO-Nash
i \Y
g. i Self-Play é‘ \\ Self-Play
3 081 | —— Fictitious Self-Play Z o087 |\ —-— Fictitious Self-Play
g \ —-— Against Fixed Opponent ;_5 \‘\ —-— Against Fixed Opponent
5] \ <) \
S 06 i S 0.6 o
x | x \
w RN w \
3 \ 3 >
gos N g 049 ~—
3 ~o ® TNl
g 0.2 S . § L e —
R =4
0.0 ~—— - 0.0 TTTTT————
rand1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 random 1 2 3 4 5 6 7 8 9 10 11
Number of Learned Policies Number of Learned Policies

Figure 7: The exploitability of both the populations of cameras’ and targets’ policies at each
population iteration. The left and right figures differ in the settings of the environments.
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Figure 8: The probability distribution of the meta-strategy for each PSRO iteration for the policy
population of both camera and target teams. Both teams adaptively change their policy according to
the adversaries. The agents are trained under the 4C vs. 8T (00) configuration.

evolving, fixed-policy opponents. Since Fictitious Self-Play uniformly samples policy from the
policy distribution, the random policy has an equal probability of being sampled as the other policies
in the distribution at every population iteration, which therefore explains the slow decreasing trend
in exploitability. Fig. 8 visualizes the progression of distribution for the meta-strategy taken by the
players (the camera team and the target team). A relatively scattered Nash distribution indicates the
presence of multiple plausible strategies.

6 Conclusion

Multi-Agent Tracking Environment (MATE) is a novel multi-agent simulation for benchmark multi-
agent reinforcement learning algorithms in the target coverage problem. MATE hosts a zero-sum
cooperative-competitive, asymmetric game between “cameras” and “targets”, in which cameras gain
team rewards to maximize the number of the covered targets. MATE incorporates the intra-team
peer-to-peer (P2P) communication feature and trainable adversarial target agents. This environment
is built purely in Python and integrated with OpenAI Gym API [41] enabling great compatibility and
extensibility to most distributive RL frameworks. The lightweight of this environment also ensures
high sampling efficiency. MATE allows for flexible configurations for the simulation environments
along with highly customized scenarios to fulfill specific research needs. We conduct a series of
benchmarks to show the performance of target and camera agents trained by MARL methods and
algorithms in various settings. We hope this work will serve as a useful guide for the community
using MATE to conduct further research.

Limitations. The first-stage focus of MATE is to provide an all-in-one benchmark for testing
various MARL algorithms and a new platform for studying distributed target coverage tasks with
trainable adversaries. Admittedly, the focus of MATE is lesser on the aspects of visual perceptions,
for example, evaluations in three-dimensional space. For these purposes, one of our future works
will extend MATE into the high-quality 3D game engine, e.g., developing realistic environments on
Unreal Engine 4 (UE4) with UnrealCV [79].

Fair Use of the Dataset. Despite MATE was not purposefully designed for scenarios that incur
direct violation of privacy or harm the well-being of others, the theme of MATE brings up a valuable
topic of discussion with regard to a recognized conflict between the advancement of Al technologies
and the integrity of social well-being. Although the possibility of direct application of MATE to
other exploitative systems remains slim, the transfer of knowledge between multi-agent tracking
systems is theoretically plausible. While enjoying the benefits of training smarter camera systems
using MATE, we do have genuine concerns about the negative societal impacts due to the misuse
of tracking technologies in repressive surveillance. We hereby advocate for more responsible use
of multi-agent tracking environments including MATE and we condemn the act of using MATE or
other similar systems for malicious activities.
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(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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